1
|
Yang P, Tian J, Zhang L, Zhang H, Yang G, Ren Y, Fang J, Gu Y, Jiang W. A toolbox for genetic manipulation in intestinal Clostridium symbiosum. Synth Syst Biotechnol 2024; 9:43-54. [PMID: 38234413 PMCID: PMC10793094 DOI: 10.1016/j.synbio.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/24/2023] [Indexed: 01/19/2024] Open
Abstract
Gut microbes are closely related with human health, but remain much to learn. Clostridium symbiosum is a conditionally pathogenic human gut bacterium and regarded as a potential biomarker for early diagnosis of intestinal tumors. However, the absence of an efficient toolbox that allows diverse genetic manipulations of this bacterium limits its in-depth studies. Here, we obtained the complete genome sequence of C. symbiosum ATCC 14940, a representative strain of C. symbiosum. On this basis, we further developed a series of genetic manipulation methods for this bacterium. Firstly, following the identification of a functional replicon pBP1 in C. symbiosum ATCC 14940, a highly efficient conjugative DNA transfer method was established, enabling the rapid introduction of exogenous plasmids into cells. Next, we constructed a dual-plasmid CRISPR/Cas12a system for genome editing in this bacterium, reaching over 60 % repression for most of the chosen genes as well as efficient deletion (>90 %) of three target genes. Finally, this toolbox was used for the identification of crucial functional genes, involving growth, synthesis of important metabolites, and virulence of C. symbiosum ATCC 14940. Our work has effectively established and optimized genome editing methods in intestinal C. symbiosum, thereby providing strong support for further basic and application research in this bacterium.
Collapse
Affiliation(s)
- Pengjie Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhong Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Lu Zhang
- NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Hui Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Gaohua Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Straket 16, Gothenburg, 41345, Sweden
| | - Yimeng Ren
- NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jingyuan Fang
- NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Baylous HR, Gladfelter MF, Gardner MI, Foley M, Wilson AE, Steffen MM. Indole-3-acetic acid promotes growth in bloom-forming Microcystis via an antioxidant response. HARMFUL ALGAE 2024; 133:102575. [PMID: 38485434 DOI: 10.1016/j.hal.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/19/2024]
Abstract
Interactions between bacteria and phytoplankton in the phycosphere facilitate and constrain biogeochemical cycling in aquatic ecosystems. Indole-3-acetic acid (IAA) is a bacterially produced chemical signal that promotes growth of phytoplankton and plants. Here, we explored the impact of IAA on bloom-forming cyanobacteria and their associated bacteria. Exposure to IAA and its precursor, tryptophan, resulted in a strong growth response in a bloom of the freshwater cyanobacterium, Microcystis. Metatranscriptome analysis revealed the induction of an antioxidant response in Microcystis upon exposure to IAA, potentially allowing populations to increase photosynthetic rate and overcome internally generated reactive oxygen. Our data reveal that co-occurring bacteria within the phycosphere microbiome exhibit a division of labor for supportive functions, such as nutrient mineralization and transport, vitamin synthesis, and reactive oxygen neutralization. These complex dynamics within the Microcystis phycosphere microbiome are an example of interactions within a microenvironment that can have ecosystem-scale consequences.
Collapse
Affiliation(s)
- Hunter R Baylous
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Matthew F Gladfelter
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Malia I Gardner
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Madalynn Foley
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Morgan M Steffen
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA.
| |
Collapse
|
3
|
Kountz DJ, Balskus EP. A diversified, widespread microbial gene cluster encodes homologs of methyltransferases involved in methanogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551370. [PMID: 37577662 PMCID: PMC10418091 DOI: 10.1101/2023.07.31.551370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Analyses of microbial genomes have revealed unexpectedly wide distributions of enzymes from specialized metabolism, including methanogenesis, providing exciting opportunities for discovery. Here, we identify a family of gene clusters (the type 1 mlp gene clusters (MGCs)) that encodes homologs of the soluble coenzyme M methyltransferases (SCMTs) involved in methylotrophic methanogenesis and is widespread in bacteria and archaea. Type 1 MGCs are expressed and regulated in medically, environmentally, and industrially important organisms, making them likely to be physiologically relevant. Enzyme annotation, analysis of genomic context, and biochemical experiments suggests these gene clusters play a role in methyl-sulfur and/or methyl-selenide metabolism in numerous anoxic environments, including the human gut microbiome, potentially impacting sulfur and selenium cycling in diverse, anoxic environments.
Collapse
Affiliation(s)
- Duncan J. Kountz
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Zhang H, Zhang C, Nie X, Wu Y, Yang C, Jiang W, Gu Y. Pleiotropic Regulator GssR Positively Regulates Autotrophic Growth of Gas-Fermenting Clostridium ljungdahlii. Microorganisms 2023; 11:1968. [PMID: 37630531 PMCID: PMC10458427 DOI: 10.3390/microorganisms11081968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridium ljungdahlii is a representative autotrophic acetogen capable of producing multiple chemicals from one-carbon gases (CO2/CO). The metabolic and regulatory networks of this carbon-fixing bacterium are interesting, but still remain minimally explored. Here, based on bioinformatics analysis followed by functional screening, we identified a RpiR family transcription factor (TF) that can regulate the autotrophic growth and carbon fixation of C. ljungdahlii. After deletion of the corresponding gene, the resulting mutant strain exhibited significantly impaired growth in gas fermentation, thus reducing the production of acetic acid and ethanol. In contrast, the overexpression of this TF gene could promote cell growth, indicating a positive regulatory effect of this TF in C. ljungdahlii. Thus, we named the TF as GssR (growth and solvent synthesis regulator). Through the following comparative transcriptomic analysis and biochemical verification, we discovered three important genes (encoding pyruvate carboxylase, carbon hunger protein CstA, and a BlaI family transcription factor) that were directly regulated by GssR. Furthermore, an upstream regulator, BirA, that could directly bind to gssR was found; thus, these two regulators may form a cascade regulation and jointly affect the physiology and metabolism of C. ljungdahlii. These findings substantively expand our understanding on the metabolic regulation of carbon fixation in gas-fermenting Clostridium species.
Collapse
Affiliation(s)
- Huan Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Wu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
5
|
Kwon SJ, Lee J, Lee HS. Metabolic changes of the acetogen Clostridium sp. AWRP through adaptation to acetate challenge. Front Microbiol 2022; 13:982442. [PMID: 36569090 PMCID: PMC9768041 DOI: 10.3389/fmicb.2022.982442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, we report the phenotypic changes that occurred in the acetogenic bacterium Clostridium sp. AWRP as a result of an adaptive laboratory evolution (ALE) under the acetate challenge. Acetate-adapted strain 46 T-a displayed acetate tolerance to acetate up to 10 g L-1 and increased ethanol production in small-scale cultures. The adapted strain showed a higher cell density than AWRP even without exogenous acetate supplementation. 46 T-a was shown to have reduced gas consumption rate and metabolite production. It was intriguing to note that 46 T-a, unlike AWRP, continued to consume H2 at low CO2 levels. Genome sequencing revealed that the adapted strain harbored three point mutations in the genes encoding an electron-bifurcating hydrogenase (Hyt) crucial for autotrophic growth in CO2 + H2, in addition to one in the dnaK gene. Transcriptome analysis revealed that most genes involved in the CO2-fixation Wood-Ljungdahl pathway and auxiliary pathways for energy conservation (e.g., Rnf complex, Nfn, etc.) were significantly down-regulated in 46 T-a. Several metabolic pathways involved in dissimilation of nucleosides and carbohydrates were significantly up-regulated in 46 T-a, indicating that 46 T-a evolved to utilize organic substrates rather than CO2 + H2. Further investigation into degeneration in carbon fixation of the acetate-adapted strain will provide practical implications for CO2 + H2 fermentation using acetogenic bacteria for long-term continuous fermentation.
Collapse
Affiliation(s)
- Soo Jae Kwon
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Joungmin Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
6
|
Klask CM, Jäger B, Casini I, Angenent LT, Molitor B. Genetic Evidence Reveals the Indispensable Role of the rseC Gene for Autotrophy and the Importance of a Functional Electron Balance for Nitrate Reduction in Clostridium ljungdahlii. Front Microbiol 2022; 13:887578. [PMID: 35615511 PMCID: PMC9124969 DOI: 10.3389/fmicb.2022.887578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
For Clostridium ljungdahlii, the RNF complex plays a key role for energy conversion from gaseous substrates such as hydrogen and carbon dioxide. In a previous study, a disruption of RNF-complex genes led to the loss of autotrophy, while heterotrophy was still possible via glycolysis. Furthermore, it was shown that the energy limitation during autotrophy could be lifted by nitrate supplementation, which resulted in an elevated cellular growth and ATP yield. Here, we used CRISPR-Cas12a to delete: (1) the RNF complex-encoding gene cluster rnfCDGEAB; (2) the putative RNF regulator gene rseC; and (3) a gene cluster that encodes for a putative nitrate reductase. The deletion of either rnfCDGEAB or rseC resulted in a complete loss of autotrophy, which could be restored by plasmid-based complementation of the deleted genes. We observed a transcriptional repression of the RNF-gene cluster in the rseC-deletion strain during autotrophy and investigated the distribution of the rseC gene among acetogenic bacteria. To examine nitrate reduction and its connection to the RNF complex, we compared autotrophic and heterotrophic growth of our three deletion strains with either ammonium or nitrate. The rnfCDGEAB- and rseC-deletion strains failed to reduce nitrate as a metabolic activity in non-growing cultures during autotrophy but not during heterotrophy. In contrast, the nitrate reductase deletion strain was able to grow in all tested conditions but lost the ability to reduce nitrate. Our findings highlight the important role of the rseC gene for autotrophy, and in addition, contribute to understand the connection of nitrate reduction to energy metabolism.
Collapse
Affiliation(s)
- Christian-Marco Klask
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
| | - Benedikt Jäger
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
| | - Isabella Casini
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
| | - Largus T. Angenent
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- *Correspondence: Bastian Molitor,
| |
Collapse
|
7
|
Marcel M, Darina E, Patrick K, Aline H, Gabriele P, Stefan J, Jochen B. Impact of different trace elements on metabolic routes during heterotrophic growth of C. ljungdahlii investigated through online measurement of the carbon dioxide transfer rate. Biotechnol Prog 2022; 38:e3263. [PMID: 35434968 DOI: 10.1002/btpr.3263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
Synthesis gas fermentation using acetogenic clostridia is a rapidly increasing research area. It offers the possibility to produce platform chemicals from sustainable C1 carbon sources. The Wood-Ljungdahl pathway (WLP), which allows acetogens to grow autotrophically, is also active during heterotrophic growth. It acts as an electron sink and allows for the utilization of a wide variety of soluble substrates and increases ATP yields during heterotrophic growth. While glycolysis leads to CO2 evolution, WLP activity results in CO2 fixation. Thus, a reduction of net CO2 emissions during growth with sugars is an indicator of WLP activity. To study the effect of trace elements and ventilation rates on the interaction between glycolysis and the WLP, the model acetogen Clostridium ljungdahlii was cultivated in YTF medium, a complex medium generally employed for heterotrophic growth, with fructose as growth substrate. The recently reported anaRAMOS device was used for online measurement of metabolic activity, in form of CO2 evolution. The addition of multiple trace elements (iron, cobalt, manganese, zinc, nickel, copper, selenium, and tungsten) was tested, to study the interaction between glycolysis and the Wood ljungdahl pathway. While the addition of iron(II) increased growth rates and ethanol production, added nickel(II) increased WLP activity and acetate formation, reducing net CO2 production by 28%. Also, higher CO2 availability through reduced volumetric gas flow resulted in 25% reduction of CO2 evolution. These online metabolic data demonstrate that the anaRAMOS is a valuable tool in the investigation of metabolic responses i.e. to determine nutrient requirements that results in reduced CO2 production. Thereby the media composition can be optimized depending on the specific goal. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mann Marcel
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| | - Effert Darina
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| | - Kottenhahn Patrick
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany.,Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, Aachen, Germany
| | - Hüser Aline
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| | - Philipps Gabriele
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, Aachen, Germany
| | - Jennewein Stefan
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, Aachen, Germany
| | - Büchs Jochen
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| |
Collapse
|
8
|
Heffernan JK, Mahamkali V, Valgepea K, Marcellin E, Nielsen LK. Analytical tools for unravelling the metabolism of gas-fermenting Clostridia. Curr Opin Biotechnol 2022; 75:102700. [PMID: 35240422 DOI: 10.1016/j.copbio.2022.102700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 12/23/2022]
Abstract
Acetogens harness the Wood-Ljungdahl Pathway, a unique metabolic pathway for C1 capture close to the thermodynamic limit. Gas fermentation using acetogens is already used for CO-to-ethanol conversion at industrial-scale and has the potential to valorise a range of C1 and waste substrates to short-chain and medium-chain carboxylic acids and alcohols. Advances in analytical quantification and metabolic modelling have helped guide industrial gas fermentation designs. Further advances in the measurements of difficult to measure metabolites are required to improve kinetic modelling and understand the regulation of acetogen metabolism. This will help guide future synthetic biology designs needed to realise the full potential of gas fermentation in stimulating a circular bioeconomy.
Collapse
Affiliation(s)
- James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vishnu Mahamkali
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072, Australia; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
9
|
Systems Biology on Acetogenic Bacteria for Utilizing C1 Feedstocks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:57-90. [DOI: 10.1007/10_2021_199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Hong Y, Zeng AP. Biosynthesis Based on One-Carbon Mixotrophy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:351-371. [DOI: 10.1007/10_2021_198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, Sedlar K. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Adv 2021; 58:107889. [PMID: 34929313 DOI: 10.1016/j.biotechadv.2021.107889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Solventogenic clostridia are not a strictly defined group within the genus Clostridium but its representatives share some common features, i.e. they are anaerobic, non-pathogenic, non-toxinogenic and endospore forming bacteria. Their main metabolite is typically 1-butanol but depending on species and culture conditions, they can form other metabolites such as acetone, isopropanol, ethanol, butyric, lactic and acetic acids, and hydrogen. Although these organisms were previously used for the industrial production of solvents, they later fell into disuse, being replaced by more efficient chemical production. A return to a more biological production of solvents therefore requires a thorough understanding of clostridial metabolism. Transcriptome analysis, which reflects the involvement of individual genes in all cellular processes within a population, at any given (sampling) moment, is a valuable tool for gaining a deeper insight into clostridial life. In this review, we describe techniques to study transcription, summarize the evolution of these techniques and compare methods for data processing and visualization of solventogenic clostridia, particularly the species Clostridium acetobutylicum and Clostridium beijerinckii. Individual approaches for evaluating transcriptomic data are compared and their contributions to advancements in the field are assessed. Moreover, utilization of transcriptomic data for reconstruction of computational clostridial metabolic models is considered and particular models are described. Transcriptional changes in glucose transport, central carbon metabolism, the sporulation cycle, butanol and butyrate stress responses, the influence of lignocellulose-derived inhibitors on growth and solvent production, and other respective topics, are addressed and common trends are highlighted.
Collapse
Affiliation(s)
- Petra Patakova
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic.
| | - Barbora Branska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Maryna Vasylkivska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | | | - Jana Musilova
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Ivo Provaznik
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Karel Sedlar
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| |
Collapse
|
12
|
Fan YX, Zhang JZ, Zhang Q, Ma XQ, Liu ZY, Lu M, Qiao K, Li FL. Biofuel and chemical production from carbon one industry flux gas by acetogenic bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2021; 117:1-34. [PMID: 34742365 DOI: 10.1016/bs.aambs.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon one industry flux gas generated from fossil fuels, various industrial and domestic waste, as well as lignocellulosic biomass provides an innovative raw material to lead the sustainable development. Through the chemical and biological processing, the gas mixture composed of CO, CO2, and H2, also termed as syngas, is converted to biofuels and high-value chemicals. Here, the syngas fermentation process is elaborated to provide an overview. Sources of syngas are summarized and the influences of impurities on biological fermentation are exhibited. Acetogens and carboxydotrophs are the two main clusters of syngas utilizing microorganisms, their essential characters are presented, especially the energy metabolic scheme with CO, CO2, and H2. Synthetic biology techniques and microcompartment regulation are further discussed and proposed to create a high-efficiency cell factory. Moreover, the influencing factors in fermentation and products in carboxylic acids, alcohols, and others such like polyhydroxyalkanoate and poly-3-hydroxybutyrate are addressed. Biological fermentation from carbon one industry flux gas is a promising alternative, the latest scientific advances are expatiated hoping to inspire more creative transformation.
Collapse
Affiliation(s)
- Yi-Xuan Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Zhe Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Quan Zhang
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Xiao-Qing Ma
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China
| | - Zi-Yong Liu
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China
| | - Ming Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China
| | - Kai Qiao
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China.
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Dalian National Laboratory for Clean Energy, Dalian, China.
| |
Collapse
|
13
|
Zhang C, Nie X, Zhang H, Wu Y, He H, Yang C, Jiang W, Gu Y. Functional dissection and modulation of the BirA protein for improved autotrophic growth of gas-fermenting Clostridium ljungdahlii. Microb Biotechnol 2021; 14:2072-2089. [PMID: 34291572 PMCID: PMC8449670 DOI: 10.1111/1751-7915.13884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
Gas-fermenting Clostridium species can convert one-carbon gases (CO2 /CO) into a variety of chemicals and fuels, showing excellent application prospects in green biological manufacturing. The discovery of crucial genes and proteins with novel functions is important for understanding and further optimization of these autotrophic bacteria. Here, we report that the Clostridium ljungdahlii BirA protein (ClBirA) plays a pleiotropic regulator role, which, together with its biotin protein ligase (BPL) activity, enables an effective control of autotrophic growth of C. ljungdahlii. The structural modulation of ClBirA, combined with the in vivo and in vitro analyses, further reveals the action mechanism of ClBirA's dual roles as well as their interaction in C. ljungdahlii. Importantly, an atypical, flexible architecture of the binding site was found to be employed by ClBirA in the regulation of a lot of essential pathway genes, thereby expanding BirA's target genes to a broader range in clostridia. Based on these findings, molecular modification of ClBirA was performed, and an improved cellular performance of C. ljungdahlii was achieved in gas fermentation. This work reveals a previously unknown potent role of BirA in gas-fermenting clostridia, providing new perspective for understanding and engineering these autotrophic bacteria.
Collapse
Affiliation(s)
- Can Zhang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoqun Nie
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Huan Zhang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Yuwei Wu
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Huiqi He
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Chen Yang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Weihong Jiang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yang Gu
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
14
|
Abstract
Acetogens synthesize acetyl-CoA via the CO2-fixing Wood-Ljungdahl pathway. Despite their ecological and biotechnological importance, their translational regulation of carbon and energy metabolisms remains unclear. Here, we report how carbon and energy metabolisms in the model acetogen Acetobacterium woodii are translationally controlled under different growth conditions. Data integration of genome-scale transcriptomic and translatomic analyses revealed that the acetogenesis genes, including those of the Wood-Ljungdahl pathway and energy metabolism, showed changes in translational efficiency under autotrophic growth conditions. In particular, genes encoding the Wood-Ljungdahl pathway are translated at similar levels to achieve efficient acetogenesis activity under autotrophic growth conditions, whereas genes encoding the carbonyl branch present increased translation levels in comparison to those for the methyl branch under heterotrophic growth conditions. The translation efficiency of genes in the pathways is differentially regulated by 5′ untranslated regions and ribosome-binding sequences under different growth conditions. Our findings provide potential strategies to optimize the metabolism of syngas-fermenting acetogenic bacteria for better productivity. IMPORTANCE Acetogens are capable of reducing CO2 to multicarbon compounds (e.g., ethanol or 2,3-butanediol) via the Wood-Ljungdahl pathway. Given that protein synthesis in bacteria is highly energy consuming, acetogens living at the thermodynamic limit of life are inevitably under translation control. Here, we dissect the translational regulation of carbon and energy metabolisms in the model acetogen Acetobacterium woodii under heterotrophic and autotrophic growth conditions. The latter may be experienced when acetogen is used as a cell factory that synthesizes products from CO2 during the gas fermentation process. We found that the methyl and carbonyl branches of the Wood-Ljungdahl pathway are activated at similar translation levels during autotrophic growth. Translation is mainly regulated by the 5′-untranslated-region structure and ribosome-binding-site sequence. This work reveals novel translational regulation for coping with autotrophic growth conditions and provides the systematic data set, including the transcriptome, translatome, and promoter/5′-untranslated-region bioparts.
Collapse
|
15
|
Identification of a non-coding RNA and its putative involvement in the regulation of tetanus toxin synthesis in Clostridium tetani. Sci Rep 2021; 11:4157. [PMID: 33603121 PMCID: PMC7892561 DOI: 10.1038/s41598-021-83623-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Clostridium tetani produces the tetanus toxin (TeNT), one of the most powerful bacterial toxins known to humankind and responsible for tetanus. The regulation of toxin expression is complex and involves the alternative sigma factor TetR as well as other regulators. Here, a transcriptional analysis of the TeNT-encoding large plasmid of C. tetani identified a putative non-coding small RNA (sRNA), located in close vicinity of the 3′ untranslated region of the tent gene. A northern blot experiment could identify a respective sRNA with a size of approx. 140 nucleotides. Sequence analysis showed that the sRNA contains a 14-nucleotide region that is complementary to a 5′ located region of tent. In order to investigate the function of the sRNA, we applied a RNA interference approach targeting the sRNA in two C. tetani wild-type strains; the constructed antisense C. tetani strains showed an approx. threefold increase in both extracellular and total TeNT production compared to the respective wild-type strains. In addition, recombinant C. tetani strains were constructed that contained tent-locus harboring plasmids with and without the sRNA. However, the introduction of the tent-locus without the sRNA in a C. tetani strain lacking the wild-type TeNT-encoding large plasmid resulted in a lower TeNT production compared to the same strain with recombinant tent-locus with the sRNA. This suggests that the expression or the effect of the sRNA is modulated by the C. tetani genetic background, notably that of the wild-type TeNT-encoding large plasmid. In addition, some recombinant strains exhibited modulated growth patterns, characterized by premature bacterial cell lysis. Taken together, our data indicate that the sRNA acts as a negative regulator of TeNT synthesis, with a possible impact on the growth of C. tetani. We hypothesize that the role of this sRNA is to limit toxin levels in the exponential growth phase in order to prevent premature bacterial lysis.
Collapse
|
16
|
Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals. Int J Mol Sci 2020; 21:ijms21207639. [PMID: 33076477 PMCID: PMC7589590 DOI: 10.3390/ijms21207639] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.
Collapse
|
17
|
de Souza Pinto Lemgruber R, Valgepea K, Gonzalez Garcia RA, de Bakker C, Palfreyman RW, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. A TetR-Family Protein (CAETHG_0459) Activates Transcription From a New Promoter Motif Associated With Essential Genes for Autotrophic Growth in Acetogens. Front Microbiol 2019; 10:2549. [PMID: 31803150 PMCID: PMC6873888 DOI: 10.3389/fmicb.2019.02549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Acetogens can fix carbon (CO or CO2) into acetyl-CoA via the Wood-Ljungdahl pathway (WLP) that also makes them attractive cell factories for the production of fuels and chemicals from waste feedstocks. Although most biochemical details of the WLP are well understood and systems-level characterization of acetogen metabolism has recently improved, key transcriptional features such as promoter motifs and transcriptional regulators are still unknown in acetogens. Here, we use differential RNA-sequencing to identify a previously undescribed promoter motif associated with essential genes for autotrophic growth of the model-acetogen Clostridium autoethanogenum. RNA polymerase was shown to bind to the new promoter motif using a DNA-binding protein assay and proteomics enabled the discovery of four candidates to potentially function directly in control of transcription of the WLP and other key genes of C1 fixation metabolism. Next, in vivo experiments showed that a TetR-family transcriptional regulator (CAETHG_0459) and the housekeeping sigma factor (σA) activate expression of a reporter protein (GFP) in-frame with the new promoter motif from a fusion vector in Escherichia coli. Lastly, a protein-protein interaction assay with the RNA polymerase (RNAP) shows that CAETHG_0459 directly binds to the RNAP. Together, the data presented here advance the fundamental understanding of transcriptional regulation of C1 fixation in acetogens and provide a strategy for improving the performance of gas-fermenting bacteria by genetic engineering.
Collapse
Affiliation(s)
| | - Kaspar Valgepea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Christopher de Bakker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Robin William Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Zhao R, Liu Y, Zhang H, Chai C, Wang J, Jiang W, Gu Y. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in Clostridium ljungdahlii and Its Application in Carbon Flux Redirection in Synthesis Gas Fermentation. ACS Synth Biol 2019; 8:2270-2279. [PMID: 31526005 DOI: 10.1021/acssynbio.9b00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Uncovering the full potential of gas-fermenting Clostridia, attractive autotrophic bacteria capable of using synthesis gases (CO-CO2-H2) to produce a range of chemicals and fuels, for industrial applications relies on having efficient molecular tools for genetic modifications. Although the CRISPR-Cas9-mediated genome editing system has been developed in Clostridia, its use is limited owing to low GC content (approx. 30%) in these anaerobes. Therefore, the effector protein Cas12a, which recognizes T-rich instead of G-rich protospacer-adjacent motifs (PAMs), has evident advantages over Cas9 in CRISPR genome editing in Clostridia. Here, we developed the CRISPR-Cas12a system for efficient gene deletion and regulation in the gas-fermenting Clostridium ljungdahlii species. On the basis of screening for the most suitable Cas12a and significantly improved electrotransformation efficiency that bypassed poor repair efficiency of the Cas12a-caused DNA double-strand break (DSB) in C. ljungdahlii, efficient deletion (80-100%) of four genes (pyrE, pta, adhE1, and ctf) was achieved by using the CRISPR-FnCas12a system. Furthermore, a DNase-deactivated FnCas12a (ddCas12a) was adopted to construct a CRISPRi system to downregulate targeted genes, reaching over 80% repression for most of the chosen binding sites. This CRISPRi system was also used in a butyric acid-producing C. ljungdahlii strain to redirect carbon flux, leading to 20-40% reductions in ethanol titer that were accompanied by increased butyric acid titer. These results demonstrate the high efficiency of the CRISPR-FnCas12a system for genome engineering in C. ljungdahlii, which effectively expands the existing CRISPR-Cas toolbox in gas-fermenting Clostridium species and may play important roles in genetic manipulations where CRISPR-Cas9 is incompetent.
Collapse
Affiliation(s)
- Ran Zhao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yanqiang Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huan Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Changsheng Chai
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
19
|
Fukuyama Y, Omae K, Yoshida T, Sako Y. Transcriptome analysis of a thermophilic and hydrogenogenic carboxydotroph Carboxydothermus pertinax. Extremophiles 2019; 23:389-398. [PMID: 30941583 PMCID: PMC6557876 DOI: 10.1007/s00792-019-01091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
A thermophilic and hydrogenogenic carboxydotroph, Carboxydothermus pertinax, performs hydrogenogenic CO metabolism in which CODH-II couples with distally encoded ECH. To enhance our knowledge of its hydrogenogenic CO metabolism, we performed whole transcriptome analysis of C. pertinax grown under 100% CO or 100% N2 using RNA sequencing. Of the 2577 genes, 36 and 64 genes were differentially expressed genes (DEGs) with false discovery rate adjusted P value < 0.05 when grown under 100% CO or 100% N2, respectively. Most of the DEGs were components of 23 gene clusters, suggesting switch between metabolisms via intensive expression changes in a relatively low number of gene clusters. Of the 9 significantly expressed gene clusters under 100% CO, CODH-II and ECH gene clusters were found. Only the ECH gene cluster was regulated by the CO-responsive transcriptional factor CooA, suggesting that others were separately regulated in the same transcriptional cascade as the ECH gene cluster. Of the 14 significantly expressed gene clusters under 100% N2, ferrous iron transport gene cluster involved in anaerobic respiration and prophage region were found. Considering that the expression of the temperate phage was strictly repressed under 100% CO, hydrogenogenic CO metabolism might be stable for C. pertinax.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kimiho Omae
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshihiko Sako
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
20
|
Emerson DF, Woolston BM, Liu N, Donnelly M, Currie DH, Stephanopoulos G. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation. Biotechnol Bioeng 2018; 116:294-306. [PMID: 30267586 DOI: 10.1002/bit.26847] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022]
Abstract
Synthesis gas (syngas) fermentation via the Wood-Ljungdahl pathway is receiving growing attention as a possible platform for the fixation of CO 2 and renewable production of fuels and chemicals. However, the pathway operates near the thermodynamic limit of life, resulting in minimal adenosine triphosphate (ATP) production and long doubling times. This calls into question the feasibility of producing high-energy compounds at industrially relevant levels. In this study, we investigated the possibility of co-utilizing nitrate as an inexpensive additional electron acceptor to enhance ATP production during H 2 -dependent growth of Clostridium ljungdahlii, Moorella thermoacetica, and Acetobacterium woodii. In contrast to other acetogens tested, growth rate and final biomass titer were improved for C. ljungdahlii growing on a mixture of H 2 and CO 2 when supplemented with nitrate. Transcriptomic analysis, 13 CO 2 labeling, and an electron balance were used to understand how electron flux was partitioned between CO 2 and nitrate. We further show that, with nitrate supplementation, the ATP/adenosine diphosphate (ADP) ratio and acetyl-CoA pools were increased by fivefold and threefold, respectively, suggesting that this strategy could be useful for the production of ATP-intensive heterologous products from acetyl-CoA. Finally, we propose a pathway for enhanced ATP production from nitrate and use this as a basis to calculate theoretical yields for a variety of products. This study demonstrates a viable strategy for the decoupling of ATP production from carbon dioxide fixation, which will serve to significantly improve the CO 2 fixation rate and the production metrics of other chemicals from CO 2 and H 2 in this host.
Collapse
Affiliation(s)
- David F Emerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mackenzie Donnelly
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Devin H Currie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
21
|
Shin J, Song Y, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK. Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation. RNA (NEW YORK, N.Y.) 2018; 24:1839-1855. [PMID: 30249742 PMCID: PMC6239172 DOI: 10.1261/rna.068239.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/20/2018] [Indexed: 05/09/2023]
Abstract
Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. Despite their ecological and industrial importance, their transcriptional and post-transcriptional regulation has not been systematically studied. With completion of the genome sequence of Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this psychrotolerant acetogen in response to temperature variations under autotrophic and heterotrophic growth conditions. Unexpectedly, acetogenesis genes were highly up-regulated at low temperatures under heterotrophic, as well as autotrophic, growth conditions. To mechanistically understand the transcriptional regulation of acetogenesis genes via changes in RNA secondary structures of 5'-untranslated regions (5'-UTR), the primary transcriptome was experimentally determined, and 1379 transcription start sites (TSS) and 1100 5'-UTR were found. Interestingly, acetogenesis genes contained longer 5'-UTR with lower RNA-folding free energy than other genes, revealing that the 5'-UTRs control the RNA abundance of the acetogenesis genes under low temperature conditions. Our findings suggest that post-transcriptional regulation via RNA conformational changes of 5'-UTRs is necessary for cold-adaptive acetogenesis.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoseb Song
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Rip Kim
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Song Y, Shin J, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK. Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth. BMC Genomics 2018; 19:837. [PMID: 30470174 PMCID: PMC6260860 DOI: 10.1186/s12864-018-5238-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/09/2018] [Indexed: 11/11/2022] Open
Abstract
Background Acetogenic bacteria constitute promising biocatalysts for the conversion of CO2/H2 or synthesis gas (H2/CO/CO2) into biofuels and value-added biochemicals. These microorganisms are naturally capable of autotrophic growth via unique acetogenesis metabolism. Despite their biosynthetic potential for commercial applications, a systemic understanding of the transcriptional and translational regulation of the acetogenesis metabolism remains unclear. Results By integrating genome-scale transcriptomic and translatomic data, we explored the regulatory logic of the acetogenesis to convert CO2 into biomass and metabolites in Eubacterium limosum. The results indicate that majority of genes associated with autotrophic growth including the Wood-Ljungdahl pathway, the reduction of electron carriers, the energy conservation system, and gluconeogenesis were transcriptionally upregulated. The translation efficiency of genes in cellular respiration and electron bifurcation was also highly enhanced. In contrast, the transcriptionally abundant genes involved in the carbonyl branch of the Wood-Ljungdahl pathway, as well as the ion-translocating complex and ATP synthase complex in the energy conservation system, showed decreased translation efficiency. The translation efficiencies of genes were regulated by 5′UTR secondary structure under the autotrophic growth condition. Conclusions The results illustrated that the acetogenic bacteria reallocate protein synthesis, focusing more on the translation of genes for the generation of reduced electron carriers via electron bifurcation, rather than on those for carbon metabolism under autotrophic growth. Electronic supplementary material The online version of this article (10.1186/s12864-018-5238-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoseb Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jongoh Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Rip Kim
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
23
|
Optimization of carbon and energy utilization through differential translational efficiency. Nat Commun 2018; 9:4474. [PMID: 30367068 PMCID: PMC6203783 DOI: 10.1038/s41467-018-06993-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/02/2018] [Indexed: 01/19/2023] Open
Abstract
Control of translation is vital to all species. Here we employ a multi-omics approach to decipher condition-dependent translational regulation in the model acetogen Clostridium ljungdahlii. Integration of data from cells grown autotrophically or heterotrophically revealed that pathways critical to carbon and energy metabolism are under strong translational regulation. Major pathways involved in carbon and energy metabolism are not only differentially transcribed and translated, but their translational efficiencies are differentially elevated in response to resource availability under different growth conditions. We show that translational efficiency is not static and that it changes dynamically in response to mRNA expression levels. mRNAs harboring optimized 5'-untranslated region and coding region features, have higher translational efficiencies and are significantly enriched in genes encoding carbon and energy metabolism. In contrast, mRNAs enriched in housekeeping functions harbor sub-optimal features and have lower translational efficiencies. We propose that regulation of translational efficiency is crucial for effectively controlling resource allocation in energy-deprived microorganisms.
Collapse
|
24
|
Yang Y, Nie X, Jiang Y, Yang C, Gu Y, Jiang W. Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering. Biotechnol Adv 2018; 36:905-914. [DOI: 10.1016/j.biotechadv.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
|
25
|
Woolston BM, Emerson DF, Currie DH, Stephanopoulos G. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab Eng 2018; 48:243-253. [PMID: 29906505 DOI: 10.1016/j.ymben.2018.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/10/2018] [Indexed: 12/28/2022]
Abstract
Clostridium ljungdahlii has emerged as an attractive candidate for the bioconversion of synthesis gas (CO, CO2, H2) to a variety of fuels and chemicals through the Wood-Ljungdahl pathway. However, metabolic engineering and pathway elucidation in this microbe is limited by the lack of genetic tools to downregulate target genes. To overcome this obstacle, here we developed an inducible CRISPR interference (CRISPRi) system for C. ljungdahlii that enables efficient (> 94%) transcriptional repression of several target genes, both individually and in tandem. We then applied CRISPRi in a strain engineered for 3-hydroxybutyrate (3HB) production to examine targets for increasing carbon flux toward the desired product. Downregulating phosphotransacetylase (pta) with a single sgRNA led to a 97% decrease in enzyme activity and a 2.3-fold increase in titer during heterotrophic growth. However, acetate production still accounted for 40% of the carbon flux. Repression of aldehyde:ferredoxin oxidoreductase (aor2), another potential route for acetate production, led to a 5% reduction in acetate flux, whereas using an additional sgRNA targeted to pta reduced the enzyme activity to 0.7% of the wild-type level, and further reduced acetate production to 25% of the carbon flux with an accompanying increase in 3HB titer and yield. These results demonstrate the utility of CRISPRi for elucidating and controlling carbon flow in C. ljungdahlii.
Collapse
Affiliation(s)
- Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469 C, Cambridge, MA 02139, United States
| | - David F Emerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469 C, Cambridge, MA 02139, United States
| | - Devin H Currie
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469 C, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469 C, Cambridge, MA 02139, United States.
| |
Collapse
|
26
|
Bengelsdorf FR, Beck MH, Erz C, Hoffmeister S, Karl MM, Riegler P, Wirth S, Poehlein A, Weuster-Botz D, Dürre P. Bacterial Anaerobic Synthesis Gas (Syngas) and CO 2+H 2 Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2018; 103:143-221. [PMID: 29914657 DOI: 10.1016/bs.aambs.2018.01.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anaerobic bacterial gas fermentation gains broad interest in various scientific, social, and industrial fields. This microbial process is carried out by a specific group of bacterial strains called acetogens. All these strains employ the Wood-Ljungdahl pathway but they belong to different taxonomic groups. Here we provide an overview of the metabolism of acetogens and naturally occurring products. Characteristics of 61 strains were summarized and selected acetogens described in detail. Acetobacterium woodii, Clostridium ljungdahlii, and Moorella thermoacetica serve as model organisms. Results of approaches such as genome-scale modeling, proteomics, and transcriptomics are discussed. Metabolic engineering of acetogens can be used to expand the product portfolio to platform chemicals and to study different aspects of cell physiology. Moreover, the fermentation of gases requires specific reactor configurations and the development of the respective technology, which can be used for an industrial application. Even though the overall process will have a positive effect on climate, since waste and greenhouse gases could be converted into commodity chemicals, some legislative barriers exist, which hamper successful exploitation of this technology.
Collapse
Affiliation(s)
- Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany.
| | - Matthias H Beck
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Catarina Erz
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sabrina Hoffmeister
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Michael M Karl
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Peter Riegler
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Steffen Wirth
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
27
|
Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H 2 and CO 2 compared to organotrophic growth with fructose. Sci Rep 2017; 7:13135. [PMID: 29030620 PMCID: PMC5640608 DOI: 10.1038/s41598-017-12712-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 01/13/2023] Open
Abstract
Clostridium ljungdahlii derives energy by lithotrophic and organotrophic acetogenesis. C. ljungdahlii was grown organotrophically with fructose and also lithotrophically, either with syngas - a gas mixture containing hydrogen (H2), carbon dioxide (CO2), and carbon monoxide (CO), or with H2 and CO2. Gene expression was compared quantitatively by microarrays using RNA extracted from all three conditions. Gene expression with fructose and with H2/CO2 was compared by RNA-Seq. Upregulated genes with both syngas and H2/CO2 (compared to fructose) point to the urea cycle, uptake and degradation of peptides and amino acids, response to sulfur starvation, potentially NADPH-producing pathways involving (S)-malate and ornithine, quorum sensing, sporulation, and cell wall remodeling, suggesting a global and multicellular response to lithotrophic conditions. With syngas, the upregulated (R)-lactate dehydrogenase gene represents a route of electron transfer from ferredoxin to NAD. With H2/CO2, flavodoxin and histidine biosynthesis genes were upregulated. Downregulated genes corresponded to an intracytoplasmic microcompartment for disposal of methylglyoxal, a toxic byproduct of glycolysis, as 1-propanol. Several cytoplasmic and membrane-associated redox-active protein genes were differentially regulated. The transcriptomic profiles of C. ljungdahlii in lithotrophic and organotrophic growth modes indicate large-scale physiological and metabolic differences, observations that may guide biofuel and commodity chemical production with this species.
Collapse
|
28
|
Evidence of mixotrophic carbon-capture by n-butanol-producer Clostridium beijerinckii. Sci Rep 2017; 7:12759. [PMID: 28986542 PMCID: PMC5630571 DOI: 10.1038/s41598-017-12962-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
Recent efforts to combat increasing greenhouse gas emissions include their capture into advanced biofuels, such as butanol. Traditionally, biobutanol research has been centered solely on its generation from sugars. Our results show partial re-assimilation of CO2 and H2 by n-butanol-producer C. beijerinckii. This was detected as synchronous CO2/H2 oscillations by direct (real-time) monitoring of their fermentation gasses. Additional functional analysis demonstrated increased total carbon recovery above heterotrophic values associated to mixotrophic assimilation of synthesis gas (H2, CO2 and CO). This was further confirmed using 13C-Tracer experiments feeding 13CO2 and measuring the resulting labeled products. Genome- and transcriptome-wide analysis revealed transcription of key C-1 capture and additional energy conservation genes, including partial Wood-Ljungdahl and complete reversed pyruvate ferredoxin oxidoreductase / pyruvate-formate-lyase-dependent (rPFOR/Pfl) pathways. Therefore, this report provides direct genetic and physiological evidences of mixotrophic inorganic carbon-capture by C. beijerinckii.
Collapse
|
29
|
Heijstra BD, Leang C, Juminaga A. Gas fermentation: cellular engineering possibilities and scale up. Microb Cell Fact 2017; 16:60. [PMID: 28403896 PMCID: PMC5389167 DOI: 10.1186/s12934-017-0676-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/04/2017] [Indexed: 12/11/2022] Open
Abstract
Low carbon fuels and chemicals can be sourced from renewable materials such as biomass or from industrial and municipal waste streams. Gasification of these materials allows all of the carbon to become available for product generation, a clear advantage over partial biomass conversion into fermentable sugars. Gasification results into a synthesis stream (syngas) containing carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2) and nitrogen (N2). Autotrophy-the ability to fix carbon such as CO2 is present in all domains of life but photosynthesis alone is not keeping up with anthropogenic CO2 output. One strategy is to curtail the gaseous atmospheric release by developing waste and syngas conversion technologies. Historically microorganisms have contributed to major, albeit slow, atmospheric composition changes. The current status and future potential of anaerobic gas-fermenting bacteria with special focus on acetogens are the focus of this review.
Collapse
Affiliation(s)
| | - Ching Leang
- LanzaTech, Inc., 8045 Lamon Ave, Suite 400, Skokie, IL USA
| | - Alex Juminaga
- LanzaTech, Inc., 8045 Lamon Ave, Suite 400, Skokie, IL USA
| |
Collapse
|
30
|
Liew F, Henstra AM, Kӧpke M, Winzer K, Simpson SD, Minton NP. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 2017; 40:104-114. [PMID: 28111249 PMCID: PMC5367853 DOI: 10.1016/j.ymben.2017.01.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/01/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023]
Abstract
Gas fermentation using acetogenic bacteria such as Clostridium autoethanogenum offers an attractive route for production of fuel ethanol from industrial waste gases. Acetate reduction to acetaldehyde and further to ethanol via an aldehyde: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase has been postulated alongside the classic pathway of ethanol formation via a bi-functional aldehyde/alcohol dehydrogenase (AdhE). Here we demonstrate that AOR is critical to ethanol formation in acetogens and inactivation of AdhE led to consistently enhanced autotrophic ethanol production (up to 180%). Using ClosTron and allelic exchange mutagenesis, which was demonstrated for the first time in an acetogen, we generated single mutants as well as double mutants for both aor and adhE isoforms to confirm the role of each gene. The aor1+2 double knockout strain lost the ability to convert exogenous acetate, propionate and butyrate into the corresponding alcohols, further highlighting the role of these enzymes in catalyzing the thermodynamically unfavourable reduction of carboxylic acids into alcohols. 180% improvement in C. autoethanogenum ethanol production via metabolic engineering. Confirmed role of AOR in autotrophic ethanol production of acetogens. Generated both aor and adhE mutants of C. autoethanogenum.. Demonstrated allelic exchange mutagenesis for stable deletions in acetogens. Inactivation of adhE and aor2, but not aor1, improves autotrophic ethanol production.
Collapse
Affiliation(s)
- Fungmin Liew
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK; LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Anne M Henstra
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael Kӧpke
- LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Sean D Simpson
- LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
31
|
Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. mBio 2016; 7:mBio.00427-16. [PMID: 27222467 PMCID: PMC4895105 DOI: 10.1128/mbio.00427-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The future sustainable production of chemicals and fuels from nonpetrochemical resources and reduction of greenhouse gas emissions are two of the greatest societal challenges. Gas fermentation, which utilizes the ability of acetogenic bacteria such as Clostridium autoethanogenum to grow and convert CO2 and CO into low-carbon fuels and chemicals, could potentially provide solutions to both. Acetogens fix these single-carbon gases via the Wood-Ljungdahl pathway. Two enzyme activities are predicted to be essential to the pathway: carbon monoxide dehydrogenase (CODH), which catalyzes the reversible oxidation of CO to CO2, and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which combines with CODH to form a CODH/ACS complex for acetyl-CoA fixation. Despite their pivotal role in carbon fixation, their functions have not been confirmed in vivo. By genetically manipulating all three CODH isogenes (acsA, cooS1, and cooS2) of C. autoethanogenum, we highlighted the functional redundancies of CODH by demonstrating that cooS1 and cooS2 are dispensable for autotrophy. Unexpectedly, the cooS1 inactivation strain showed a significantly reduced lag phase and a higher growth rate than the wild type on H2 and CO2. During heterotrophic growth on fructose, the acsA inactivation strain exhibited 61% reduced biomass and the abolishment of acetate production (a hallmark of acetogens), in favor of ethanol, lactate, and 2,3-butanediol production. A translational readthrough event was discovered in the uniquely truncated (compared to those of other acetogens) C. autoethanogenum acsA gene. Insights gained from studying the function of CODH enhance the overall understanding of autotrophy and can be used for optimization of biotechnological production of ethanol and other commodities via gas fermentation. Gas fermentation is an emerging technology that converts the greenhouse gases CO2 and CO in industrial waste gases and gasified biomass into fuels and chemical commodities. Acetogenic bacteria such as Clostridium autoethanogenum are central to this bioprocess, but the molecular and genetic characterization of this microorganism is currently lacking. By targeting all three of the isogenes encoding carbon monoxide dehydrogenase (CODH) in C. autoethanogenum, we identified the most important CODH isogene for carbon fixation and demonstrated that genetic inactivation of CODH could improve autotrophic growth. This study shows that disabling of the Wood-Ljungdahl pathway via the inactivation of acsA (encodes CODH) significantly impairs heterotrophic growth and alters the product profile by abolishing acetate production. Moreover, we discovered a previously undescribed mechanism for controlling the production of this enzyme. This study provides valuable insights into the acetogenic pathway and can be used for the development of more efficient and productive strains for gas fermentation.
Collapse
|
32
|
Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks. Front Microbiol 2016; 7:694. [PMID: 27242719 PMCID: PMC4862988 DOI: 10.3389/fmicb.2016.00694] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022] Open
Abstract
There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.
Collapse
|
33
|
Dash S, Ng CY, Maranas CD. Metabolic modeling of clostridia: current developments and applications. FEMS Microbiol Lett 2016; 363:fnw004. [PMID: 26755502 DOI: 10.1093/femsle/fnw004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
Anaerobic Clostridium spp. is an important bioproduction microbial genus that can produce solvents and utilize a broad spectrum of substrates including cellulose and syngas. Genome-scale metabolic (GSM) models are increasingly being put forth for various clostridial strains to explore their respective metabolic capabilities and suitability for various bioconversions. In this study, we have selected representative GSM models for six different clostridia (Clostridium acetobutylicum, C. beijerinckii, C. butyricum, C. cellulolyticum, C. ljungdahlii and C. thermocellum) and performed a detailed model comparison contrasting their metabolic repertoire. We also discuss various applications of these GSM models to guide metabolic engineering interventions as well as assessing cellular physiology.
Collapse
Affiliation(s)
- Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802-1503, USA
| |
Collapse
|
34
|
Shen Y, Jarboe L, Brown R, Wen Z. A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 2015; 33:1799-813. [DOI: 10.1016/j.biotechadv.2015.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
35
|
Metabolic response of Clostridium ljungdahlii to oxygen exposure. Appl Environ Microbiol 2015; 81:8379-91. [PMID: 26431975 DOI: 10.1128/aem.02491-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Clostridium ljungdahlii is an important synthesis gas-fermenting bacterium used in the biofuels industry, and a preliminary investigation showed that it has some tolerance to oxygen when cultured in rich mixotrophic medium. Batch cultures not only continue to grow and consume H2, CO, and fructose after 8% O2 exposure, but fermentation product analysis revealed an increase in ethanol concentration and decreased acetate concentration compared to non-oxygen-exposed cultures. In this study, the mechanisms for higher ethanol production and oxygen/reactive oxygen species (ROS) detoxification were identified using a combination of fermentation, transcriptome sequencing (RNA-seq) differential expression, and enzyme activity analyses. The results indicate that the higher ethanol and lower acetate concentrations were due to the carboxylic acid reductase activity of a more highly expressed predicted aldehyde oxidoreductase (CLJU_c24130) and that C. ljungdahlii's primary defense upon oxygen exposure is a predicted rubrerythrin (CLJU_c39340). The metabolic responses of higher ethanol production and oxygen/ROS detoxification were found to be linked by cofactor management and substrate and energy metabolism. This study contributes new insights into the physiology and metabolism of C. ljungdahlii and provides new genetic targets to generate C. ljungdahlii strains that produce more ethanol and are more tolerant to syngas contaminants.
Collapse
|
36
|
Mock J, Zheng Y, Mueller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK. Energy Conservation Associated with Ethanol Formation from H2 and CO2 in Clostridium autoethanogenum Involving Electron Bifurcation. J Bacteriol 2015; 197:2965-80. [PMID: 26148714 PMCID: PMC4542177 DOI: 10.1128/jb.00399-15] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/29/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Most acetogens can reduce CO2 with H2 to acetic acid via the Wood-Ljungdahl pathway, in which the ATP required for formate activation is regenerated in the acetate kinase reaction. However, a few acetogens, such as Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei, also form large amounts of ethanol from CO2 and H2. How these anaerobes with a growth pH optimum near 5 conserve energy has remained elusive. We investigated this question by determining the specific activities and cofactor specificities of all relevant oxidoreductases in cell extracts of H2/CO2-grown C. autoethanogenum. The activity studies were backed up by transcriptional and mutational analyses. Most notably, despite the presence of six hydrogenase systems of various types encoded in the genome, the cells appear to contain only one active hydrogenase. The active [FeFe]-hydrogenase is electron bifurcating, with ferredoxin and NADP as the two electron acceptors. Consistently, most of the other active oxidoreductases rely on either reduced ferredoxin and/or NADPH as the electron donor. An exception is ethanol dehydrogenase, which was found to be NAD specific. Methylenetetrahydrofolate reductase activity could only be demonstrated with artificial electron donors. Key to the understanding of this energy metabolism is the presence of membrane-associated reduced ferredoxin:NAD(+) oxidoreductase (Rnf), of electron-bifurcating and ferredoxin-dependent transhydrogenase (Nfn), and of acetaldehyde:ferredoxin oxidoreductase, which is present with very high specific activities in H2/CO2-grown cells. Based on these findings and on thermodynamic considerations, we propose metabolic schemes that allow, depending on the H2 partial pressure, the chemiosmotic synthesis of 0.14 to 1.5 mol ATP per mol ethanol synthesized from CO2 and H2. IMPORTANCE Ethanol formation from syngas (H2, CO, and CO2) and from H2 and CO2 that is catalyzed by bacteria is presently a much-discussed process for sustainable production of biofuels. Although the process is already in use, its biochemistry is only incompletely understood. The most pertinent question is how the bacteria conserve energy for growth during ethanol formation from H2 and CO2, considering that acetyl coenzyme A (acetyl-CoA), is an intermediate. Can reduction of the activated acetic acid to ethanol with H2 be coupled with the phosphorylation of ADP? Evidence is presented that this is indeed possible, via both substrate-level phosphorylation and electron transport phosphorylation. In the case of substrate-level phosphorylation, acetyl-CoA reduction to ethanol proceeds via free acetic acid involving acetaldehyde:ferredoxin oxidoreductase (carboxylate reductase).
Collapse
Affiliation(s)
- Johanna Mock
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Yanning Zheng
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - San Ly
- LanzaTech Inc., Skokie, Illinois, USA
| | - Loan Tran
- LanzaTech Inc., Skokie, Illinois, USA
| | | | | | | | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
37
|
Zeng T, Zhang L, Li J, Wang D, Tian Y, Lu L. De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress. Cell Stress Chaperones 2015; 20:483-93. [PMID: 25663538 PMCID: PMC4406934 DOI: 10.1007/s12192-015-0573-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/28/2014] [Accepted: 01/14/2015] [Indexed: 01/20/2023] Open
Abstract
High temperature is a major abiotic stress limiting animal growth and productivity worldwide. The Muscovy duck (Cairina moschata), sometimes called the Barbary drake, is a type of duck with a fairly unusual domestication history. In Southeast Asia, duck meat is one of the top meats consumed, and as such, the production of the meat is an important topic of research. The transcriptomic and genomic data presently available are insufficient to understanding the molecular mechanism underlying the heat tolerance of Muscovy ducks. Thus, transcriptome and expression profiling data for this species are required as important resource for identifying genes and developing molecular marker. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. More than 225 million clean reads were generated and assembled into 36,903 unique transcripts with an average length of 1,135 bp. A total of 21,221 (57.50 %) unigenes were annotated. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with transcription, signal transduction, and apoptosis. We also performed gene expression profiling analysis upon heat treatment in Muscovy ducks and identified 470 heat-response unique transcripts. GO term enrichment showed that protein folding and chaperone binding were significant enrichment, whereas KEGG pathway analyses showed that Ras and MAPKs were activated after heat stress in Muscovy ducks. Our research enriched sequences information of Muscovy duck, provided novel insights into responses to heat stress in these ducks, and serve as candidate genes or markers that can be used to guide future efforts to breed heat-tolerant duck strains.
Collapse
Affiliation(s)
- Tao Zeng
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Liping Zhang
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- />College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Jinjun Li
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Deqian Wang
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Yong Tian
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Lizhi Lu
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
38
|
Qin J, Wang X, Wang L, Zhu B, Zhang X, Yao Q, Xu P. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production. PLoS One 2015; 10:e0124316. [PMID: 25875592 PMCID: PMC4398400 DOI: 10.1371/journal.pone.0124316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/27/2015] [Indexed: 01/05/2023] Open
Abstract
Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.
Collapse
Affiliation(s)
- Jiayang Qin
- College of Pharmacy, Binzhou Medical University, Yantai, People's Republic of China
- * E-mail:
| | - Xiuwen Wang
- College of Pharmacy, Binzhou Medical University, Yantai, People's Republic of China
| | - Landong Wang
- College of Pharmacy, Binzhou Medical University, Yantai, People's Republic of China
| | - Beibei Zhu
- College of Pharmacy, Binzhou Medical University, Yantai, People's Republic of China
| | - Xiaohua Zhang
- College of Pharmacy, Binzhou Medical University, Yantai, People's Republic of China
| | - Qingshou Yao
- College of Pharmacy, Binzhou Medical University, Yantai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
39
|
Xie BT, Liu ZY, Tian L, Li FL, Chen XH. Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions. BIORESOURCE TECHNOLOGY 2015; 177:302-7. [PMID: 25496952 DOI: 10.1016/j.biortech.2014.11.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 05/24/2023]
Abstract
In this study, cell growth, gene expression and ethanol production were monitored under different fermentation conditions. Like its heterotrophical ABE-producing relatives, a switch from acidogenesis to solventogenesis of Clostridium ljungdahlii during the autotrophic fermentation with CO/CO2 could be observed, which occurred surprisingly in the late-log phase rather than in the transition phase. The gene expression profiles indicated that aor1, one of the putative aldehyde oxidoreductases in its genome played a critical role in the formation of ethanol, and its transcription could be induced by external acids. Moreover, a low amount of CaCO3 was proved to have positive influences on the cell density and substrate utilization, followed by an increase of over 40% ethanol and 30% acetate formation.
Collapse
Affiliation(s)
- Bin-Tao Xie
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Zi-Yong Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, China
| | - Lei Tian
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, China
| | - Fu-Li Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, China
| | - Xiao-Hua Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, China.
| |
Collapse
|
40
|
Fast AG, Schmidt ED, Jones SW, Tracy BP. Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol 2014; 33:60-72. [PMID: 25498292 DOI: 10.1016/j.copbio.2014.11.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 01/06/2023]
Abstract
Mass yields of biofuels and chemicals from sugar fermentations are limited by the decarboxylation reactions involved in Embden-Meyerhof-Parnas (EMP) glycolysis. This paper reviews one route to recapture evolved CO2 using the Wood-Ljungdahl carbon fixation pathway (WLP) in a process called anaerobic, non-photosynthetic (ANP) mixotrophic fermentation. In ANP mixotrophic fermentation, the two molecules of CO2 and eight electrons produced from glycolysis are used by the WLP to generate three molecules of acetyl-CoA from glucose, rather than the two molecules that are produced by typical fermentation processes. In this review, we define the bounds of ANP mixotrophy, calculate the potential metabolic advantages, and discuss the viability in a number of host organisms. Additionally, we highlight recent accomplishments in the field, including the recent discovery of electron bifurcation in acetogens, and close with recommendations to realize mixotrophic biofuel and biochemical production.
Collapse
Affiliation(s)
- Alan G Fast
- Molecular Biotechnology Laboratory, Department of Chemical & Biomolecular Engineering, & the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Ellinor D Schmidt
- Molecular Biotechnology Laboratory, Department of Chemical & Biomolecular Engineering, & the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Shawn W Jones
- Elcriton, Inc., 15 Reads Way, New Castle, DE 19720, USA
| | - Bryan P Tracy
- Elcriton, Inc., 15 Reads Way, New Castle, DE 19720, USA.
| |
Collapse
|
41
|
Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 2014; 5:e01636-14. [PMID: 25336453 PMCID: PMC4212834 DOI: 10.1128/mbio.01636-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. Importance: The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors for C. ljungdahlii include carbon monoxide, which can be derived from industrial waste gases or the conversion of recalcitrant biomass to syngas, as well as hydrogen, another syngas component. The finding that carbon and electron flow in C. ljungdahlii can be diverted from the production of acetate to butyrate synthesis is an important step toward the goal of renewable commodity production from carbon dioxide with this organism.
Collapse
|
42
|
Engineering microbial electrocatalysis for chemical and fuel production. Curr Opin Biotechnol 2014; 29:93-8. [DOI: 10.1016/j.copbio.2014.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/19/2022]
|
43
|
Abstract
Small regulatory RNAs (sRNAs) that act by base-pairing were first discovered in so-called accessory DNA elements—plasmids, phages, and transposons—where they control replication, maintenance, and transposition. Since 2001, a huge body of work has been performed to predict and identify sRNAs in a multitude of bacterial genomes. The majority of chromosome-encoded sRNAs have been investigated in E. coli and other Gram-negative bacteria. However, during the past five years an increasing number of sRNAs were found in Gram-positive bacteria. Here, we outline our current knowledge on chromosome-encoded sRNAs from low-GC Gram-positive species that act by base-pairing, i.e., an antisense mechanism. We will focus on sRNAs with known targets and defined regulatory mechanisms with special emphasis on Bacillus subtilis.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena; Biologisch-Pharmazeutische Fakultät; AG Bakteriengenetik; Philosophenweg 12; Jena, Germany
| | - Reinhold Brückner
- Mikrobiologie; TU Kaiserslautern; Paul-Ehrlich-Str. 23; D-67663 Kaiserslautern, Germany
| |
Collapse
|
44
|
Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 2013; 12:118. [PMID: 24274140 PMCID: PMC4222884 DOI: 10.1186/1475-2859-12-118] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H2/CO2, and more importantly on synthesis gas (H2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels.
Collapse
Affiliation(s)
- Harish Nagarajan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | |
Collapse
|