1
|
Wu M, Gao Y, Luan Q, Papautsky I, Chen X, Xu J. Three-dimensional lab-on-a-foil device for dielectrophoretic separation of cancer cells. Electrophoresis 2023; 44:1802-1809. [PMID: 37026613 DOI: 10.1002/elps.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
A simple, low-cost, three-dimensional (3D) lab-on-a-foil microfluidic device for dielectrophoretic separation of circulating tumor cells (CTCs) is designed and constructed. Disposable thin films are cut by xurography and microelectrode array are made with rapid inkjet printing. The multilayer device design allows the studying of spatial movements of CTCs and red blood cells (RBCs) under dielectrophoresis (DEP). A numerical simulation was performed to find the optimum driving frequency of RBCs and the crossover frequency for CTCs. At the optimum frequency, RBCs were lifted 120 µm in z-axis direction by DEP force, and CTCs were not affected due to negligible DEP force. By utilizing the displacement difference, the separation of CTCs (modeled with A549 lung carcinoma cells) from RBCs in z-axis direction was achieved. With the nonuniform electric field at optimized driving frequency, the RBCs were trapped in the cavities above the microchannel, whereas the A549 cells were separated with a high capture rate of 86.3% ± 0.2%. The device opens not only the possibility for 3D high-throughput cell separation but also for future developments in 3D cell manipulation through rapid and low-cost fabrication.
Collapse
Affiliation(s)
- Mengren Wu
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yuan Gao
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Mechanical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Qiyue Luan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Xiaolin Chen
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
A spiral microfluidic chip endows high efficiency single cell alignment at extremely low flow for ICP-MS analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
3
|
Deng Z, Wu S, Wang Y, Shi D. Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine 2022; 83:104237. [PMID: 36041264 PMCID: PMC9440384 DOI: 10.1016/j.ebiom.2022.104237] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that shed from the primary tumor and intravasate into the peripheral blood circulation system responsible for metastasis. Sensitive detection of CTCs from clinical samples can serve as an effective tool in cancer diagnosis and prognosis through liquid biopsy. Current CTC detection technologies mainly reply on the biomarker-mediated platforms including magnetic beads, microfluidic chips or size-sensitive microfiltration which can compromise detection sensitivity due to tumor heterogeneity. A more sensitive, biomarker independent CTCs isolation technique has been recently developed with the surface-charged superparamagnetic nanoprobe capable of different EMT subpopulation CTC capture from 1 mL clinical blood. In this review, this new strategy is compared with the conventional techniques on biomarker specificity, impact of protein corona, effect of glycolysis on cell surface charge, and accurate CTC identification. Correlations between CTC enumeration and molecular profiling in clinical blood and cancer prognosis are provided for clinical cancer management.
Collapse
Affiliation(s)
- Zicheng Deng
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shengming Wu
- The Institute for Translational Nanomedicine Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, School of Medicine Tongji University, Shanghai 200092, PR China
| | - Yilong Wang
- The Institute for Translational Nanomedicine Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, School of Medicine Tongji University, Shanghai 200092, PR China.
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
4
|
Xu X, Lin J, Guo Y, Wu X, Xu Y, Zhang D, Zhang X, Yujiao X, Wang J, Yao C, Yao J, Xing J, Cao Y, Li Y, Ren W, Chen T, Ren Y, Wu A. TiO2-based Surface-Enhanced Raman Scattering bio-probe for efficient circulating tumor cell detection on microfilter. Biosens Bioelectron 2022; 210:114305. [DOI: 10.1016/j.bios.2022.114305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
|
5
|
Lee S, Jeong M, Lee S, Lee SH, Choi JS. Mag-spinner: a next-generation Facile, Affordable, Simple, and porTable (FAST) magnetic separation system. NANOSCALE ADVANCES 2022; 4:792-800. [PMID: 36131828 PMCID: PMC9419614 DOI: 10.1039/d1na00791b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 06/02/2023]
Abstract
Mag-spinner, a system in which magnets are combined with a spinner system, is a new type of magnetic separation system for the preprocessing of biological and medical samples. Interference by undesired components restricts the detection accuracy and efficiency. Thus, the development of appropriate separation techniques is required for better detection of the desired targets, to enrich the target analytes and remove the undesired components. The strong response of iron oxide nanoclusters can successfully capture the targets quickly and with high efficiency. As a result, cancer cells can be effectively separated from blood using the developed mag-spinner system. Indeed, this system satisfies the requirements for desirable separation systems, namely (i) fast sorting rates, (ii) high separation efficiency, (iii) the ability to process native biological fluids, (iv) simple operating procedures, (v) low cost, (vi) operational convenience, and (vii) portability. Therefore, this system is widely applicable to sample preparation without limitations on place, cost, and equipment.
Collapse
Affiliation(s)
- Sanghoon Lee
- Dept. of Chemical and Biological Engineering, Hanbat National University 34158 Daejeon Republic of Korea
| | - Miseon Jeong
- Dept. of Chemical and Biological Engineering, Hanbat National University 34158 Daejeon Republic of Korea
| | - Soojin Lee
- Dept. of Microbiology & Molecular Biology, Chungnam National University 34134 Daejeon Republic of Korea
| | - Sang Hun Lee
- Dept. of Chemical and Biological Engineering, Hanbat National University 34158 Daejeon Republic of Korea
| | - Jin-Sil Choi
- Dept. of Chemical and Biological Engineering, Hanbat National University 34158 Daejeon Republic of Korea
| |
Collapse
|
6
|
Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells. Bioact Mater 2021; 11:32-40. [PMID: 34938910 DOI: 10.1016/j.bioactmat.2021.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs), as important liquid biopsy target, can provide valuable information for cancer progress monitoring and individualized treatment. However, current isolation platforms incapable of balancing capture efficiency, specificity, cell viability, and gentle release have restricted the clinical applications of CTCs. Herein, inspired by the structure and functional merits of natural membrane interfaces, we established an antibody-engineered red blood cell (RBC-Ab) affinity interface on microfluidic chip for high-performance isolation and release of CTCs. The lateral fluidity, pliability, and anti-adhesion property of the RBC microfluidic interface enabled efficient CTCs capture (96.5%), high CTCs viability (96.1%), and high CTCs purity (average 4.2-log depletion of leukocytes). More importantly, selective lysis of RBCs by simply changing the salt concentration was utilized to destroy the affinity interface for efficient and gentle release of CTCs without nucleic acid contamination. Using this chip, CTCs were successfully detected in colon cancer samples with 90% sensitivity and 100% specificity (20 patients and 10 healthy individuals). After the release process, KRAS gene mutations of CTCs were identified from all the 5 cancer samples, which was consistent with the results of tissue biopsy. We expect this RBC interface strategy will inspire further biomimetic interface construction for rare cell analysis.
Collapse
|
7
|
Hyler AR, Hong D, Davalos RV, Swami NS, Schmelz EM. A novel ultralow conductivity electromanipulation buffer improves cell viability and enhances dielectrophoretic consistency. Electrophoresis 2021; 42:1366-1377. [PMID: 33687759 DOI: 10.1002/elps.202000324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/23/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Cell separation has become a critical diagnostic, research, and treatment tool for personalized medicine. Despite significant advances in cell separation, most widely used applications require the use of multiple, expensive antibodies to known markers in order to identify subpopulations of cells for separation. Dielectrophoresis (DEP) provides a biophysical separation technique that can target cell subpopulations based on phenotype without labels and return native cells for downstream analysis. One challenge in employing any DEP device is the sample being separated must be transferred into an ultralow conductivity medium, which can be detrimental in retaining cells' native phenotypes for separation. Here, we measured properties of traditional DEP reagents and determined that after just 1-2 h of exposure and subsequent culture, cells' viability was significantly reduced below 50%. We developed and tested a novel buffer (Cyto Buffer) that achieved 6 weeks of stable shelf-life and demonstrated significantly improved viability and physiological properties. We then determined the impact of Cyto Buffer on cells' dielectric properties and morphology and found that cells retained properties more similar to that of their native media. Finally, we vetted Cyto Buffer's usability on a cell separation platform (Cyto R1) to determine combined efficacy for cell separations. Here, more than 80% of cells from different cell lines were recovered and were determined to be >70% viable following exposure to Cyto Buffer, flow stimulation, electromanipulation, and downstream collection and growth. The developed buffer demonstrated improved opportunities for electrical cell manipulation, enrichment, and recovery for next generation cell separations.
Collapse
Affiliation(s)
| | - Daly Hong
- CytoRecovery, Inc., Blacksburg, VA, USA
| | - Rafael V Davalos
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Eva M Schmelz
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.,Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Kang K, Zhou X, Zhang Y, Zhu N, Li G, Yi Q, Wu Y. Cell-Released Magnetic Vesicles Capturing Metabolic Labeled Rare Circulating Tumor Cells Based on Bioorthogonal Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007796. [PMID: 33749110 DOI: 10.1002/smll.202007796] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Capture of circulating tumor cells (CTCs) with high efficiency and high purity holds great value for potential clinical applications. Besides the existing problems of contamination from blood cells and plasma proteins, unknown/down-regulated expression of targeting markers (e.g., antigen, receptor, etc.) of CTCs have questioned the reliability and general applicability of current CTCs capture methodologies based on immune/aptamer-affinity. Herein, a cell-engineered strategy is designed to break down such barriers by employing the cell metabolism as the leading force to solve key problems. Generally, through an extracellular vesicle generation way, the cell-released magnetic vesicles inherited parent cellular membrane characteristics are produced, and then functionalized with dibenzoazacyclooctyne to target and isolate the metabolic labeled rare CTCs. This strategy offers good reliability and broader possibilities to capture different types of tumor cells, as proven by the capture efficiency above 84% and 82% for A549 and HepG2 cell lines as well as an extremely low detection limitation of 5 cells. Moreover, it enabled high purity enrichment of CTCs from 1 mL blood samples of tumor-bearing mice, only ≈5-757 white blood cells are non-specific caught, ignoring the potential phenotypic fluctuation associated with the cancer progression.
Collapse
Affiliation(s)
- Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoxi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yujia Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Nanhang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Guohao Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
9
|
Liu Y, Xu H, Li T, Wang W. Microtechnology-enabled filtration-based liquid biopsy: challenges and practical considerations. LAB ON A CHIP 2021; 21:994-1015. [PMID: 33710188 DOI: 10.1039/d0lc01101k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid biopsy, an important enabling technology for early diagnosis and dynamic monitoring of cancer, has drawn extensive attention in the past decade. With the rapid developments of microtechnology, it has been possible to manipulate cells at the single-cell level, which dramatically improves the liquid biopsy capability. As the microtechnology-enabled liquid biopsy matures from proof-of-concept demonstrations towards practical applications, a main challenge it is facing now is to process clinical samples which are usually of a large volume while containing very rare targeted cells in complex backgrounds. Therefore, a high-throughput liquid biopsy which is capable of processing liquid samples with a large volume in a reasonable time along with a high recovery rate of rare targeted cells from complex clinical liquids is in high demand. Moreover, the purity, viability and release feasibility of recovered targeted cells are the other three key impact factors requiring careful considerations. To date, among the developed techniques, micropore-type filtration has been acknowledged as the most promising solution to address the aforementioned challenges in practical applications. However, the presently reported studies about micropore-type filtration are mostly based on trial and error for device designs aiming at different cancer types, which requires lots of efforts. Therefore, there is an urgent need to investigate and elaborate the fundamental theories of micropore-type filtration and key features that influence the working performances in the liquid biopsy of real clinical samples to promote the application efficacy in practical applications. In this review, the state of the art of microtechnology-enabled filtration is systematically and comprehensively summarized. Four key features of the filtration, including throughput, purity, viability and release feasibility of the captured targeted cells, are elaborated to provide the guidelines for filter designs. The recent progress in the filtration mode modulation and sample standardization to improve the filtration performance of real clinical samples is also discussed. Finally, this review concludes with prospective views for future developments of filtration-based liquid biopsy to promote its application efficacy in clinical practice.
Collapse
Affiliation(s)
- Yaoping Liu
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | | | | | | |
Collapse
|
10
|
Wang H, Wu J, Zhang Q, Hao J, Wang Y, Li Z, Niu H, Zhang H, Zhang S. A Modified Method to Isolate Circulating Tumor Cells and Identify by a Panel of Gene Mutations in Lung Cancer. Technol Cancer Res Treat 2021; 20:1533033821995275. [PMID: 34032165 PMCID: PMC8155778 DOI: 10.1177/1533033821995275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
The CellSearch system is the only FDA approved and successful used detection technology for circulating tumor cells(CTCs). However, the process for identification of CTCs by CellSearch appear to damage the cells, which may adversely affects subsequent molecular biology assays. We aimed to explore and establish a membrane-preserving method for immunofluorescence identification of CTCs that keeping the isolated cells intact. 98 patients with lung cancer were enrolled, and the efficacy of clinical detection of CTCs was examined. Based on the CellSearch principle, we optimized an anti-EpCAM antibody and improved cell membrane rupture. A 5 ml peripheral blood sample was used to enrich CTCs with EpCAM immunomagnetic beads. Fluorescence signals were amplified with secondary antibodies against anti-EpCAM antibody attached on immunomagnetic beads. After identifying CTCs, single CTCs were isolated by micromanipulation. To confirm CTCs, genomic DNA was extracted and amplified at the single cell level to sequence 72 target genes of lung cancer and analyze the mutation copy number variations (CNVs) and gene mutations. A goat anti-mouse polyclonal antibody conjugated with Dylight 488 was selected to stain tumor cells. We identified CTCs based on EpCAM+ and CD45+ cells to exclude white blood cells. In the 98 lung cancer patients, the detection rate of CTCs (≥1 CTC) per 5 ml blood was 87.76%, the number of detections was 1-36, and the median was 2. By sequencing 72 lung cancer-associated genes, we found a high level of CNVs and gene mutations characteristic of tumor cells. We established a new CTCs staining scheme that significantly improves the detection rate and allows further analysis of CTCs characteristics at the genetic level.
Collapse
Affiliation(s)
- Helin Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Jieqing Wu
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Qi Zhang
- Department of Oncology, Beijing Chaoyang Huanxing Cancer Hospital,
Beijing, China
| | - Jianqing Hao
- Department of Respiratory Medicine, Qingyang People’s Hospital,
Gansu, China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Zhuoran Li
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Hongrui Niu
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital
Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute,
Beijing, China
| | - Shucai Zhang
- Department of Oncology, Beijing Chest Hospital, Capital Medical
University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing,
China
| |
Collapse
|
11
|
Abdulla A, Zhang T, Ahmad KZ, Li S, Lou J, Ding X. Label-free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing (SAIF) Microfluidic Chip. Anal Chem 2020; 92:16170-16179. [PMID: 33232155 DOI: 10.1021/acs.analchem.0c03920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) are rare cells existing in the bloodstream with a relatively low number, which facilitate as a predictor of cancer progress. However, it is difficult to obtain highly purified intact CTCs with desired viability due to the low percentage of CTCs among blood cells. In this work, we demonstrate a novel self-amplified inertial focused (SAIF) microfluidic chip that enables size-based, high-throughput, label-free separation of CTCs from a patient's blood. The SAIF chip introduced in this study demonstrated the feasibility of an extremely narrow zigzag channel (with 40 μm channel width) connected with two expansion regions to effectively separate different-sized cells with amplified separation distance. The chip performance was optimized with different-sized polystyrene (PS) particles and blood cells spiked with three different types of cancer cells. The separation efficiencies for blood cells and spiked cancer cells are higher than 80%. Recovery rates of cancer cells were tested by spiking 1500 lung cancer cells (A549), breast cancer cells (MCF-7), and cervical cancer cells (HeLa) separately to 3 mL 0.09% saline with 3 × 106 white blood cells (WBCs). The recovery rates for larger cells (MCF-7 and HeLa) were 79.1 and 85.4%, respectively. Viabilities of the cells harvested from outlets were all higher than 97% after culturing for 24, 48, and 72 h. The SAIF chip performance was further confirmed using the real clinical patient blood samples from four lung cancer patients. Theoretical force balance analysis in physics, computational simulations, and experimental observations indicate that the SAIF chip is simple but effective, and high-throughput separation CTCs can be readily achieved without complex structures.
Collapse
Affiliation(s)
- Aynur Abdulla
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| | - Ting Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| | - Khan Zara Ahmad
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| | - Shanhe Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 Huaihai West Road, Shanghai 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai 200030, China
| |
Collapse
|
12
|
Pei H, Li L, Han Z, Wang Y, Tang B. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. LAB ON A CHIP 2020; 20:3854-3875. [PMID: 33107879 DOI: 10.1039/d0lc00577k] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) detach from primary or metastatic lesions and circulate in the peripheral blood, which is considered to be the cause of distant metastases. CTC analysis in the form of liquid biopsy, enumeration and molecular analysis provide significant clinical information for cancer diagnosis, prognosis and therapeutic strategies. Despite the great clinical value, CTC analysis has not yet entered routine clinical practice due to lack of efficient technologies to perform CTC isolation and single-cell analysis. Taking the rarity and inherent heterogeneity of CTCs into account, reliable methods for CTC isolation and detection are in urgent demand for obtaining valuable information on cancer metastasis and progression from CTCs. Microfluidic technology, featuring microfabricated structures, can precisely control fluids and cells at the micrometer scale, thus making itself a particularly suitable method for rare CTC manipulation. Besides the enrichment function, microfluidic chips can also realize the analysis function by integrating multiple detection technologies. In this review, we have summarized the recent progress in CTC isolation and detection using microfluidic technologies, with special attention to emerging direct enrichment and enumeration in vivo. Further, few insights into single CTC molecular analysis are also demonstrated. We have provided a review of potential clinical applications of CTCs, ranging from early screening and diagnosis, tumor progression and prognosis, treatment and resistance monitoring, to therapeutic evaluation. Through this review, we conclude that the clinical utility of CTCs will be expanded as the isolation and analysis techniques are constantly improving.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Cheng J, Liu Y, Zhao Y, Zhang L, Zhang L, Mao H, Huang C. Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. MICROMACHINES 2020; 11:E774. [PMID: 32823926 PMCID: PMC7465711 DOI: 10.3390/mi11080774] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs), a type of cancer cell that spreads from primary tumors into human peripheral blood and are considered as a new biomarker of cancer liquid biopsy. It provides the direction for understanding the biology of cancer metastasis and progression. Isolation and analysis of CTCs offer the possibility for early cancer detection and dynamic prognosis monitoring. The extremely low quantity and high heterogeneity of CTCs are the major challenges for the application of CTCs in liquid biopsy. There have been significant research endeavors to develop efficient and reliable approaches to CTC isolation and analysis in the past few decades. With the advancement of microfabrication and nanomaterials, a variety of approaches have now emerged for CTC isolation and analysis on microfluidic platforms combined with nanotechnology. These new approaches show advantages in terms of cell capture efficiency, purity, detection sensitivity and specificity. This review focuses on recent progress in the field of nanotechnology-assisted microfluidics for CTC isolation and detection. Firstly, CTC isolation approaches using nanomaterial-based microfluidic devices are summarized and discussed. The different strategies for CTC release from the devices are specifically outlined. In addition, existing nanotechnology-assisted methods for CTC downstream analysis are summarized. Some perspectives are discussed on the challenges of current methods for CTC studies and promising research directions.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China;
| | - Lingqian Zhang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Park DSW, Young BM, You BH, Singh V, Soper SA, Murphy MC. An integrated, optofluidic system with aligned optical waveguides, microlenses, and coupling prisms for fluorescence sensing. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2020; 29:600-609. [PMID: 39391841 PMCID: PMC11465942 DOI: 10.1109/jmems.2020.3004374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An improved, laser-induced fluorescence-based micro-optical biosensor was designed and fabricated, with cyclic olefin copolymer (COC) optical waveguides, a poly(methyl methacrylate) (PMMA) fluidic substrate with an array of microlenses, and a COC coupling prism integrated with the waveguide substrate or cover plate. The double-sided hot embossed fluidic substrate had sampling zone microchannels on the bottom and microlenses on the top. Dissolved COC injected into polydimethylsiloxane (PDMS) lost molds embedded the waveguides in the PMMA cover plate and formed the integrated coupling prism. The embedded COC waveguide was flycut down to 50 μm. The cover plate and shallow, 1:20 aspect ratio, microchannels were thermal fusion bonded using a pressure-assisted boiling point control system, without sagging. The large COC prism coupled better to the waveguide. The highest intensity evanescent excitation of the waveguide was obtained near the critical angle. The maximum signal-to-noise ratio (SNR) was 119 and the lowest detection limit was 7.34 × 10-20 mol at a SNR of 2 for a 100 μm wide by 50 μm deep waveguide. The microlenses highly focused the fluorescent radiation in the sampling zone. The microfabricated waveguide enables rapid, low-cost detection of fluorescent samples with high SNR, a low detection limit, and high sampling efficiency.
Collapse
Affiliation(s)
- Daniel S-W Park
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brandon M Young
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC, USA and is now with the Center for BioModular Multiscale Systems for Precision Medicine, at the University of Kansas, Lawrence, KS 66045
| | - Byoung H You
- Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA
| | - Varshni Singh
- Center for Advanced Microstructures and Devices (CAMD), Louisiana State University, Baton Rouge, LA 70806, USA
| | - Steven A Soper
- Center for BioModular Multiscale Systems for Precision Medicine, Departments of Chemistry and Mechanical Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Michael C Murphy
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
15
|
Tokar JJ, Stahlfeld CN, Sperger JM, Niles DJ, Beebe DJ, Lang JM, Warrick JW. Pairing Microwell Arrays with an Affordable, Semiautomated Single-Cell Aspirator for the Interrogation of Circulating Tumor Cell Heterogeneity. SLAS Technol 2020; 25:162-176. [PMID: 31983266 PMCID: PMC8879417 DOI: 10.1177/2472630319898146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Comprehensive analysis of tumor heterogeneity requires robust methods for the isolation and analysis of single cells from patient samples. An ideal approach would be fully compatible with downstream analytic methods, such as advanced genomic testing. These endpoints necessitate the use of live cells at high purity. A multitude of microfluidic circulating tumor cell (CTC) enrichment technologies exist, but many of those perform bulk sample enrichment and are not, on their own, capable of single-cell interrogation. To address this, we developed an affordable semiautomated single-cell aspirator (SASCA) to further enrich rare-cell populations from a specialized microwell array, per their phenotypic markers. Immobilization of cells within microwells, integrated with a real-time image processing software, facilitates the detection and precise isolation of targeted cells that have been optimally seeded into the microwells. Here, we demonstrate the platform capabilities through the aspiration of target cells from an impure background population, where we obtain purity levels of 90%-100% and demonstrate the enrichment of the target population with high-quality RNA extraction. A range of low cell numbers were aspirated using SASCA before undergoing whole transcriptome and genome analysis, exhibiting the ability to obtain endpoints from low-template inputs. Lastly, CTCs from patients with castration-resistant prostate cancer were isolated with this platform and the utility of this method was confirmed for rare-cell isolation. SASCA satisfies a need for an affordable option to isolate single cells or highly purified subpopulations of cells to probe complex mechanisms driving disease progression and resistance in patients with cancer.
Collapse
Affiliation(s)
- Jacob J Tokar
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | | | - Jamie M Sperger
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Niles
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Beebe
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
| | - Joshua M Lang
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - Jay W Warrick
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| |
Collapse
|
16
|
Xu X, Jiang Z, Wang J, Ren Y, Wu A. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis. Electrophoresis 2020; 41:933-951. [PMID: 32144938 DOI: 10.1002/elps.201900402] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/02/2023]
Abstract
The prognosis of malignant tumors is challenged by insufficient means to effectively detect tumors at early stage. Liquid biopsy using circulating tumor cells (CTCs) as biomarkers demonstrates a promising solution to tackle the challenge, because CTCs play a critical role in cancer metastatic process via intravasation, circulation, extravasation, and formation of secondary tumor. However, the effectiveness of the solution is compromised by rarity, heterogeneity, and vulnerability associated with CTCs. Among a plethora of novel approaches for CTC isolation and enrichment, microfluidics leads to isolation and detection of CTCs in a cost-effective and operation-friendly way. Development of microfluidics also makes it feasible to model the cancer metastasis in vitro using a microfluidic system to mimick the in vivo microenvironment, thereby enabling analysis and monitor of tumor metastasis. This paper aims to review the latest advances for exploring the dual-roles microfluidics has played in early cancer diagnosis via CTC isolation and investigating the role of CTCs in cancer metastasis; the merits and drawbacks for dominating microfluidics-based CTC isolation methods are discussed; biomimicking cancer metastasis using microfluidics are presented with example applications on modelling of tumor microenvironment, tumor cell dissemination, tumor migration, and tumor angiogenesis. The future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Xiawei Xu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China.,Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| | - Jing Wang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Yong Ren
- Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| |
Collapse
|
17
|
Rafiee SD, Kocabey S, Mayer M, List J, Rüegg C. Detection of HER2 + Breast Cancer Cells using Bioinspired DNA-Based Signal Amplification. ChemMedChem 2020; 15:661-666. [PMID: 31943804 PMCID: PMC7187270 DOI: 10.1002/cmdc.201900697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/17/2019] [Indexed: 01/25/2023]
Abstract
Circulating tumor cells (CTC) are promising biomarkers for metastatic cancer detection and monitoring progression. However, detection of CTCs remains challenging due to their low frequency and heterogeneity. Herein, we report a bioinspired approach to detect individual cancer cells, based on a signal amplification cascade using a programmable DNA hybridization chain reaction (HCR) circuit. We applied this approach to detect HER2+ cancer cells using the anti‐HER2 antibody (trastuzumab) coupled to initiator DNA eliciting a HCR cascade that leads to a fluorescent signal at the cell surface. At 4 °C, this HCR detection scheme resulted in highly efficient, specific and sensitive signal amplification of the DNA hairpins specifically on the membrane of the HER2+ cells in a background of HER2− cells and peripheral blood leukocytes, which remained almost non‐fluorescent. The results indicate that this system offers a new strategy that may be further developed toward an in vitro diagnostic platform for the sensitive and efficient detection of CTC.
Collapse
Affiliation(s)
- Sarah D Rafiee
- Department of Oncology, Microbiology and Immunology Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700, Fribourg, Switzerland
| | - Samet Kocabey
- Department of Oncology, Microbiology and Immunology Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700, Fribourg, Switzerland
| | - Michael Mayer
- BioPhysics, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, PER 18, 1700, Fribourg, Switzerland
| | - Jonathan List
- BioPhysics, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, PER 18, 1700, Fribourg, Switzerland.,Physics of Synthetic Biological Systems, Technical University Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Curzio Rüegg
- Department of Oncology, Microbiology and Immunology Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700, Fribourg, Switzerland
| |
Collapse
|
18
|
Johnson ES, Xu S, Yu HM, Fang WF, Qin Y, Wu L, Wang J, Zhao M, Schiro PG, Fujimoto B, Chen JL, Chiu DT. Isolating Rare Cells and Circulating Tumor Cells with High Purity by Sequential eDAR. Anal Chem 2019; 91:14605-14610. [PMID: 31646861 PMCID: PMC9847251 DOI: 10.1021/acs.analchem.9b03690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isolation and analysis of circulating tumor cells (CTCs) from the blood of patients at risk of metastatic cancers is a promising approach to improving cancer treatment. However, CTC isolation is difficult due to low CTC abundance and heterogeneity. Previously, we reported an ensemble-decision aliquot ranking (eDAR) platform for the rare cell and CTC isolation with high throughput, greater than 90% recovery, and high sensitivity, allowing detection of low surface antigen-expressing cells linked to metastasis. Here we demonstrate a sequential eDAR platform capable of isolating rare cells from whole blood with high purity. This improvement in purity is achieved by using a sequential sorting and flow stretching design in which whole blood is sorted and fluid elements are stretched using herringbone features and the parabolic flow profile being sorted a second time. This platform can be used to collect single CTCs in a multiwell plate for downstream analysis.
Collapse
Affiliation(s)
- Eleanor S. Johnson
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Shihan Xu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States,Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Hui-Min Yu
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Wei-Feng Fang
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Yuling Qin
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Li Wu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Jiasi Wang
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Mengxia Zhao
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Perry G. Schiro
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Bryant Fujimoto
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Jui-Lin Chen
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States,Department of Bioengineering, University of Washington, Seattle, Washington, United States
| |
Collapse
|
19
|
Yue WQ, Tan Z, Li XP, Liu FF, Wang C. Micro/nanofluidic technologies for efficient isolation and detection of circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
|
21
|
Cheng SB, Chen MM, Wang YK, Sun ZH, Xie M, Huang WH. Current techniques and future advance of microfluidic devices for circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
23
|
Kuo AP, Bhattacharjee N, Lee YS, Castro K, Kim YT, Folch A. High-Precision Stereolithography of Biomicrofluidic Devices. ADVANCED MATERIALS TECHNOLOGIES 2019; 4:1800395. [PMID: 32490168 PMCID: PMC7266111 DOI: 10.1002/admt.201800395] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 05/15/2023]
Abstract
Stereolithography (SL) is emerging as an attractive alternative to soft lithography for fabricating microfluidic devices due to its low cost and high design efficiency. Low molecular weight poly(ethylene glycol)diacrylate (MW = 258) (PEG-DA-258) has been used for SL 3D-printing of biocompatible microdevices at submillimeter resolution. However, 3D-printing resins that simultaneously feature high transparency, high biocompatibility, and high resolution are still lacking. It is found that photosensitizer isopropyl thioxanthone can, in a concentration-dependent manner, increase the absorbance of the resin (containing PEG-DA-258 and photoinitator Irgacure-819) by over an order of magnitude. This increase in absorbance allows for SL printing of microdevices at sub pixel resolution with commercially available desktop printers and without compromising transparency or biocompatibility. The assembly-free, rapid (<15 h) 3D-printing of a variety of complex 3D microfluidic devices such as a 3D-fluid router, a passive chaotic micro-mixer, an active micro-mixer with pneumatic microvalves, and high-aspect ratio (37:1) microchannels of single pixel width is demonstrated. These manufacturing capabilities are unavailable in conventional microfluidic rapid prototyping techniques. The low absorption of small hydrophobic molecules and microfluidic labeling of cultured mammalian cells in 3D-printed PEG-DA-258 microdevices is demonstrated, indicating the potential of PEG-DA-based fabrication of cell-based assays, drug discovery, and organ-on-chip platforms.
Collapse
Affiliation(s)
- Alexandra P Kuo
- Department of Bioengineering, University of Washington Seattle, WA 98195, USA
| | | | - Yuan-Sheng Lee
- Department of Mechanical Engineering University of Washington, Seattle, WA 98195, USA
| | - Kurt Castro
- Department of Bioengineering, University of Washington Seattle, WA 98195, USA
| | - Yong Tae Kim
- Department of Bioengineering, University of Washington Seattle, WA 98195, USA
| | - Albert Folch
- Department of Bioengineering, University of Washington Seattle, WA 98195, USA
| |
Collapse
|
24
|
Gao W, Zhang X, Yuan H, Wang Y, Zhou H, Jin H, Jia C, Jin Q, Cong H, Zhao J. EGFR point mutation detection of single circulating tumor cells for lung cancer using a micro-well array. Biosens Bioelectron 2019; 139:111326. [PMID: 31129389 DOI: 10.1016/j.bios.2019.111326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023]
Abstract
In view of their critical function in metastasis, characterization of single circulating tumor cells (CTCs) can provide important clinical information to monitor tumor progression and guide personal therapy. Single-cell genetic analysis methods based on microfluidics have some inherent shortcomings such as complicated operation, low throughput, and expensive equipment requirements. To overcome these barriers, we developed a simple and open micro-well array containing 26,208 units for either nuclear acids or single-cell genetic analysis. Through modification of the polydimethylsiloxane surface and optimization of chip packaging, we addressed protein adsorption and solution evaporation for PCR amplification on a chip. In the detection of epidermal growth factor receptor (EGFR) exon gene 21, this micro-well array demonstrated good linear correlation at a DNA concentration from 1 × 101 to 1 × 105 copies/μL (R2 = 0.9877). We then successfully integrated cell capture, lysis, PCR amplification, and signal read-out on the micro-well array, enabling the rapid and simple genetic analysis of single cells. This device was used to detect duplex EGFR mutation genes of lung cancer cell lines (H1975 and A549 cells) and normal leukocytes, demonstrating the ability to perform high-throughput, massively parallel duplex gene analysis at the single-cell level. Different types of point mutations (EGFR-L858R mutation or EGFR-T790M mutation) were detected in single H1975 cells, further validating the significance of single-cell level gene detection. In addition, this method showed a good performance in the heterogeneity detection of individual CTCs from lung cancer patients, required for micro-invasive cancer monitoring and treatment selection.
Collapse
Affiliation(s)
- Wanlei Gao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaofen Zhang
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Haojun Yuan
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yanmin Wang
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Zhou
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Han Jin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chunping Jia
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Qinghui Jin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hui Cong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China.
| | - Jianlong Zhao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
25
|
Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2019; 143:2936-2970. [PMID: 29796523 DOI: 10.1039/c7an01979c] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of tumor-related death, and the dispersal of tumor cells through the circulatory system is a critical step in the metastatic process. Early detection and analysis of circulating tumor cells (CTCs) is therefore important for early diagnosis, prognosis, and effective treatment of cancer, enabling favorable clinical outcomes in cancer patients. Accurate and reliable methods for isolating and detecting CTCs are necessary to obtain this clinical information. Over the past two decades, microfluidic technologies have demonstrated great potential for isolating and detecting CTCs from blood. The present paper reviews current advanced microfluidic technologies for isolating CTCs based on various biological and physical principles, and discusses their fundamental advantages and drawbacks for subsequent cellular and molecular assays. Owing to significant genetic heterogeneity among CTCs, microfluidic technologies for isolating individual CTCs have recently been developed. We discuss these single-cell isolation methods, as well as approaches to overcoming the limitations of current microfluidic CTC isolation technologies. Finally, we provide an overview of future innovative microfluidic platforms.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
26
|
A Point-of-Care Device for Molecular Diagnosis Based on CMOS SPAD Detectors with Integrated Microfluidics. SENSORS 2019; 19:s19030445. [PMID: 30678225 PMCID: PMC6387092 DOI: 10.3390/s19030445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/04/2022]
Abstract
We describe the integration of techniques and technologies to develop a Point-of-Care for molecular diagnosis PoC-MD, based on a fluorescence lifetime measurement. Our PoC-MD is a low-cost, simple, fast, and easy-to-use general-purpose platform, aimed at carrying out fast diagnostics test through label detection of a variety of biomarkers. It is based on a 1-D array of 10 ultra-sensitive Single-Photon Avalanche Diode (SPAD) detectors made in a 0.18 μm High-Voltage Complementary Metal Oxide Semiconductor (HV-CMOS) technology. A custom microfluidic polydimethylsiloxane cartridge to insert the sample is straightforwardly positioned on top of the SPAD array without any alignment procedure with the SPAD array. Moreover, the proximity between the sample and the gate-operated SPAD sensor makes unnecessary any lens or optical filters to detect the fluorescence for long lifetime fluorescent dyes, such as quantum dots. Additionally, the use of a low-cost laser diode as pulsed excitation source and a Field-Programmable Gate Array (FPGA) to implement the control and processing electronics, makes the device flexible and easy to adapt to the target label molecule by only changing the laser diode. Using this device, reliable and sensitive real-time proof-of-concept fluorescence lifetime measurement of quantum dot QdotTM 605 streptavidin conjugate is demonstrated.
Collapse
|
27
|
Liu N, Petchakup C, Tay HM, Li KHH, Hou HW. Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
28
|
Yao J, Chen J, Cao X, Dong H. Combining 3D sidewall electrodes and contraction/expansion microstructures in microchip promotes isolation of cancer cells from red blood cells. Talanta 2018; 196:546-555. [PMID: 30683404 DOI: 10.1016/j.talanta.2018.12.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023]
Abstract
Cell sorting from heterogeneous organisms and tissues composed of multi-type cells is of great importance in biological and clinical applications. As promising cell sorting methods, dielectrophoresis (DEP) and hydrodynamics are attracting much attention in recent years. In this paper, we report a novel strategy by coupling DEP unit (3D sidewall electrodes) and hydrodynamic unit (microchannels with contraction/expansion structures) together in one microfluidic chip. Depending on the relative positions of 3D sidewall electrodes and contraction/expansion structure, three microchips (full-coupling, semi-coupling and non-coupling) are developed and their cell sorting performance are compared by isolating lung cancer cells (PC-9 cells) from red blood cells (RBCs). Both finite element simulation and practical cell sorting prove that high cell sorting efficiency (recovery of PC-9 cells: 90.21%, recovery of RBCs: 94.35%) can be achieved in full-coupling microchip, mainly owing to the synergistic effects between DEP sorting and hydrodynamic sorting. i.e., the positive DEP force generated by 3D sidewall electrodes can simultaneously act as an additional shear gradient lift force and thus trigger secondary flow even at low flow velocity. Live/dead cell staining, hemolysis ratio, fluorescence images and CCK-8 assay prove that RBCs and PC-9 cells show no significance difference in cell viability before and after cell sorting. The proposed coupling platform for cell sorting brings on a new pathway to construct integrated microfluidic chips for effective cell sorting and separation.
Collapse
Affiliation(s)
- Jie Yao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jingxuan Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Cao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
29
|
Liu Y, Li T, Xu M, Zhang W, Xiong Y, Nie L, Wang Q, Li H, Wang W. A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. LAB ON A CHIP 2018; 19:68-78. [PMID: 30516210 DOI: 10.1039/c8lc01048j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid biopsy techniques for rare tumor cell separation from body fluids have shown enormous promise in cancer detection and prognosis monitoring. This work established a high-throughput liquid biopsy platform with a high recovery rate and a high cell viability based on a previously reported 2.5D micropore-arrayed filtration membrane. Thanks to its high porosity (>40.2%, edge-to-edge space between the adjacent micropores <4 μm), the achieved filtration throughputs can reach >110 mL min-1 for aqueous samples and >17 mL min-1 for undiluted whole blood, only driven by gravity with no need for any extra pressure loading. The recoveries of rare lung tumor cells (A549s) spiked in PBS (10 mL), unprocessed BALF (10 mL) and whole blood (5 mL) show high recovery rates (88.0 ± 3.7%, 86.0 ± 5.3% and 83.2 ± 6.2%, respectively, n = 5 for every trial) and prove the high performance of this platform. Successful detection of circulating tumor cells (CTCs) from whole blood samples (5 mL) of lung cancer patients (n = 5) was demonstrated. In addition, it was both numerically and experimentally proved that a small edge-to-edge space was significant to improve the viability of the recovered cells and the purity of the target cell recovery, which was reported for the first time to the best of the authors' knowledge. This high-throughput technique will expand the detecting targets of liquid biopsy from the presently focused CTCs in whole blood to the exfoliated tumor cells (ETCs) in other large-volume clinical samples, such as BALF, urine and pleural fluid. Meanwhile, the technique is easy to operate and ready for integration with other separation and analysis tools to fulfill a powerful system for practical clinical applications of liquid biopsy.
Collapse
Affiliation(s)
- Yaoping Liu
- Institute of Microelectronics, Peking University, 100871, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu J, Chen Q, Lin JM. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 2018; 142:421-441. [PMID: 27900377 DOI: 10.1039/c6an01939k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient platforms for cell isolation and analysis play an important role in applied and fundamental biomedical studies. As cells commonly have a size of around 10 microns, conventional handling approaches at a large scale are still challenged in precise control and efficient recognition of cells for further performance of isolation and analysis. Microfluidic technologies have become more prominent in highly efficient cell isolation for circulating tumor cells (CTCs) detection, single-cell analysis and stem cell separation, since microfabricated devices allow for the spatial and temporal control of complex biochemistries and geometries by matching cell morphology and hydrodynamic traps in a fluidic network, as well as enabling specific recognition with functional biomolecules in the microchannels. In addition, the fabrication of nano-interfaces in the microchannels has been increasingly emerging as a very powerful strategy for enhancing the capability of cell capture by improving cell-interface interactions. In this review, we focus on highlighting recent advances in microfluidic technologies for cell isolation and analysis. We also describe the general biomedical applications of microfluidic cell isolation and analysis, and finally make a prospective for future studies.
Collapse
Affiliation(s)
- Jing Wu
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Qiushui Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Zhou Y, Sriphutkiat Y. Microparticle Manipulation by Standing Surface Acoustic Waves with Dual-frequency Excitations. J Vis Exp 2018. [PMID: 30199023 DOI: 10.3791/58085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We demonstrate a method for increasing the tuning ability of a standing surface acoustic wave (SSAW) for microparticles manipulation in a lab-on-a-chip (LOC) system. The simultaneous excitation of the fundamental frequency and its third harmonic, which is termed as dual-frequency excitation, to a pair of interdigital transducers (IDTs) could generate a new type of standing acoustic waves in a microfluidic channel. Varying the power and the phase in the dual-frequency excitation signals results in a reconfigurable field of the acoustic radiation force applied to the microparticles across the microchannel (e.g., the number and location of the pressure nodes and the microparticle concentrations at the corresponding pressure nodes). This article demonstrates that the motion time of the microparticle to only one pressure node can be reduced ~2-fold at the power ratio of the fundamental frequency greater than ~90%. In contrast, there are three pressure nodes in the microchannel if less than this threshold. Furthermore, adjusting the initial phase between the fundamental frequency and the third harmonic results in different motion rates of the three SSAW pressure nodes, as well as in the percentage of microparticles at each pressure node in the microchannel. There is a good agreement between the experimental observation and the numerical predictions. This novel excitation method can easily and non-invasively integrate into the LOC system, with a wide tenability and only a few changes to the experimental set-up.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University;
| | - Yannapol Sriphutkiat
- School of Mechanical and Aerospace Engineering, Nanyang Technological University
| |
Collapse
|
32
|
Zhang C, Zhao P, Gu F, Xie J, Xia N, He Y, Fu J. Single-Ring Magnetic Levitation Configuration for Object Manipulation and Density-Based Measurement. Anal Chem 2018; 90:9226-9233. [DOI: 10.1021/acs.analchem.8b01724] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Jin X, Chen R, Zhao S, Li P, Xue B, Chen X, Zhu X. An efficient method for CTCs screening with excellent operability by integrating Parsortix™-like cell separation chip and selective size amplification. Biomed Microdevices 2018; 20:51. [PMID: 29926198 DOI: 10.1007/s10544-018-0293-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this article, an attempt for efficient screening of circulating tumor cells (CTCs) with excellent operability on microfluidic chips was reported. A Parsortix™-like cell separation chip was manufactured in our lab. This chip allowed lateral flow of fluid which increased the flow rate of blood. And, an air valve controlled injection pump was manufactured which allowed eight chips working simultaneously. This greatly facilitated the blood treatment process and saved time. As for the mechanism of screening circulating tumor cells, selective size amplification was utilized. By size amplification of cancer cells, both the hardness and the size of CTCs increased which differentiated them from blood cells. And the modification procedure of beads used for size amplification of cancer cells was optimized. Finally, by integrating the commercialized Parsortix™-like cell separation chip and selective size amplification, a practical method for screening circulating tumor cells was established.
Collapse
Affiliation(s)
- Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rui Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Shikun Zhao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiyong Li
- Department of Nuclear Medicine, and Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Bai Xue
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
34
|
Du Z, Mi S, Yi X, Xu Y, Sun W. Microfluidic system for modelling 3D tumour invasion into surrounding stroma and drug screening. Biofabrication 2018; 10:034102. [DOI: 10.1088/1758-5090/aac70c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Hayes B, Murphy C, Crawley A, O'Kennedy R. Developments in Point-of-Care Diagnostic Technology for Cancer Detection. Diagnostics (Basel) 2018; 8:diagnostics8020039. [PMID: 29865250 PMCID: PMC6023377 DOI: 10.3390/diagnostics8020039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is the cause of death for one in seven individuals worldwide. It is widely acknowledged that screening and early diagnosis are of vital importance for improving the likelihood of recovery. However, given the costly, time-consuming, and invasive nature of the many methods currently in use, patients often do not take advantage of the services available to them. Consequently, many researchers are exploring the possibility of developing fast, reliable, and non-invasive diagnostic tools that can be used directly or by local physicians at the point-of-care. Herein, we look at the use of established biomarkers in cancer therapy and investigate emerging biomarkers exhibiting future potential. The incorporation of these biomarkers into point-of-care devices could potentially reduce the strain currently experienced by screening programs in hospitals and healthcare systems. Results derived from point-of-care tests should be accurate, sensitive, and generated rapidly to assist in the selection of the best course of treatment for optimal patient care. Essentially, point-of-care diagnostics should enhance the well-being of patients and lead to a reduction in cancer-related deaths.
Collapse
Affiliation(s)
- Bryony Hayes
- Translational Health Sciences, Bristol Medical School, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK.
| | - Caroline Murphy
- School of Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin D09 Y5N0, Ireland.
| | - Aoife Crawley
- School of Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin D09 Y5N0, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin D09 Y5N0, Ireland.
- Hamad Bin Khalifa University, Research Complex, P.O. Box 34110 Doha, Qatar.
| |
Collapse
|
36
|
LI CHIYU, LI WANG, GENG CHUNYANG, REN HAIJUN, YU XIAOHUI, LIU BO. MICROFLUIDIC CHIP FOR CANCER CELL DETECTION AND DIAGNOSIS. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418300016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since cancer becomes the most deadly disease to our health, research on early detection on cancer cells is necessary for clinical treatment. The combination of microfluidic device with cell biology has shown a unique method for cancer cell research. In the present review, recent development on microfluidic chip for cancer cell detection and diagnosis will be addressed. Some typical microfluidic chips focussed on cancer cells and their advantages for different kinds of cancer cell detection and diagnosis will be listed, and the cell capture methods within the microfluidics will be simultaneously mentioned. Then the potential direction of microfluidic chip on cancer cell detection and diagnosis in the future is also discussed.
Collapse
Affiliation(s)
- CHIYU LI
- Department of Biomedical Engineering, Dalian University of Technology, Dalian Liaoning Province 116024, P. R. China
| | - WANG LI
- Department of Biomedical Engineering, Dalian University of Technology, Dalian Liaoning Province 116024, P. R. China
| | - CHUNYANG GENG
- Department of Biomedical Engineering, Dalian University of Technology, Dalian Liaoning Province 116024, P. R. China
| | - HAIJUN REN
- Dalian Friendship Hospital, Dalian, Liaoning Province 116024, P. R. China
| | - XIAOHUI YU
- Dalian Institute of Maternal and Child Health Care, Dalian, Liaoning Province 116024, P. R. China
| | - BO LIU
- Department of Biomedical Engineering, Dalian University of Technology, Dalian Liaoning Province 116024, P. R. China
| |
Collapse
|
37
|
Wang M, Xiao Y, Lin L, Zhu X, Du L, Shi X. A Microfluidic Chip Integrated with Hyaluronic Acid-Functionalized Electrospun Chitosan Nanofibers for Specific Capture and Nondestructive Release of CD44-Overexpressing Circulating Tumor Cells. Bioconjug Chem 2018; 29:1081-1090. [PMID: 29415537 DOI: 10.1021/acs.bioconjchem.7b00747] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Lizhou Lin
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, People’s Republic of China
| | | | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, People’s Republic of China
| | | |
Collapse
|
38
|
Size-based separation methods of circulating tumor cells. Adv Drug Deliv Rev 2018; 125:3-20. [PMID: 29326054 DOI: 10.1016/j.addr.2018.01.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/19/2017] [Accepted: 01/05/2018] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) originate from the primary tumor mass and enter into the peripheral bloodstream. Compared to other "liquid biopsy" portfolios such as exosome, circulating tumor DNA/RNA (ctDNA/RNA), CTCs have incomparable advantages in analyses of transcriptomics, proteomics, and signal colocalization. Hence, CTCs hold the key to understanding the biology of metastasis and play a vital role in cancer diagnosis, treatment monitoring, and prognosis. Size-based enrichment features are prominent in CTC isolation. It is a label-free, simple and fast method. Enriched CTCs remain unmodified and viable for a wide range of subsequent analyses. In this review, we comprehensively summarize the differences of size and deformability between CTCs and blood cells, which would facilitate the development of technologies of size-based CTC isolation. Then we review representative size-/deformability-based technologies available for CTC isolation and highlight the recent achievements in molecular analysis of isolated CTCs. To wrap up, we discuss the substantial challenges facing the field, and elaborate on prospects.
Collapse
|
39
|
Chan JY, Ahmad Kayani AB, Md Ali MA, Kok CK, Yeop Majlis B, Hoe SLL, Marzuki M, Khoo ASB, Ostrikov K(K, Ataur Rahman M, Sriram S. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. BIOMICROFLUIDICS 2018; 12:011503. [PMID: 29531634 PMCID: PMC5825230 DOI: 10.1063/1.5010158] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/27/2017] [Indexed: 05/15/2023]
Abstract
The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell. Each study is critically analyzed, and the features of each platform, the performance, added functionality for clinical use, and the types of samples, used are discussed. We address the novelty of the techniques, strategies, and design configuration used in improving on existing technologies or previous studies. A summary of comparing the developmental extent of each study is made, and we conclude with a treatment of future trends and a brief summary.
Collapse
Affiliation(s)
- Jun Yuan Chan
- Center for Advanced Materials and Green Technology, Multimedia University, 75450 Melaka, Malaysia
| | | | - Mohd Anuar Md Ali
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia
| | - Chee Kuang Kok
- Center for Advanced Materials and Green Technology, Multimedia University, 75450 Melaka, Malaysia
| | - Burhanuddin Yeop Majlis
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia
| | - Susan Ling Ling Hoe
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | - Marini Marzuki
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | | | | | - Md. Ataur Rahman
- Functional Materials and Microsystems Research Group, Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group, Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
40
|
Microfluidic Cell Isolation and Recognition for Biomedical Applications. CELL ANALYSIS ON MICROFLUIDICS 2018. [DOI: 10.1007/978-981-10-5394-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Huang Q, Wang Y, Chen X, Wang Y, Li Z, Du S, Wang L, Chen S. Nanotechnology-Based Strategies for Early Cancer Diagnosis Using Circulating Tumor Cells as a Liquid Biopsy. Nanotheranostics 2018; 2:21-41. [PMID: 29291161 PMCID: PMC5743836 DOI: 10.7150/ntno.22091] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from a primary tumor and circulate in the bloodstream. As a form of “tumor liquid biopsy”, CTCs provide important information for the mechanistic investigation of cancer metastasis and the measurement of tumor genotype evolution during treatment and disease progression. However, the extremely low abundance of CTCs in the peripheral blood and the heterogeneity of CTCs make their isolation and characterization major technological challenges. Recently, nanotechnologies have been developed for sensitive CTC detection; such technologies will enable better cell and molecular characterization and open up a wide range of clinical applications, including early disease detection and evaluation of treatment response and disease progression. In this review, we summarize the nanotechnology-based strategies for CTC isolation, including representative nanomaterials (such as magnetic nanoparticles, gold nanoparticles, silicon nanopillars, nanowires, nanopillars, carbon nanotubes, dendrimers, quantum dots, and graphene oxide) and microfluidic chip technologies that incorporate nanoroughened surfaces and discuss their key challenges and perspectives in CTC downstream analyses, such as protein expression and genetic mutations that may reflect tumor aggressiveness and patient outcome.
Collapse
Affiliation(s)
- Qinqin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xingxiang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
42
|
Liu Y, Xu H, Dai W, Li H, Wang W. 2.5-Dimensional Parylene C micropore array with a large area and a high porosity for high-throughput particle and cell separation. MICROSYSTEMS & NANOENGINEERING 2018; 4:13. [PMID: 0 PMCID: PMC6161505 DOI: 10.1038/s41378-018-0011-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/07/2018] [Accepted: 02/08/2018] [Indexed: 05/03/2023]
Abstract
Large-area micropore arrays with a high porosity are in high demand because of their promising potential in liquid biopsy with a large volume of clinical sample. However, a micropore array with a large area and a high porosity faces a serious mechanical strength challenge. The filtration membrane may undergo large deformation at a high filtration throughput, which will decrease its size separation accuracy. In this work, a keyhole-free Parylene molding process has been developed to prepare a large (>20 mm × 20 mm) filtration membrane containing a 2.5-dimensional (2.5D) micropore array with an ultra-high porosity (up to 91.37% with designed pore diameter/space of 100 μm/4 μm). The notation 2.5D indicates that the large area and the relatively small thickness (approximately 10 μm) of the fabricated membranes represent 2D properties, while the large thickness-to-width ratio (10 μm/ < 4 μm) of the spaces between the adjacent pores corresponds to a local 3D feature. The large area and high porosity of the micropore array achieved filtration with a throughput up to 180 mL/min (PBS solution) simply driven by gravity. Meanwhile, the high mechanical strength, benefiting from the 2.5D structure of the micropore array, ensured a negligible pore size variation during the high-throughput filtration, thereby enabling high size resolution separation, which was proven by single-layer and multi-layer filtrations for particle separation. Furthermore, as a preliminary demonstration, the prepared 2.5-dimensional Parylene C micropore array was implemented as an efficient filter for rare cancer cell separation from a large volume, approximately 10 cells in 10 mL PBS and undiluted urine, with high recovery rates of 87 ± 13% and 56 ± 13%, respectively.
Collapse
Affiliation(s)
- Yaoping Liu
- Institute of Microelectronics, Peking University, Beijing, 100871 China
| | - Han Xu
- Institute of Microelectronics, Peking University, Beijing, 100871 China
| | - Wangzhi Dai
- Institute of Microelectronics, Peking University, Beijing, 100871 China
| | - Haichao Li
- Department of Respirology, No. 1 Hospital of Peking University, Beijing, 100034 China
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871 China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing, 100871 China
- Innovation Center for Micro-Nano-electronics and Integrated Systems, Beijing, 100871 China
| |
Collapse
|
43
|
Wu J, Dong M, Santos S, Rigatto C, Liu Y, Lin F. Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. SENSORS 2017; 17:s17122934. [PMID: 29258216 PMCID: PMC5751502 DOI: 10.3390/s17122934] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease (CVD) and cancer are two leading causes of death worldwide. CVD and cancer share risk factors such as obesity and diabetes mellitus and have common diagnostic biomarkers such as interleukin-6 and C-reactive protein. Thus, timely and accurate diagnosis of these two correlated diseases is of high interest to both the research and healthcare communities. Most conventional methods for CVD and cancer biomarker detection such as microwell plate-based immunoassay and polymerase chain reaction often suffer from high costs, low test speeds, and complicated procedures. Recently, lab-on-a-chip (LoC)-based platforms have been increasingly developed for CVD and cancer biomarker sensing and analysis using various molecular and cell-based diagnostic biomarkers. These new platforms not only enable better sample preparation, chemical manipulation and reaction, high-throughput and portability, but also provide attractive features such as label-free detection and improved sensitivity due to the integration of various novel detection techniques. These features effectively improve the diagnostic test speed and simplify the detection procedure. In addition, microfluidic cell assays and organ-on-chip models offer new potential approaches for CVD and cancer diagnosis. Here we provide a mini-review focusing on recent development of LoC-based methods for CVD and cancer diagnostic biomarker measurements, and our perspectives of the challenges, opportunities and future directions.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Meili Dong
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China.
| | - Susy Santos
- Victoria General Hospital and River Heights/Fort Garry Community Areas, Winnipeg, MB, R3T 2E8, Canada.
| | | | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China.
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
44
|
Qasaimeh MA, Wu YC, Bose S, Menachery A, Talluri S, Gonzalez G, Fulciniti M, Karp JM, Prabhala RH, Karnik R. Isolation of Circulating Plasma Cells in Multiple Myeloma Using CD138 Antibody-Based Capture in a Microfluidic Device. Sci Rep 2017; 7:45681. [PMID: 28374831 PMCID: PMC5379479 DOI: 10.1038/srep45681] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
The necessity for bone marrow aspiration and the lack of highly sensitive assays to detect residual disease present challenges for effective management of multiple myeloma (MM), a plasma cell cancer. We show that a microfluidic cell capture based on CD138 antigen, which is highly expressed on plasma cells, permits quantitation of rare circulating plasma cells (CPCs) in blood and subsequent fluorescence-based assays. The microfluidic device is based on a herringbone channel design, and exhibits an estimated cell capture efficiency of ~40–70%, permitting detection of <10 CPCs/mL using 1-mL sample volumes, which is difficult using existing techniques. In bone marrow samples, the microfluidic-based plasma cell counts exhibited excellent correlation with flow cytometry analysis. In peripheral blood samples, the device detected a baseline of 2–5 CD138+ cells/mL in healthy donor blood, with significantly higher numbers in blood samples of MM patients in remission (20–24 CD138+ cells/mL), and yet higher numbers in MM patients exhibiting disease (45–184 CD138+ cells/mL). Analysis of CPCs isolated using the device was consistent with serum immunoglobulin assays that are commonly used in MM diagnostics. These results indicate the potential of CD138-based microfluidic CPC capture as a useful ‘liquid biopsy’ that may complement or partially replace bone marrow aspiration.
Collapse
Affiliation(s)
- Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Mechanical and Aerospace Engineering Department, New York University, Brooklyn, NY 11201, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yichao C Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suman Bose
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anoop Menachery
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Srikanth Talluri
- VA Boston Healthcare System, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jeffrey M Karp
- Division of BioEngineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT Division of Health Sciences and Technology, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Rao H Prabhala
- VA Boston Healthcare System, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Chaudhuri PK, Ebrahimi Warkiani M, Jing T, Kenry, Lim CT. Microfluidics for research and applications in oncology. Analyst 2017; 141:504-24. [PMID: 26010996 DOI: 10.1039/c5an00382b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer is currently one of the top non-communicable human diseases, and continual research and developmental efforts are being made to better understand and manage this disease. More recently, with the improved understanding in cancer biology as well as the advancements made in microtechnology and rapid prototyping, microfluidics is increasingly being explored and even validated for use in the detection, diagnosis and treatment of cancer. With inherent advantages such as small sample volume, high sensitivity and fast processing time, microfluidics is well-positioned to serve as a promising platform for applications in oncology. In this review, we look at the recent advances in the use of microfluidics, from basic research such as understanding cancer cell phenotypes as well as metastatic behaviors to applications such as the detection, diagnosis, prognosis and drug screening. We then conclude with a future outlook on this promising technology.
Collapse
Affiliation(s)
| | - Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602 and School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Tengyang Jing
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602 and Department of Biomedical Engineering, National University of Singapore, Singapore 117575.
| | - Kenry
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575. and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411 and BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602
| |
Collapse
|
46
|
Huang L, Bian S, Cheng Y, Shi G, Liu P, Ye X, Wang W. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture. BIOMICROFLUIDICS 2017; 11:011501. [PMID: 28217240 PMCID: PMC5303167 DOI: 10.1063/1.4975666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 05/03/2023]
Abstract
Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation-high-efficiency cell enrichment and precise single cell capture-have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Shengtai Bian
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Yinuo Cheng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Guanya Shi
- Department of Automotive Engineering, Tsinghua University , Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| |
Collapse
|
47
|
Xiao K, Liu J, Chen H, Zhang S, Kong J. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Biosens Bioelectron 2016; 91:76-81. [PMID: 27992802 DOI: 10.1016/j.bios.2016.11.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022]
Abstract
A label-free and high-efficient graphene oxide (GO)-based aptasensor was developed for the detection of low quantity cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and dye-labeled linker DNAs stably coexisted in solution, and the fluorescence was quenched by the GO-based FÖrster resonance energy transfer (FRET) process. In the presence of target cells, the specific binding of HAPs with the target cells triggered a conformational alternation, which resulted in linker DNA complementary pairing and cleavage by nicking endonuclease-strand scission cycles. Consequently, more cleaved fragments of linker DNAs with more the terminal labeled dyes could show the enhanced fluorescence because these cleaved DNA fragments hardly combine with GOs and prevent the FRET process. Fluorescence analysis demonstrated that this GO-based aptasensor exhibited selective and sensitive response to the presence of target CCRF-CEM cells in the concentration range from 50 to 105 cells. The detection limit of this method was 25 cells, which was approximately 20 times lower than the detection limit of normal fluorescence aptasensors without amplification. With high sensitivity and specificity, it provided a simple and cost-effective approach for early cancer diagnosis.
Collapse
Affiliation(s)
- Kunyi Xiao
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Juan Liu
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Song Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, PR China.
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
48
|
Portillo-Lara R, Annabi N. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment. LAB ON A CHIP 2016; 16:4063-4081. [PMID: 27605305 DOI: 10.1039/c6lc00718j] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
More than 90% of cancer-related deaths can be attributed to the occurrence of metastatic diseases. Recent studies have highlighted the importance of the multicellular, biochemical and biophysical stimuli from the tumor microenvironment during carcinogenesis, treatment failure, and metastasis. Therefore, there is a need for experimental platforms that are able to recapitulate the complex pathophysiological features of the metastatic microenvironment. Recent advancements in biomaterials, microfluidics, and tissue engineering have led to the development of living multicellular microculture systems, which are maintained in controllable microenvironments and function with organ level complexity. The applications of these "on-chip" technologies for detection, separation, characterization and three dimensional (3D) propagation of cancer cells have been extensively reviewed in previous works. In this contribution, we focus on integrative microengineered platforms that allow the study of multiple aspects of the metastatic microenvironment, including the physicochemical cues from the tumor associated stroma, the heterocellular interactions that drive trans-endothelial migration and angiogenesis, the environmental stresses that metastatic cancer cells encounter during migration, and the physicochemical gradients that direct cell motility and invasion. We discuss the application of these systems as in vitro assays to elucidate fundamental mechanisms of cancer metastasis, as well as their use as human relevant platforms for drug screening in biomimetic microenvironments. We then conclude with our commentaries on current progress and future perspectives of microengineered systems for fundamental and translational cancer research.
Collapse
Affiliation(s)
- R Portillo-Lara
- Department of Chemical Engineering, Northeastern University, 451 Snell Engineering Building, 360 Huntington Ave, Boston, MA 02115, USA. and Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| | - N Annabi
- Department of Chemical Engineering, Northeastern University, 451 Snell Engineering Building, 360 Huntington Ave, Boston, MA 02115, USA. and Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
49
|
Chen W, Allen SG, Reka AK, Qian W, Han S, Zhao J, Bao L, Keshamouni VG, Merajver SD, Fu J. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics. BMC Cancer 2016; 16:614. [PMID: 27501846 PMCID: PMC4977622 DOI: 10.1186/s12885-016-2638-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) have shown prognostic relevance in many cancer types. However, the majority of current CTC capture methods rely on positive selection techniques that require a priori knowledge about the surface protein expression of disseminated CTCs, which are known to be a dynamic population. METHODS We developed a microfluidic CTC capture chip that incorporated a nanoroughened glass substrate for capturing CTCs from blood samples. Our CTC capture chip utilized the differential adhesion preference of cancer cells to nanoroughened etched glass surfaces as compared to normal blood cells and thus did not depend on the physical size or surface protein expression of CTCs. RESULTS The microfluidic CTC capture chip was able to achieve a superior capture yield for both epithelial cell adhesion molecule positive (EpCAM+) and EpCAM- cancer cells in blood samples. Additionally, the microfluidic CTC chip captured CTCs undergoing transforming growth factor beta-induced epithelial-to-mesenchymal transition (TGF-β-induced EMT) with dynamically down-regulated EpCAM expression. In a mouse model of human breast cancer using EpCAM positive and negative cell lines, the number of CTCs captured correlated positively with the size of the primary tumor and was independent of their EpCAM expression. Furthermore, in a syngeneic mouse model of lung cancer using cell lines with differential metastasis capability, CTCs were captured from all mice with detectable primary tumors independent of the cell lines' metastatic ability. CONCLUSIONS The microfluidic CTC capture chip using a novel nanoroughened glass substrate is broadly applicable to capturing heterogeneous CTC populations of clinical interest independent of their surface marker expression and metastatic propensity. We were able to capture CTCs from a non-metastatic lung cancer model, demonstrating the potential of the chip to collect the entirety of CTC populations including subgroups of distinct biological and phenotypical properties. Further exploration of the biological potential of metastatic and presumably non-metastatic CTCs captured using the microfluidic chip will yield insights into their relevant differences and their effects on tumor progression and cancer outcomes.
Collapse
Affiliation(s)
- Weiqiang Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY 10012 USA
| | - Steven G. Allen
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ajaya Kumar Reka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY 10012 USA
| | - Shuo Han
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jianing Zhao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- School of Advanced Engineering, Beihang University, Beijing, 100191 China
| | - Liwei Bao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Venkateshwar G. Keshamouni
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sofia D. Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
50
|
Zhao W, Cheng R, Miller JR, Mao L. Label-Free Microfluidic Manipulation of Particles and Cells in Magnetic Liquids. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3916-3932. [PMID: 28663720 PMCID: PMC5487005 DOI: 10.1002/adfm.201504178] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Manipulating particles and cells in magnetic liquids through so-called "negative magnetophoresis" is a new research field. It has resulted in label-free and low-cost manipulation techniques in microfluidic systems and many exciting applications. It is the goal of this review to introduce the fundamental principles of negative magnetophoresis and its recent applications in microfluidic manipulation of particles and cells. We will first discuss the theoretical background of three commonly used specificities of manipulation in magnetic liquids, which include the size, density and magnetic property of particles and cells. We will then review and compare the media used in negative magnetophoresis, which include paramagnetic salt solutions and ferrofluids. Afterwards, we will focus on reviewing existing microfluidic applications of negative magnetophoresis, including separation, focusing, trapping and concentration of particles and cells, determination of cell density, measurement of particles' magnetic susceptibility, and others. We will also examine the need for developing biocompatible magnetic liquids for live cell manipulation and analysis, and its recent progress. Finally, we will conclude this review with a brief outlook for this exciting research field.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, USA
| | - Rui Cheng
- College of Engineering, The University of Georgia, 220 Riverbend Road, Room 166, Athens, Georgia 30602, USA
| | - Joshua R Miller
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, USA
| | - Leidong Mao
- College of Engineering, The University of Georgia, 220 Riverbend Road, Room 166, Athens, Georgia 30602, USA
| |
Collapse
|