1
|
Yumura S, Nakano M, Honda A, Hashimoto Y, Kondo T. Dynamics of intracellular cGMP during chemotaxis in Dictyostelium cells. J Cell Sci 2023; 136:286882. [PMID: 36601895 DOI: 10.1242/jcs.260591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is a ubiquitous important second messenger involved in various physiological functions. Here, intracellular cGMP (cGMPi) was visualized in chemotactic Dictyostelium cells using the fluorescent probe, D-Green cGull. When wild-type cells were stimulated with a chemoattractant, fluorescence transiently increased, but guanylate cyclase-null cells did not show a change in fluorescence, suggesting that D-Green cGull is a reliable indicator of cGMPi. In the aggregation stage, the responses of cGMPi propagated in a wave-like fashion from the aggregation center. The oscillation of the cGMPi wave was synchronized almost in phase with those of other second messengers, such as the intracellular cAMP and Ca2+. The phases of these waves preceded those of the oscillations of actomyosin and cell velocity, suggesting that these second messengers are upstream of the actomyosin and chemotactic migration. An acute increase in cGMPi concentration released from membrane-permeable caged cGMP induced a transient shuttle of myosin II between the cytosol and cell cortex, suggesting a direct link between cGMP signaling and myosin II dynamics.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Masaki Nakano
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Aika Honda
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yuuki Hashimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Tomo Kondo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Baumgardner K, Lin C, Firtel RA, Lacal J. Phosphodiesterase PdeD, dynacortin, and a Kelch repeat-containing protein are direct GSK3 substrates in Dictyostelium that contribute to chemotaxis towards cAMP. Environ Microbiol 2019; 20:1888-1903. [PMID: 29626371 DOI: 10.1111/1462-2920.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 01/25/2023]
Abstract
The migration of cells according to a diffusible chemical signal in their environment is called chemotaxis, and the slime mold Dictyostelium discoideum is widely used for the study of eukaryotic chemotaxis. Dictyostelium must sense chemicals, such as cAMP, secreted during starvation to move towards the sources of the signal. Previous work demonstrated that the gskA gene encodes the Dictyostelium homologue of glycogen synthase kinase 3 (GSK3), a highly conserved serine/threonine kinase, which plays a major role in the regulation of Dictyostelium chemotaxis. Cells lacking the GskA substrates Daydreamer and GflB exhibited chemotaxis defects less severe than those exhibited by gskA- (GskA null) cells, suggesting that additional GskA substrates might be involved in chemotaxis. Using phosphoproteomics we identify the GskA substrates PdeD, dynacortin and SogA and characterize the phenotypes of their respective null cells in response to the chemoattractant cAMP. All three chemotaxis phenotypes are defective, and in addition, we determine that carboxylesterase D2 is a common downstream effector of GskA, its direct substrates PdeD, GflB and the kinases GlkA and YakA, and that it also contributes to cell migration. Our findings identify new GskA substrates in cAMP signalling and break down the essential role of GskA in myosin II regulation.
Collapse
Affiliation(s)
- Kimberly Baumgardner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Connie Lin
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Richard A Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Jesus Lacal
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.,Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain
| |
Collapse
|
3
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|