1
|
Mohamed AM, Abou-Ghadir OMF, Mostafa YA, Dahlous KA, Bräse S, Youssif BGM. Design and synthesis of new 1,2,4-oxadiazole/quinazoline-4-one hybrids with antiproliferative activity as multitargeted inhibitors. Front Chem 2024; 12:1447618. [PMID: 39281035 PMCID: PMC11393688 DOI: 10.3389/fchem.2024.1447618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction The combination of BRAF and tyrosine kinase (TK) inhibitors has been demonstrated to be highly effective in inhibiting tumor development and is an approach for overcoming resistance in clinical trials. Accordingly, a novel series of 1,2,4-oxadiazole/quinazoline-4-one hybrids was developed as antiproliferative multitargeted inhibitors. Methods The structures of the newly synthesized compounds 9a-o were validated using IR, NMR, MS, and elemental techniques. 9a-o were tested as antiproliferative agents. Results and Discussion The results showed that the majority of the tested compounds showed significant antiproliferative action with 9b, 9c, 9h, 9k, and 9l being the most potent. Compounds 9b, 9c, 9h, 9k, and 9l were tested as EGFR and BRAFV600E inhibitors. These in vitro tests revealed that compounds 9b, 9c, and 9h are strong antiproliferative agents that may act as dual EGFR/BRAFV600E inhibitors. 9b, 9c, and 9h were further investigated for their inhibitory effect on mutant EGFR (EGFRT790M), and the results showed that the tested compounds had considerable inhibitory action. Cell cycle study and apoptosis detection demonstrated that compound 9b exhibits cell cycle arrest at the G2/M transition. Molecular docking simulations reveal the binding mechanism of the most active antiproliferative agents.
Collapse
Affiliation(s)
- Amira M Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola M F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Kholood A Dahlous
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Mohassel Yazdi N, Naimi-Jamal MR. One-pot synthesis of quinazolinone heterocyclic compounds using functionalized SBA-15 with natural material ellagic acid as a novel nanocatalyst. Sci Rep 2024; 14:11189. [PMID: 38755166 PMCID: PMC11099149 DOI: 10.1038/s41598-024-61803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
The nanoporous compound SBA-15 was functionalized using (3-aminopropyl)trimethoxysilane (APTES). Then the obtained product was modified with ellagic acid (ELA), a bioactive polyphenolic compound. The structure of the prepared nanoporous composition SBA-15@ELA was extensively characterized and confirmed by various techniques, such as Fourier-transform infrared (FT-IR) spectroscopy, Energy dispersive X-ray (EDX) elemental analysis, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption-desorption isotherms (BET). The novel, recoverable, heterogenous SBA-15@ELA nanoporous compound was used to investigate its catalytic effect in the synthesis of 4-oxo-quinazoline derivatives (19 examples) with high yields (78-96%), as an important class of nitrogen-containing heterocyclic compounds. The use of an inexpensive mesoporous catalyst with a high surface area, along with easy recovery by simple filtration are among the advantages of this catalysis research work. The catalyst has been used in at least 6 consecutive runs without a significant loss of its activity.
Collapse
Affiliation(s)
- Nazanin Mohassel Yazdi
- Research Laboratory of Green Organic Synthesis & Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis & Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
3
|
Li J, Nie X, Panthakarn Rangsinth, Wu X, Zheng C, Cheng Y, Shiu PHT, Li R, Lee SMY, Fu C, Zhang J, Leung GPH. Structure and activity relationship analysis of xanthones from mangosteen: Identifying garcinone E as a potent dual EGFR and VEGFR2 inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155140. [PMID: 37939410 DOI: 10.1016/j.phymed.2023.155140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Xanthones are among the most fundamental phytochemicals in nature. The anti-cancer activities of xanthones and their derivatives have been extensively studied. Recently, we found that garcinone E (GE), an effective anti-cancer phytochemical isolated from mangosteen (Garcinia mangostanal.), showed promising anti-cancer effects in vitro and in vivo. However, little is known about its effects on epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) activity. PURPOSE This study aimed to identify potent dual EGFR and VEGFR2 inhibitors from mangosteen-derived xanthones using structure-activity relationship analyses. STUDY DESIGN The interaction of xanthones with EGFR and VEGFR2 was analyzed using molecular docking experiments. The kinase activities of EGFR and VEGFR2 were determined using bioluminescence assays. The rat aortic ring and Matrigel plug angiogenesis assays were used to evaluate blood vessel formation ex vivo and in vivo. A breast tumor-bearing nude mouse model was established to examine the anti-tumor effects of different xanthones. RESULTS Molecular docking analysis showed that GE bound tightly to EGFR and VEGFR2, with binding energies of -9.73 and -9.56 kcal/mol, respectively. Kinase activity assessment showed that GE strongly inhibited both EGFR and VEGFR2 kinase activity, with IC50 values of 315.4 and 158.2 nM, respectively. Moreover, GE significantly abolished the EGF- and VEGF-induced phosphorylation of EGFR and VEGFR2, respectively. GE also showed strong inhibitory effects on cancer cell growth, endothelial cell migration, invasion, and tube formation. Ex vivo and in vivo angiogenesis assays showed that GE dose-dependently suppressed blood vessel formation in the rat aorta, Matrigel plugs, and transgenic zebrafish embryos, with the lowest effective concentration of 0.25 μM. Furthermore, GE (2 mg/kg) strongly inhibited tumor growth and reduced tumor weight in MDA-MB-231 breast tumor-xenografted mice. GE significantly reduced microvessel density and downregulated the expression of VEGFR2, EGFR, and Ki67 in tumor tissues. CONCLUSION The present study demonstrated that GE was the most potent dual inhibitor of EGFR and VEGFR2 among all xanthones tested. These findings may provide valuable information for the future development of novel and effective dual inhibitors of EGFR and VEGFR2.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xin Nie
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrient, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Al-Wahaibi LH, El-Sheref EM, Hammouda MM, Youssif BGM. One-Pot Synthesis of 1-Thia-4-azaspiro[4.4/5]alkan-3-ones via Schiff Base: Design, Synthesis, and Apoptotic Antiproliferative Properties of Dual EGFR/BRAF V600E Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16030467. [PMID: 36986566 PMCID: PMC10056593 DOI: 10.3390/ph16030467] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In this investigation, novel 4-((quinolin-4-yl)amino)-thia-azaspiro[4.4/5]alkan-3-ones were synthesized via interactions between 4-(2-cyclodenehydrazinyl)quinolin-2(1H)-one and thioglycolic acid catalyzed by thioglycolic acid. We prepared a new family of spiro-thiazolidinone derivatives in a one-step reaction with excellent yields (67-79%). The various NMR, mass spectra, and elemental analyses verified the structures of all the newly obtained compounds. The antiproliferative effects of 6a-e, 7a, and 7b against four cancer cells were investigated. The most effective antiproliferative compounds were 6b, 6e, and 7b. Compounds 6b and 7b inhibited EGFR with IC50 values of 84 and 78 nM, respectively. Additionally, 6b and 7b were the most effective inhibitors of BRAFV600E (IC50 = 108 and 96 nM, respectively) and cancer cell proliferation (GI50 = 35 and 32 nM against four cancer cell lines, respectively). Finally, the apoptosis assay results revealed that compounds 6b and 7b had dual EGFR/BRAFV600E inhibitory properties and showed promising antiproliferative and apoptotic activity.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
5
|
Ghannam IAY, El Kerdawy AM, Mounier MM, Abo-Elfadl MT, Ali IH. Novel 2-oxo-2-phenylethoxy and benzyloxy diaryl urea hybrids as VEGFR-2 inhibitors: Design, synthesis, and anticancer evaluation. Arch Pharm (Weinheim) 2023; 356:e2200341. [PMID: 36398495 DOI: 10.1002/ardp.202200341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/11/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022]
Abstract
Two series of diaryl urea derivatives, 6a-k and 7a-n, were synthesized. All the newly synthesized compounds were tested against the NCI (US) cancer cell lines via SRB assay. The p-chloro-m-trifluoromethyl phenyl derivatives 6e-g and 7e-g showed the most potent cytotoxic activity with a GI50 value range of 1.2-15.9 µM. Furthermore, the p-fluorobenzyloxy diaryl urea derivative 7g revealed the most potent cytotoxicity against eight cancer cell lines in the MTT assay with IC50 values below 5 µM. Compounds 6a-k and 7a-n were tested for their vascular endothelial growth factor receptor-2 (VEGFR-2) kinase inhibitory activities. The p-chloro-m-trifluoromethyl diaryl urea benzyloxy derivatives 7e-i and the p-methoxydiaryl urea benzyloxy derivatives 7k, 7l, and 7n were found to be the most active compounds as VEGFR-2 inhibitors in the benzyloxy series 7, with an IC50 range of 0.09-4.15 µM. In the 2-oxo-2-phenylethoxy series 6, compounds 6e-g and 6i were reported with IC50 values of 0.94, 0.54, 2.71, and 4.81 µM, respectively. Moreover, compounds 7e and 7g induced apoptosis, causing cell cycle arrest in the G2/M phase. In addition, 7g showed an antimigratory effect in A-375 cells and inhibited the VEGFR-2 expression in an immunohistofluorescence study. Molecular docking simulations on VEGFR-2 as well as ADME properties prediction were also performed.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Egypt
| | - Marwa M Mounier
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Egypt
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Egypt.,Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
| | - Islam H Ali
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Egypt
| |
Collapse
|
6
|
Elrazaz EZ, Serya RAT, Ismail NSM, Albohy A, Abou El Ella DA, Abouzid KAM. Discovery of potent thieno[2,3-d]pyrimidine VEGFR-2 inhibitors: Design, synthesis and enzyme inhibitory evaluation supported by molecular dynamics simulations. Bioorg Chem 2021; 113:105019. [PMID: 34091286 DOI: 10.1016/j.bioorg.2021.105019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023]
Abstract
Vascular endothelial growth factor receptor (VEGFR) is one of the well-known targets that control angiogenesis and cancer progression. In this study, we are reporting the design, synthesis and biological evaluation of a series of 4-substituted thieno[2,3-d]pyrimidine derivatives as VEGFR-2 inhibitors. The design of these compounds was based on interactions extracted from crystal structure of potent pyrrolo[3,2-d]pyrimidine inhibitor VIII with VEGFR-2 (PDB: 3VHE). In addition to these interactions, the new compounds were also designed to interact with residues in the solvent accessible region such as Asn923. Accordingly, the thienopyrimidine target compounds were synthesized and subjected to VEGFR-2 enzyme inhibition assay. Several target compounds (7d-f, 8b-c, 8e-g and 15c) exhibited potent inhibitory activities against VEGFR-2 with IC50 values in low nanomolar range. Compounds 8b and 8e revealed exceptionally potent inhibitory activity with IC50 of 5 and 3.9 nM, respectively. The molecular docking analysis and molecular dynamics simulation were also performed to further investigate these findings.
Collapse
Affiliation(s)
- Eman Z Elrazaz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nasser S M Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 12311, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo-Suez Desert Road, 11837, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt.
| |
Collapse
|
7
|
Design and synthesis of 4-anilinoquinazolines as Raf kinase inhibitors. Part 1. Selective B-Raf/B-Raf V600E and potent EGFR/VEGFR2 inhibitory 4-(3-hydroxyanilino)-6-(1H-1,2,3-triazol-4-yl)quinazolines. Bioorg Chem 2021; 109:104715. [PMID: 33647741 DOI: 10.1016/j.bioorg.2021.104715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
This paper presents the design and synthesis of 4-(3-hydroxyanilino)-6-(1H-1,2,3-triazol-4-yl)quinazolines of scaffold 9 as selective B-Raf/B-RafV600E and potent EGFR/VEGFR2 kinase inhibitors. Total 14 compounds of scaffold 9 having different side chains at the triazolyl group with/without fluoro substituents at the anilino group were synthesized and investigated. Among them, 9m with a 2-carbamoylethyl side chain and C-4'/C-6' difluoro substituents was the most potent, which selectively inhibited B-Raf (IC50: 57 nM) and B-RafV600E (IC50: 51 nM) over C-Raf (IC50: 1.0 μM). Compound 9m also actively inhibited EGFR (IC50: 73 nM) and VEGFR2 (IC50: 7.0 nM) but not EGFRT790M and PDGFR-β (IC50: >10 μM). Despite having good potency for B-Raf and B-RafV600E in the enzymatic assays, 9m was less active to inhibit melanoma A375 cells which proliferate due to constitutively activated B-Raf600E. The inferior activity of 9m for A375 was similar to that of sorafenib (6), suggesting that 9m might bind to the inactive conformations of B-Raf and B-RafV600E. Docking simulations could thus be performed to reveal the binding poses of 9m in B-Raf, B-RafV600E, and VEGFR2 kinases.
Collapse
|
8
|
Hadi SRAE, Lasheen DS, Soliman DH, Elrazaz EZ, Abouzid KA. Scaffold hopping and redesign approaches for quinazoline based urea derivatives as potent VEGFR-2 inhibitors. Bioorg Chem 2020; 101:103961. [DOI: 10.1016/j.bioorg.2020.103961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 01/22/2023]
|
9
|
Chavda J, Bhatt H. Systemic review on B-Raf V600E mutation as potential therapeutic target for the treatment of cancer. Eur J Med Chem 2020; 206:112675. [PMID: 32798788 DOI: 10.1016/j.ejmech.2020.112675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
Cancer is one of the major public catastrophes worldwide and as per WHO, cancer is the leading cause of death universally after CVS disorders accounting for 9.6 million deaths in 2018. WHO statistics revealed five dangerous types of cancer viz. lung, breast, colorectal, prostate and skin. In male, lung cancer causes highest death, while in female, breast cancer causes the most. Alteration in MAPK signalling pathway plays a significant role in majority of cancer cases. Raf protein is activated by phosphorylation via downstream regulation of the MAPK pathway. Raf composed of 3 subtypes, viz. A-Raf, B-Raf, and C-Raf. B-Raf kinase plays a significant role in healthy cell growth in the MAPK pathway and the problem associated with B-Raf mutation leads to the development of cancer and other diseases. The progression of mutant B-Raf (B-RafV600E) protein is higher in cancer as compare to other diseases. In 2002, B-RafV600E mutation was identified for the first time in the development of cancer. The frequency of B-RafV600E mutation is higher in melanoma, thyroid, colorectal and ovarian cancer. We have covered small molecule B-RafV600E inhibitors reported in various literatures; from 2002 to 2020 and also covered clinical trial data. To widen the scope of readers, we compiled details of small molecules, specifically inhibiting B-RafV600E mutant and showing anti-proliferative activity against various cancer cell lines along with in-vivo data. We believe that the information covered here will be important in signifying the potentials of B-RafV600E mutation and its inhibitors as potent anticancer agents.
Collapse
Affiliation(s)
- Jaydeepsinh Chavda
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India
| | - Hardik Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India.
| |
Collapse
|
10
|
Design, synthesis, and biological evaluation of novel benzo[b]thiophene-diaryl urea derivatives as potential anticancer agents. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02559-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect. Eur J Med Chem 2020; 200:112457. [PMID: 32422489 DOI: 10.1016/j.ejmech.2020.112457] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
The development of new small molecules from known structural motifs through molecular hybridization is one of the trends in drug discovery. In this connection, we have combined the two pharmacophoric units (pyrimidine and thioindole) in a single entity via molecular hybridization strategy along with introduction of urea functionality at C2 position of pyrimidine to increase the efficiency of H-bonding interactions. Among the synthesized conjugates 12a-aa, compound 12k was found to exhibit significant IC50 values 5.85, 7.87, 6.41 and 10.43 μM against MDA-MB-231 (breast), HepG2 (liver), A549 (lung) and PC-3 (prostate) cancer cell lines, respectively. All these compounds were further evaluated for their inhibitory activities against VEGFR-2 protein. The results specified that among the tested compounds, 12d, 12e, 12k, 12l, 12p, 12q, 12t and 12u prominently suppressed VEGFR-2, with IC50 values of 310-920 nM in association to the positive control (210 nM). Angiogenesis inhibition was evident by tube formation assay in HUVECs and cell-invasion by transwell assay. The mechanism of cellular toxicity on MDA-MB-231 was found through depolarisation of mitochondrial membrane potential, increased ROS production and subsequent DNA damage resulting in apoptosis induction. Moreover, clonogenic and wound healing assays designated the inhibition of colony formation and cell migration by 12k in a dose-dependent manner. Molecular docking studies also shown that compound 12k capably intermingled with catalytically active residues GLU-885, ASP-1046 of the VEGFR-2 through hydrogen-bonding interactions.
Collapse
|
12
|
Abstract
The urea functionality is inherent to numerous bioactive compounds, including a variety of clinically approved therapies. Urea containing compounds are increasingly used in medicinal chemistry and drug design in order to establish key drug-target interactions and fine-tune crucial drug-like properties. In this perspective, we highlight physicochemical and conformational properties of urea derivatives. We provide outlines of traditional reagents and chemical procedures for the preparation of ureas. Also, we discuss newly developed methodologies mainly aimed at overcoming safety issues associated with traditional synthesis. Finally, we provide a broad overview of urea-based medicinally relevant compounds, ranging from approved drugs to recent medicinal chemistry developments.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Excellence of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
13
|
Zhang G, Fu X, Peng X, Li X, Chen J. Synthesis of a New Series of 4-Quinazolinyl Piperazine Aryl Ureas. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/174751913x13824453043915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Guangji Zhang
- The Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P.R. China
| | - Xiaobo Fu
- The Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P.R. China
| | - Xinming Peng
- The Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P.R. China
| | - Xiuling Li
- The Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P.R. China
| | - Jianian Chen
- The Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P.R. China
| |
Collapse
|
14
|
Design and discovery of thioether and nicotinamide containing sorafenib analogues as multikinase inhibitors targeting B-Raf, B-RafV600E and VEGFR-2. Bioorg Med Chem 2018; 26:2381-2391. [DOI: 10.1016/j.bmc.2018.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 11/22/2022]
|
15
|
Jin H, Dan HG, Rao GW. Research progress in quinazoline derivatives as multi-target tyrosine kinase inhibitors. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2017-0066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), are involved in multiple human tumors. Therefore, RTKs are attractive targets for various antitumor strategies. Two classes of tyrosine kinase antagonists were applied in the clinic for monoclonal antibodies and small-molecule tyrosine kinase inhibitors. A well-studied class of small-molecule inhibitors is represented by 4-anilinoquinazolines, exemplified by gefitinib and erlotinib as mono-targeted EGFR inhibitors, which were approved for the treatment of non-small-cell lung cancer. Mono-target drugs may result in drug resistance and the innovation of multi-target drugs has grown up to be an active field. Recent advances in research on antitumor bioactivity of 4-anilino(or phenoxy)quinazoline derivatives with multiple targets are reviewed in this paper. At the same time, synthetic methods of quinazolines were introduced from the point of building the ring skeleton and based on the types of reaction.
Collapse
|
16
|
Singh M, Jadhav HR. Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors. Drug Discov Today 2017; 23:745-753. [PMID: 29031620 DOI: 10.1016/j.drudis.2017.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/24/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor (EGFR) tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, show excellent clinical efficacy for patients with non-small cell lung cancer (NSCLC) with EGFR mutations, including Exon 19 deletion and single-point substitution, and L858R of exon 21. The reason for the reduction in effectiveness of these EGFR TKIs is the T790M gatekeeper mutation in the ATP-binding pocket of Exon 20, which increases the affinity of EGFR for ATP. Newer EGFR TKIs, such as afatinib, osimertinib, rociletinib, EGF816 and ASP8273, selectively target T790M mutants, sparing wild-type EGFR. EGFR TKIs have fewer adverse effects than chemotherapy and also improve progression-free survival. Combination therapy of EGFR TKIs with anti-EGFR antibodies is recommended for overcoming the problem of resistance to some extent. This review could help medicinal chemists to design novel EGFR TKIs against NSCLC.
Collapse
Affiliation(s)
- Mahaveer Singh
- School of Pharmaceutical Sciences, Jaipur National University, 302017 Rajasthan, India.
| | - Hemant R Jadhav
- Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India.
| |
Collapse
|
17
|
Poudapally S, Battu S, Velatooru LR, Bethu MS, Janapala VR, Sharma S, Sen S, Pottabathini N, Iska VBR, Katangoor V. Synthesis and biological evaluation of novel quinazoline-sulfonamides as anti-cancer agents. Bioorg Med Chem Lett 2017; 27:1923-1928. [DOI: 10.1016/j.bmcl.2017.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/03/2017] [Accepted: 03/16/2017] [Indexed: 11/29/2022]
|
18
|
Increasing the binding affinity of VEGFR-2 inhibitors by extending their hydrophobic interaction with the active site: Design, synthesis and biological evaluation of 1-substituted-4-(4-methoxybenzyl)phthalazine derivatives. Eur J Med Chem 2016; 113:50-62. [PMID: 26922228 DOI: 10.1016/j.ejmech.2016.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/05/2023]
Abstract
A series of anilinophthalazine derivatives 4a-j was initially synthesized and tested for its VEGFR-2 inhibitory activity where it showed promising activity (IC50 = 0.636-5.76 μM). Molecular docking studies guidance was used to improve the binding affinity for series 4a-j towards VEGFR-2 active site. This improvement was achieved by increasing the hydrophobic interaction with the hydrophobic back pocket of the VEGFR-2 active site lined with the hydrophobic side chains of Ile888, Leu889, Ile892, Val898, Val899, Leu1019 and Ile1044. Increasing the hydrophobic interaction was accomplished by extending the anilinophthalazine scaffold with a substituted phenyl moiety through an uriedo linker which should give this extension the flexibility required to accommodate itself deeply into the hydrophobic back pocket. As planned, the designed uriedo-anilinophthalazines 7a-i showed superior binding affinity than their anilinophthalazine parents (IC50 = 0.083-0.473 μM). In particular, compounds 7g-i showed IC50 of 0.086, 0.083 and 0.086 μM, respectively, which are better than that of the reference drug sorafenib (IC50 = 0.09 μM).
Collapse
|
19
|
Zhang HQ, Gong FH, Li CG, Zhang C, Wang YJ, Xu YG, Sun LP. Design and discovery of 4-anilinoquinazoline-acylamino derivatives as EGFR and VEGFR-2 dual TK inhibitors. Eur J Med Chem 2015; 109:371-9. [PMID: 26826581 DOI: 10.1016/j.ejmech.2015.12.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Both EGFR and VEGFR-2 are important targets for cancer therapy, the combined inhibition of both EGFR and VEGFR-2 signaling pathway represents a promising approach to the treatment of cancers with a synergistic effect. In this study, a series of novel 4-anilinoquinazoline-acylamino derivatives designed as EGFR and VEGFR-2 dual inhibitors were synthesized and evaluated for biological activities. Most of them exhibited interesting inhibitory potencies against EGFR and VEGFR-2 as well as good antiproliferative activities. Compounds 15a, 15b and 15e exhibited the most potent inhibitory activity against EGFR (IC50 = 0.13 μM, 0.15 μM and 0.69 μM, respectively) and VEGFR-2 (IC50 = 0.56 μM, 1.81 μM and 0.87 μM, respectively), among them, compound 15b showed the highest antiproliferative activities against three cancer cell lines (HT-29, MCF-7 and H460) with IC50 of 5.27 μM, 4.41 μM and 11.95 μM, respectively. Molecular docking established the interaction of 15a with the DFG-out conformation of VEGFR-2, suggesting that they might be type II kinase inhibitors.
Collapse
Affiliation(s)
- Hai-Qi Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fei-Hu Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chuan-Gui Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chi Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yan-Jie Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yun-Gen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, PR China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
20
|
Kang CM, Liu DQ, Wang XY, Yu RL, Lv YT. The unbinding studies of vascular endothelial growth factor receptor-2 protein tyrosine kinase type II inhibitors. J Mol Graph Model 2015; 59:130-5. [PMID: 25989626 DOI: 10.1016/j.jmgm.2015.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase has two conformations, active and inactive conformations. Type II inhibitors bind to inactive conformation. It has two possible binding/unbinding paths. To explore the unbinding path of inhibitor 01-435 that was generated by fragment build in the binding pocket of VEGFR-2, molecular dynamics (MD) simulation was performed on the crystal structure of VEGFR-2 in complex with 01-435, then steered molecular dynamics (SMD) simulation was executed on the crystal structure of VEGFR-2 in complex with 01-435. Pull force, van der Waals and electrostatic interaction along the two paths were calculated by using SMD simulation. The SMD simulation results indicate that the more favorable path for inhibitor dissociation is along with the traditional ATP-channel rather than the allosteric-pocket-channel, which is mainly due to the less electrostatic interaction that the ligand suffers during dissociation process along the traditional ATP-channel.
Collapse
Affiliation(s)
- Cong-min Kang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Dong-qing Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xin-ying Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ri-lei Yu
- School of Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ying-tao Lv
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
21
|
Khan I, Ibrar A, Abbas N, Saeed A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur J Med Chem 2014; 76:193-244. [DOI: 10.1016/j.ejmech.2014.02.005] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 01/14/2023]
|
22
|
Cheng H, Chang Y, Zhang L, Luo J, Tu Z, Lu X, Zhang Q, Lu J, Ren X, Ding K. Identification and Optimization of New Dual Inhibitors of B-Raf and Epidermal Growth Factor Receptor Kinases for Overcoming Resistance against Vemurafenib. J Med Chem 2014; 57:2692-703. [DOI: 10.1021/jm500007h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Huimin Cheng
- Institute of Chemical
Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yu Chang
- University of Macau, Avenue Padre
Tomás Pereira Taipa, Macau, China
| | - Lianwen Zhang
- Institute of Chemical
Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jinfeng Luo
- Institute of Chemical
Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengchao Tu
- Institute of Chemical
Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoyun Lu
- Institute of Chemical
Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Qingwen Zhang
- University of Macau, Avenue Padre
Tomás Pereira Taipa, Macau, China
| | - Jibu Lu
- Shenyang Pharmaceutical University, #103 Wenhua Road, Shenyang 110016, China
| | - Xiaomei Ren
- Institute of Chemical
Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Ke Ding
- Institute of Chemical
Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China
| |
Collapse
|
23
|
El-Nassan HB. Recent progress in the identification of BRAF inhibitors as anti-cancer agents. Eur J Med Chem 2014; 72:170-205. [DOI: 10.1016/j.ejmech.2013.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/05/2013] [Accepted: 11/18/2013] [Indexed: 12/26/2022]
|
24
|
Zhang Q, Wang J, Wang F, Chen X, He Y, You Q, Zhou H. Identification of type II inhibitors targeting BRAF using privileged pharmacophores. Chem Biol Drug Des 2013; 83:27-36. [PMID: 24164966 DOI: 10.1111/cbdd.12198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022]
Abstract
V-RAF murine sarcoma viral oncogene homologue B1 (BRAF) is the most frequently mutated protein kinase in human cancers. The most common mutant BRAF V600E constitutively activates the RAS/RAF/MEK/ERK signaling pathway. BRAF has been validated as an important therapeutic target in human cancers. Phenylaminopyrimidine and unsymmetrical diaryl urea are two privileged pharmacophores in kinase inhibitor drug discovery. Herein, we describe the design of a novel hybrid pharmacophore, 4-phenylaminopyrimidine urea, using the above two pharmacophores. A new series of compounds were in turn synthesized and evaluated to successfully identify selective inhibitors of BRAF and oncogenic BRAF V600E. Once daily oral dosing of lead compound 3 demonstrated sustained antitumor efficacy in A549 human non-small-cell lung cancer xenograft model. Molecular docking suggested that compound 3 might be a type II kinase inhibitor binding to the DFG-out conformation of BRAF.
Collapse
Affiliation(s)
- Qingwen Zhang
- Division of Medicinal Chemistry, Shanghai Institute of Pharmaceutical Industry, 1111 Zhongshan North One Road, Hongkou District, Shanghai, 200437, China
| | | | | | | | | | | | | |
Collapse
|