1
|
Li DY, Zhou ZH, Yu YL, Deng NN. Microfluidic construction of cytoskeleton-like hydrogel matrix for stabilizing artificial cells. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Kim JW, Han SH, Choi YH, Hamonangan WM, Oh Y, Kim SH. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. LAB ON A CHIP 2022; 22:2259-2291. [PMID: 35608122 DOI: 10.1039/d2lc00196a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple-emulsion drops serve as versatile templates to design functional microcapsules due to their core-shell geometry and multiple compartments. Microfluidics has been used for the elaborate production of multiple-emulsion drops with a controlled composition, order, and dimensions, elevating the value of multiple-emulsion templates. Moreover, recent advances in the microfluidic control of the emulsification and parallelization of drop-making junctions significantly enhance the production throughput for practical use. Metastable multiple-emulsion drops are converted into stable microcapsules through the solidification of selected phases, among which solid shells are designed to function in a programmed manner. Functional microcapsules are used for the storage and release of active materials as drug carriers. Beyond their conventional uses, microcapsules can serve as microcompartments responsible for transmembrane communication, which is promising for their application in advanced microreactors, artificial cells, and microsensors. Given that post-processing provides additional control over the composition and construction of multiple-emulsion drops, they are excellent confining geometries to study the self-assembly of colloids and liquid crystals and produce miniaturized photonic devices. This review article presents the recent progress and current state of the art in the microfluidic production of multiple-emulsion drops, functionalization of solid shells, and applications of microcapsules.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Wahyu Martumpal Hamonangan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Sung M, Shin DH, Lee HJ, Jang KH, Shin K, Kim JW. Enhancing skin permeation of nanoemulsions through associative polymeric micelles-mediated drop-to-skin dipolar interactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Zheng Y, Wu Z, Lin L, Zheng X, Hou Y, Lin JM. Microfluidic droplet-based functional materials for cell manipulation. LAB ON A CHIP 2021; 21:4311-4329. [PMID: 34668510 DOI: 10.1039/d1lc00618e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functional materials from the microfluidic-based droplet community are emerging as enabling tools for various applications in tissue engineering and cell biology. The innovative micro- and nano-scale materials with diverse sizes, shapes and components can be fabricated without the use of complicated devices, allowing unprecedented control over the cells that interact with them. Here, we review the current development of microfluidic-based droplet techniques for creation of functional materials (i.e., liquid droplet, microcapsule, and microparticle). We also describe their various applications for manipulating cell fate and function.
Collapse
Affiliation(s)
- Yajing Zheng
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Zengnan Wu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, China.
| | - Xiaonan Zheng
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Ip T, Li Q, Brooks N, Elani Y. Manufacture of Multilayered Artificial Cell Membranes through Sequential Bilayer Deposition on Emulsion Templates. Chembiochem 2021; 22:2275-2281. [PMID: 33617681 PMCID: PMC8360201 DOI: 10.1002/cbic.202100072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Efforts to manufacture artificial cells that replicate the architectures, processes and behaviours of biological cells are rapidly increasing. Perhaps the most commonly reconstructed cellular structure is the membrane, through the use of unilamellar vesicles as models. However, many cellular membranes, including bacterial double membranes, nuclear envelopes, and organelle membranes, are multilamellar. Due to a lack of technologies available for their controlled construction, multilayered membranes are not part of the repertoire of cell-mimetic motifs used in bottom-up synthetic biology. To address this, we developed emulsion-based technologies that allow cell-sized multilayered vesicles to be produced layer-by-layer, with compositional control over each layer, thus enabling studies that would otherwise remain inaccessible. We discovered that bending rigidities scale with the number of layers and demonstrate inter-bilayer registration between coexisting liquid-liquid domains. These technologies will contribute to the exploitation of multilayered membrane structures, paving the way for incorporating protein complexes that span multiple bilayers.
Collapse
Affiliation(s)
- Tsoi Ip
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White CityLondonW12 0BZUK
| | - Qien Li
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White CityLondonW12 0BZUK
| | - Nick Brooks
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White CityLondonW12 0BZUK
| | - Yuval Elani
- Department of Chemical EngineeringImperial College London South KensingtonLondonSW7 2AZUK
| |
Collapse
|
6
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Seo HM, Seo M, Shin K, Choi S, Kim JW. Bacterial cellulose nanofibrils-armored Pickering emulsions with limited influx of metal ions. Carbohydr Polym 2021; 258:117730. [DOI: 10.1016/j.carbpol.2021.117730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
|
8
|
Seo H, Lee H. Recent developments in microfluidic synthesis of artificial cell-like polymersomes and liposomes for functional bioreactors. BIOMICROFLUIDICS 2021; 15:021301. [PMID: 33833845 PMCID: PMC8012066 DOI: 10.1063/5.0048441] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 05/16/2023]
Abstract
Recent advances in droplet microfluidics have led to the fabrication of versatile vesicles with a structure that mimics the cellular membrane. These artificial cell-like vesicles including polymersomes and liposomes effectively enclose an aqueous core with well-defined size and composition from the surrounding environment to implement various biological reactions, serving as a diverse functional reactor. The advantage of realizing various biological phenomena within a compartment separated by a membrane that resembles a natural cell membrane is actively explored in the fields of synthetic biology as well as biomedical applications including drug delivery, biosensors, and bioreactors, to name a few. In this Perspective, we first summarize various methods utilized in producing these polymersomes and liposomes. Moreover, we will highlight some of the recent advances in the design of these artificial cell-like vesicles for functional bioreactors and discuss the current issues and future perspectives.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
9
|
Guerrero J, Chang YW, Fragkopoulos AA, Fernandez-Nieves A. Capillary-Based Microfluidics-Coflow, Flow-Focusing, Electro-Coflow, Drops, Jets, and Instabilities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904344. [PMID: 31663270 DOI: 10.1002/smll.201904344] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Capillary-based microfluidics is a great technique to produce monodisperse and complex emulsions and particulate suspensions. In this review, the current understanding of drop and jet formation in capillary-based microfluidic devices for two primary flow configurations, coflow and flow-focusing is summarized. The experimental and theoretical description of fluid instabilities is discussed and conditions for controlled drop breakup in different modes of drop generation are provided. Current challenges in drop breakup with low interfacial tension systems and recent progress in overcoming drop size limitations using electro-coflow are addressed. In each scenario, the physical mechanisms for drop breakup are revisited, and simple scaling arguments proposed in the literature are introduced.
Collapse
Affiliation(s)
- Josefa Guerrero
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA
| | - Ya-Wen Chang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Alexandros A Fragkopoulos
- Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany
| | - Alberto Fernandez-Nieves
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Condensed Matter Physics, University of Barcelona, 08028, Barcelona, Spain
- ICREA-Institució Caalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| |
Collapse
|
10
|
Liu Y, Wu C, Lu H, Yang Y, Li W, Shen Y. Programmable higher-order biofabrication of self-locking microencapsulation. Biofabrication 2019; 11:035019. [DOI: 10.1088/1758-5090/aafd14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Vian A, Amstad E. Mechano-responsive microcapsules with uniform thin shells. SOFT MATTER 2019; 15:1290-1296. [PMID: 30468441 DOI: 10.1039/c8sm02047g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Capsules often prolong the shelf-life of active ingredients, such as many types of drugs, food additives, or cosmetic substances, because they delay oxidation of these substances or prevent their reactions with molecules contained in the surrounding. If capsules are appropriately designed, they can offer an additional benefit: they allow close control over the timing and location of the release of active ingredients. To take advantage of these features, capsules must possess shells whose thickness and composition are well-defined. However, the shell thickness of capsules often varies considerably even within a single capsule, thereby hampering good control over the release kinetics of encapsulants. These variations can be reduced, and hence the degree of control over the release kinetics increased, if shells are made thin. Unfortunately, the controlled fabrication of mechanically stable microcapsules with well-defined sub-μm thick shells is difficult. Here, we introduce a method to fabricate capsules with uniform semi-permeable shells with a thickness as low as 400 nm. This is achieved using water-oil-water double emulsions with 800 nm thick shells as templates to fabricate capsules with uniform 400 nm thin shells. These shells occupy less than 2% of the capsule volume, thereby minimizing their footprint. Despite their thin shells, these capsules are mechanically robust: they withstand pressures up to 1.3 MPa without deformation and remain intact if exposed to pressures up to 2.75 MPa. Moreover, while they are permeable towards water, they retain low molecular weight encapsulants even if dried and re-dispersed. The thin shells of the capsules open up new possibilities of their use to functionalize materials with at least one dimension that is small, such as coatings, where thick shells introduce defects, or as building blocks of new types of functional materials.
Collapse
Affiliation(s)
- A Vian
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | |
Collapse
|
12
|
Brzeziński M, Socka M, Kost B. Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. POLYM INT 2019. [DOI: 10.1002/pi.5753] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marek Brzeziński
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Marta Socka
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Bartłomiej Kost
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| |
Collapse
|
13
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vian A, Reuse B, Amstad E. Scalable production of double emulsion drops with thin shells. LAB ON A CHIP 2018; 18:1936-1942. [PMID: 29881836 DOI: 10.1039/c8lc00282g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Double emulsions are often used as containers to perform high throughput screening assays and as templates for capsules. These applications require double emulsions to be mechanically stable such that they do not coalesce during processing and storage. A possibility to increase their stability is to reduce the thickness of their shells to sufficiently low values that lubrication effects hinder coalescence. However, the controlled fabrication of double emulsions with such thin shells is difficult. Here, we introduce a new microfluidic device, the aspiration device, that reduces the shell thickness of double emulsions down to 240 nm at a high throughput; thereby, the shell volume is reduced by up to 95%. The shell thickness of the resulting double emulsions depends on the pressure profile in the device and hence on the fluid flow rates in the channels and is independent of the shell thickness of the injected double emulsions. Therefore, this device enables converting double emulsions with polydisperse shell thicknesses into double emulsions with well-defined, uniform thin shells.
Collapse
Affiliation(s)
- A Vian
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
15
|
Akiba U, Minaki D, Anzai JI. Host-Guest Chemistry in Layer-by-Layer Assemblies Containing Calix[n]arenes and Cucurbit[n]urils: A Review. Polymers (Basel) 2018; 10:E130. [PMID: 30966166 PMCID: PMC6415183 DOI: 10.3390/polym10020130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/24/2023] Open
Abstract
This review provides an overview of the synthesis of layer-by-layer (LbL) assemblies containing calix[n]arene (CA[n]) and cucurbit[n]uril (CB[n]) and their applications. LbL assemblies, such as thin films and microcapsules, containing selective binding sites have attracted considerable attention because of their potential use in separation and purification, sensors for ions and molecules, and controlled release. CA[n]-containing LbL films have been prepared using sulfonated CA[n] and cationic polymers to construct chemical sensors and molecular containers. CA[n]-containing LbL films deposited on the surface of a porous support are useful as ion-selective membranes that exhibit selective permeability to monovalent ions over multivalent ions. CB[n]s have been used as molecular glues for the construction of LbL films and microcapsules by taking advantage of the strong affinity of CB[n]s to aromatic compounds. CB[n]s form a stable 1:1:1 ternary complex with electron-rich and electron-deficient molecules in LbL films to stabilize the assemblies. CB[n]-containing LbL films can also be deposited on the surfaces of micro templates and nanopore membranes to construct microcapsules for controlled release and nanochannels for selective ion transport, respectively.
Collapse
Affiliation(s)
- Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegata Gakuen-machi, Akita 010-8502, Japan.
| | - Daichi Minaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
16
|
Zhang M, Corona PT, Ruocco N, Alvarez D, Malo de Molina P, Mitragotri S, Helgeson ME. Controlling Complex Nanoemulsion Morphology Using Asymmetric Cosurfactants for the Preparation of Polymer Nanocapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:978-990. [PMID: 29087721 DOI: 10.1021/acs.langmuir.7b02843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Complex nanoemulsions, comprising multiphase nanoscale droplets, hold considerable potential advantages as vehicles for encapsulation and delivery as well as templates for nanoparticle synthesis. Although methods exist to controllably produce complex emulsions on the microscale, very few methods exist to produce them on the nanoscale. Here, we examine a recently developed method involving a combination of high-energy emulsification with conventional cosurfactants to produce oil-water-oil (O/W/O) complex nanoemulsions. Specifically, we study in detail how the composition of conventional ethoxylated cosurfactants Span80 and Tween20 influences the morphology and structure of the resulting complex nanoemulsions in the water-cyclohexane system. Using a combination of small-angle neutron scattering and cryo-electron microscopy, we find that the cosurfactant composition controls the generation of complex droplet morphologies including core-shell and multicore-shell O/W/O nanodroplets, resulting in an effective state diagram for the selection of nanoemulsion morphology. Additionally, the cosurfactant composition can be used to control the thickness of the water shell contained within the complex nanodroplets. We hypothesize that this degree of control, despite the highly nonequilibrium nature of the nanoemulsions, is ultimately determined by a competition between the opposing spontaneous curvature of the two cosurfactants, which strongly influences the interfacial curvature of the nanodroplets as a result of their ultralow interfacial tension. This is supported by a correlation between cosurfactant compositions that produces complex nanoemulsions and those that produce homogeneous mixed micelles in equilibrium surfactant-cyclohexane solutions. Ultimately, we show that the formation of complex O/W/O nanoemulsions is weakly perturbed upon the addition of hydrophilic polymer precursors, facilitating their use as templates for the formation of polymer nanocapsules.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Patrick T Corona
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Nino Ruocco
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - David Alvarez
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Paula Malo de Molina
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Huang Y, Kim SH, Arriaga LR. Emulsion templated vesicles with symmetric or asymmetric membranes. Adv Colloid Interface Sci 2017; 247:413-425. [PMID: 28802479 DOI: 10.1016/j.cis.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Emulsion droplets with well-controlled topologies are used as templates for forming vesicles with either symmetric or asymmetric membranes. This review summarizes the available technology to produce these templates, the strategies and critical parameters involved in the transformation of emulsion droplets into vesicles, and the properties of the generated vesicles, with a special focus on the composition and material distribution of the vesicle membrane. Here, we also address limitations in the field and point to future fundamental and applied research in the area.
Collapse
|
18
|
Zhang M, Nowak M, Malo de Molina P, Abramovitch M, Santizo K, Mitragotri S, Helgeson ME. Synthesis of Oil-Laden Poly(ethylene glycol) Diacrylate Hydrogel Nanocapsules from Double Nanoemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6116-6126. [PMID: 28605186 DOI: 10.1021/acs.langmuir.7b01162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multiple emulsions have received great interest due to their ability to be used as templates for the production of multicompartment particles for a variety of applications. However, scaling these complex droplets to nanoscale dimensions has been a challenge due to limitations on their fabrication methods. Here, we report the development of oil-in-water-in-oil (O1/W/O2) double nanoemulsions via a two-step high-energy method and their use as templates for complex nanogels comprised of inner oil droplets encapsulated within a hydrogel matrix. Using a combination of characterization methods, we determine how the properties of the nanogels are controlled by the size, stability, internal morphology, and chemical composition of the nanoemulsion templates from which they are formed. This allows for identification of compositional and emulsification parameters that can be used to optimize the size and oil encapsulation efficiency of the nanogels. Our templating method produces oil-laden nanogels with high oil encapsulation efficiencies and average diameters of 200-300 nm. In addition, we demonstrate the versatility of the system by varying the types of inner oil, the hydrogel chemistry, the amount of inner oil, and the hydrogel network cross-link density. These nontoxic oil-laden nanogels have potential applications in food, pharmaceutical, and cosmetic formulations.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Maksymilian Nowak
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Paula Malo de Molina
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Michael Abramovitch
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Katherine Santizo
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
19
|
Silva BF, Rodríguez-Abreu C, Vilanova N. Recent advances in multiple emulsions and their application as templates. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Lee TY, Choi TM, Shim TS, Frijns RAM, Kim SH. Microfluidic production of multiple emulsions and functional microcapsules. LAB ON A CHIP 2016; 16:3415-40. [PMID: 27470590 DOI: 10.1039/c6lc00809g] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent advances in microfluidics have enabled the controlled production of multiple-emulsion drops with onion-like topology. The multiple-emulsion drops possess an intrinsic core-shell geometry, which makes them useful as templates to create microcapsules with a solid membrane. High flexibility in the selection of materials and hierarchical order, achieved by microfluidic technologies, has provided versatility in the membrane properties and microcapsule functions. The microcapsules are now designed not just for storage and release of encapsulants but for sensing microenvironments, developing structural colours, and many other uses. This article reviews the current state of the art in the microfluidic-based production of multiple-emulsion drops and functional microcapsules. The three main sections of this paper discuss distinct microfluidic techniques developed for the generation of multiple emulsions, four representative methods used for solid membrane formation, and various applications of functional microcapsules. Finally, we outline the current limitations and future perspectives of microfluidics and microcapsules.
Collapse
Affiliation(s)
- Tae Yong Lee
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, South Korea.
| | | | | | | | | |
Collapse
|
21
|
Seiffert S. Microfluidics and Macromolecules: Top-Down Analytics and Bottom-Up Engineering of Soft Matter at Small Scales. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastian Seiffert
- Johannes Gutenberg-Universität Mainz; Institute of Physical Chemistry; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
22
|
Liang S, Li J, Man J, Chen H. Mass-Transfer-Induced Multistep Phase Separation in Emulsion Droplets: Toward Self-Assembly Multilayered Emulsions and Onionlike Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7882-7887. [PMID: 27427849 DOI: 10.1021/acs.langmuir.6b01665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mass-transfer-induced multistep phase separation was found in emulsion droplets. The agent system consists of a monomer (ethoxylated trimethylolpropane triacrylate, ETPTA), an oligomer (polyethylene glycol diacrylate, PEGDA 700), and water. The PEGDA in the separated layers offered partial miscibility of all the components throughout the multistep phase-separation procedure, which was terminated by the depletion of PEGDA in the outermost layer. The number of separated portions was determined by the initial PEGDA content, and the initial droplet size influenced the mass-transfer process and consequently determined the sizes of the separated layers. The resultant multilayered emulsions were demonstrated to offer an orderly temperature-responsive release of the inner cores. Moreover, the emulsion droplets can be readily solidified into onionlike microspheres by ultraviolet light curing, providing a new strategy in designing particle structures.
Collapse
Affiliation(s)
- Shuaishuai Liang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
- School of Mechanical Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Jia Man
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| |
Collapse
|
23
|
Petit J, Polenz I, Baret JC, Herminghaus S, Bäumchen O. Vesicles-on-a-chip: A universal microfluidic platform for the assembly of liposomes and polymersomes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:59. [PMID: 27286954 DOI: 10.1140/epje/i2016-16059-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 05/08/2023]
Abstract
In this study, we present a PDMS-based microfluidic platform for the fabrication of both liposomes and polymersomes. Based on a double-emulsion template formed in flow-focusing configuration, monodisperse liposomes and polymersomes are produced in a controlled manner after solvent extraction. Both types of vesicles can be formed from the exact same combination of fluids and are stable for at least three months under ambient storage conditions. By tuning the flow rates of the different fluid phases in the flow-focusing microfluidic design, the size of the liposomes and polymersomes can be varied over at least one order of magnitude. This method offers a versatile tool for future studies, e.g., involving the encapsulation of biological agents and the functionalization of artificial cell membranes, and might also be applicable for the controlled fabrication of hybrid vesicles.
Collapse
Affiliation(s)
- Julien Petit
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077, Göttingen, Germany
| | - Ingmar Polenz
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077, Göttingen, Germany
| | - Jean-Christophe Baret
- CNRS, Univ. Bordeaux, CRPP, UPR8641, 115 Avenue Dr. Schweitzer, 33600, Pessac, France
| | - Stephan Herminghaus
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077, Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
24
|
do Nascimento DF, Arriaga LR, Eggersdorfer M, Ziblat R, Marques MDFV, Reynaud F, Koehler SA, Weitz DA. Microfluidic Fabrication of Pluronic Vesicles with Controlled Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5350-5. [PMID: 27192611 DOI: 10.1021/acs.langmuir.6b01399] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Block copolymers with a low hydrophilic-to-lipophilic balance form membranes that are highly permeable to hydrophilic molecules. Polymersomes with this type of membrane enable the controllable release of molecules without membrane rupture. However, these polymersomes are difficult to assemble because of their low hydrophobicity. Here, we report a microfluidic approach to the production of these polymersomes using double-emulsion drops with ultrathin shells as templates. The small thickness of the middle oil phase enables the attraction of the hydrophobic blocks of the polymers adsorbed at each of the oil/water interfaces of the double emulsions; this results in the dewetting of the oil from the surface of the innermost water drops of the double emulsions and the ultimate formation of the polymersome. This approach to polymersome fabrication enables control of the vesicle size and results in the efficient encapsulation of hydrophilic ingredients that can be released through the polymer membrane without membrane rupture. We apply our approach to the fabrication of Pluronic L121 vesicles and characterize the permeability of their membranes. Furthermore, we show that membrane permeability can be tuned by blending different Pluronic polymers. Our work thus describes a route to producing Pluronic vesicles that are useful for the controlled release of hydrophilic ingredients.
Collapse
Affiliation(s)
- Débora F do Nascimento
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro , Rio de Janeiro 21941-598, Brasil
| | - Laura R Arriaga
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Max Eggersdorfer
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Roy Ziblat
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Maria de Fátima V Marques
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro , Rio de Janeiro 21941-598, Brasil
| | - Franceline Reynaud
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro , Rio de Janeiro 21941-902, Brasil
| | - Stephan A Koehler
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - David A Weitz
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
25
|
Zhang JM, Li EQ, Aguirre-Pablo AA, Thoroddsen ST. A simple and low-cost fully 3D-printed non-planar emulsion generator. RSC Adv 2016. [DOI: 10.1039/c5ra23129a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We propose a low-cost 3D-printed emulsion generator. The 3-D pinch-off junction eliminates the need for surface treatment as the inner liquid never touches the channel wall. The same device can therefore pinch off both inner drops of oil or water.
Collapse
Affiliation(s)
- Jia Ming Zhang
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
| | - Er Qiang Li
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
| | - Andres A. Aguirre-Pablo
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
| | - Sigurdur T. Thoroddsen
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
- Clean Combustion Research Center
| |
Collapse
|
26
|
Gaitzsch J, Huang X, Voit B. Engineering Functional Polymer Capsules toward Smart Nanoreactors. Chem Rev 2015; 116:1053-93. [DOI: 10.1021/acs.chemrev.5b00241] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jens Gaitzsch
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Basel-Stadt, Switzerland
| | - Xin Huang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 Harbin, Heilongjiang, China
| | - Brigitte Voit
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Saxony, Germany
| |
Collapse
|
27
|
Kim M, Yeo SJ, Highley CB, Burdick JA, Yoo PJ, Doh J, Lee D. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE). ACS NANO 2015; 9:8269-78. [PMID: 26172934 DOI: 10.1021/acsnano.5b02702] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pH or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.
Collapse
Affiliation(s)
- Miju Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Seon Ju Yeo
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 440-746, Republic of Korea
| | - Christopher B Highley
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Pil J Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 440-746, Republic of Korea
| | - Junsang Doh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 790-784, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
28
|
Parker RM, Zhang J, Zheng Y, Coulston RJ, Smith CA, Salmon AR, Yu Z, Scherman OA, Abell C. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules. ADVANCED FUNCTIONAL MATERIALS 2015; 25:4091-4100. [PMID: 26213532 PMCID: PMC4511391 DOI: 10.1002/adfm.201501079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/27/2015] [Indexed: 05/26/2023]
Abstract
Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules-where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core-shell microcapsules, gives access to a new generation of innovative self-assembled constructs.
Collapse
Affiliation(s)
- Richard M Parker
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Jing Zhang
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Yu Zheng
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Roger J Coulston
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Clive A Smith
- Sphere Fluidics Limited, The Jonas Webb Building, Babraham Research Campus Babraham Cambridge, CB22 3AT, UK
| | - Andrew R Salmon
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Ziyi Yu
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| |
Collapse
|
29
|
Ma S, Sherwood JM, Huck WTS, Balabani S. The microenvironment of double emulsions in rectangular microchannels. LAB ON A CHIP 2015; 15:2327-2334. [PMID: 25900541 DOI: 10.1039/c5lc00346f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The flow environment in inner cores of water-in-oil-in-water (w/o/w) microfluidic double emulsions has a significant impact on industrial applications of such systems. For example, in the case of shear sensitive cells compartmentalised in the cores, high shear conditions may be deleterious. This study reports on the flow characteristics of w/o/w inner cores in comparison to those in single water-in-oil (w/o) microdroplets of equal size moving in the same microchannel, resolved by means of micro-particle image velocimetry (μPIV). The multiphase flow system employed in the study had a viscosity ratio, λ, between aqueous and oil phase of the order of unity (λ = 0.78) and both single droplets and inner cores of double emulsions filled the channel. This configuration resulted in a weak recirculating flow inside the w/o single droplet: the measured flow field exhibited a uniform low velocity flow field in the central region surrounded by small regions of reversed flow near the channel walls. This flow topology was maintained in the inner cores of w/o/w double emulsions for intermediate capillary numbers (Ca) ranging from 10(-3) to 10(-2), and core morphologies varying from large plugs to pancake cores. The core morphology affected the magnitude and distribution of the velocity in the droplets. The similarity in the flow topology resulted from the fact that inner cores were located at the back of the outer droplet in such a way that inner and outer interfaces were in contact for over half of core surface area and separated only by a thin lubricating film. Both single droplets and inner cores exhibited a narrow shear rate distribution characterised by small regions of maximum shear confined near the channel walls. Shear rate magnitude values were found to be an order of magnitude lower than those in the channel and hence capable of reducing stresses in flow cytometry to far below reported values for cell damage. Hence, it can be concluded that double emulsions are suitable candidates to substitute single droplets in flow cytometry to protect the screened items and are compatible with the commercial flow cytometry systems.
Collapse
Affiliation(s)
- Shaohua Ma
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
30
|
Gunkel-Grabole G, Sigg S, Lomora M, Lörcher S, Palivan CG, Meier WP. Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomater Sci 2015. [DOI: 10.1039/c4bm00230j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
|
32
|
Messager L, Gaitzsch J, Chierico L, Battaglia G. Novel aspects of encapsulation and delivery using polymersomes. Curr Opin Pharmacol 2014; 18:104-11. [DOI: 10.1016/j.coph.2014.09.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/17/2014] [Accepted: 09/21/2014] [Indexed: 02/05/2023]
|
33
|
Benson BR, Stone HA, Prud'homme RK. An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates. LAB ON A CHIP 2013; 13:4507-11. [PMID: 24122050 PMCID: PMC3890084 DOI: 10.1039/c3lc50804h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The fabrication of glass capillary microfluidic devices is technically challenging, often hampering use of the design. We describe a new technique, based on commercially available components, for assembling flow focusing capillary devices that can readily be taken apart and cleaned between uses. This design strategy allows for generation of both water-in-oil and oil-in-water emulsions in the same device after an ethanol rinse. The modularity of the device enables the adjustment of the tip separation between the two inner capillaries during droplet generation, which enables tuning of the age of the interface. Time-dependent surfactant diffusion to the interface changes the interfacial tension, thus providing an approach for adjusting the capillary number in addition to the usual method of changing flow rates. This design enables the tuning of the mode of breakup and the droplet size.
Collapse
Affiliation(s)
- Bryan R Benson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
34
|
Liu D, Herranz-Blanco B, Mäkilä E, Arriaga LR, Mirza S, Weitz DA, Sandler N, Salonen J, Hirvonen J, Santos HA. Microfluidic templated mesoporous silicon-solid lipid microcomposites for sustained drug delivery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12127-12134. [PMID: 24175755 DOI: 10.1021/am403999q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A major challenge for a drug-delivery system is to engineer stable drug carriers with excellent biocompatibility, monodisperse size, and controllable release profiles. In this study, we used a microfluidic technique to encapsulate thermally hydrocarbonized porous silicon (THCPSi) microparticles within solid lipid microparticles (SLMs) to overcome the drawbacks accompanied by THCPSi microparticles. Formulation and process factors, such as lipid matrixes, organic solvents, emulsifiers, and methods to evaporate the organic solvents, were all evaluated and optimized to prepare monodisperse stable SLMs. FTIR analysis together with confocal images showed the clear deposition of THCPSi microparticles inside the monodisperse SLM matrix. The formation of monodisperse THCPSi-solid lipid microcomposites (THCPSi-SLMCs) not only altered the surface hydrophobicity and morphology of THCPSi microparticles but also remarkably enhanced their cytocompatibility with intestinal (Caco-2 and HT-29) cancer cells. Regardless of the solubility of the loaded therapeutics (aqueous insoluble, fenofibrate and furosemide; aqueous soluble, methotrexate and ranitidine) and the pH values of the release media (1.2, 5.0, and 7.4), the time for the release of 50% of the payloads from THCPSi-SLMC was at least 1.3 times longer than that from the THCPSi microparticles. The sustained release of both water-soluble and -insoluble drugs together with a reduced burst-release effect from monodisperse THCPSi-SLMC was achieved, indicating the successful encapsulation of THCPSi microparticles into the SLM matrix. The fabricated THCPSi-SLMCs exhibited monodisperse spherical morphology, enhanced cytocompatibility, and prolonged both water-soluble and -insoluble drug release, which makes it an attractive controllable drug-delivery platform.
Collapse
Affiliation(s)
- Dongfei Liu
- Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev 2013; 65:1496-532. [PMID: 23933616 DOI: 10.1016/j.addr.2013.08.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
Abstract
In recent years, advancements in the fields of microfluidic and lab-on-a-chip technologies have provided unique opportunities for the implementation of nanomaterial production processes owing to the miniaturisation of the fluidic environment. It has been demonstrated that microfluidic reactors offer a range of advantages compared to conventional batch reactors, including improved controllability and uniformity of nanomaterial characteristics. In addition, the fast mixing achieved within microchannels, and the predictability of the laminar flow conditions, can be leveraged to investigate the nanomaterial formation dynamics. In this article recent developments in the field of microfluidic production of nanomaterials for drug delivery applications are reviewed. The features that make microfluidic reactors a suitable technological platform are discussed in terms of controllability of nanomaterials production. An overview of the various strategies developed for the production of organic nanoparticles and colloidal assemblies is presented, focusing on those nanomaterials that could have an impact on nanomedicine field such as drug nanoparticles, polymeric micelles, liposomes, polymersomes, polyplexes and hybrid nanoparticles. The effect of microfluidic environment on nanomaterials formation dynamics, as well as the use of microdevices as tools for nanomaterial investigation is also discussed.
Collapse
|
36
|
Prakash R, Kaler KV. Liquid dielectrophoresis dispensing of vesicles for on-chip nucleic acid isolation and detection. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|