1
|
Hackett MJ. A commentary on studies of brain iron accumulation during ageing. J Biol Inorg Chem 2024; 29:385-394. [PMID: 38735007 PMCID: PMC11186910 DOI: 10.1007/s00775-024-02060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Brain iron content is widely reported to increase during "ageing", across multiple species from nematodes, rodents (mice and rats) and humans. Given the redox-active properties of iron, there has been a large research focus on iron-mediated oxidative stress as a contributor to tissue damage during natural ageing, and also as a risk factor for neurodegenerative disease. Surprisingly, however, the majority of published studies have not investigated brain iron homeostasis during the biological time period of senescence, and thus knowledge of how brain homeostasis changes during this critical stage of life largely remains unknown. This commentary examines the literature published on the topic of brain iron homeostasis during ageing, providing a critique on limitations of currently used experimental designs. The commentary also aims to highlight that although much research attention has been given to iron accumulation or iron overload as a pathological feature of ageing, there is evidence to support functional iron deficiency may exist, and this should not be overlooked in studies of ageing or neurodegenerative disease.
Collapse
Affiliation(s)
- Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
2
|
Evans CW, Egid A, Mamsa SSA, Paterson DJ, Ho D, Bartlett CA, Fehily B, Lins BR, Fitzgerald M, Hackett MJ, Smith NM. Elemental Mapping in a Preclinical Animal Model Reveals White Matter Copper Elevation in the Acute Phase of Central Nervous System Trauma. ACS Chem Neurosci 2023; 14:3518-3527. [PMID: 37695072 DOI: 10.1021/acschemneuro.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Understanding the chemical events following trauma to the central nervous system could assist in identifying causative mechanisms and potential interventions to protect neural tissue. Here, we apply a partial optic nerve transection model of injury in rats and use synchrotron X-ray fluorescence microscopy (XFM) to perform elemental mapping of metals (K, Ca, Fe, Cu, Zn) and other related elements (P, S, Cl) in white matter tracts. The partial optic nerve injury model and spatial precision of microscopy allow us to obtain previously unattained resolution in mapping elemental changes in response to a primary injury and subsequent secondary effects. We observed significant elevation of Cu levels at multiple time points following the injury, both at the primary injury site and in neural tissue near the injury site vulnerable to secondary damage, as well as significant changes in Cl, K, P, S, and Ca. Our results suggest widespread metal dyshomeostasis in response to central nervous system trauma and that altered Cu homeostasis may be a specific secondary event in response to white matter injury. The findings highlight metal homeostasis as a potential point of intervention in limiting damage following nervous system injury.
Collapse
Affiliation(s)
- Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Abigail Egid
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Somayra S A Mamsa
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | | | - Diwei Ho
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Carole A Bartlett
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Brooke Fehily
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Brittney R Lins
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Melinda Fitzgerald
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Mark J Hackett
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Ellison G, Hollings AL, Hackett MJ. A review of the “metallome” within neurons and glia, as revealed by elemental mapping of brain tissue. BBA ADVANCES 2022; 2:100038. [PMID: 37082604 PMCID: PMC10074908 DOI: 10.1016/j.bbadva.2021.100038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
It is now well established that transition metals, such as Iron (Fe), Copper (Cu), and Zinc (Zn) are necessary for healthy brain function. Although Fe, Cu, and Zn are essential to the brain, imbalances in the amount, distribution, or chemical form ("metallome") of these metals is linked to the pathology of numerous brain diseases or disorders. Despite the known importance of metal ions for both brain health and disease, the metallome that exists within specific types of brain cells is yet to be fully characterised. The aim of this mini-review is to present an overview of the current knowledge of the metallome found within specific brain cells (oligodendrocytes, astrocytes, microglia, and neurons), as revealed by direct elemental mapping techniques. It is hoped this review will foster continued research using direct elemental mapping techniques to fully characterise the brain cell metallome.
Collapse
Affiliation(s)
- Gaewyn Ellison
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Ashley L. Hollings
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Mark J. Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Corresponding author.
| |
Collapse
|
4
|
Bonnin EA, Rizzoli SO. Novel Secondary Ion Mass Spectrometry Methods for the Examination of Metabolic Effects at the Cellular and Subcellular Levels. Front Behav Neurosci 2020; 14:124. [PMID: 32792922 PMCID: PMC7384447 DOI: 10.3389/fnbeh.2020.00124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
The behavior of an animal has substantial effects on its metabolism. Such effects, including changes in the lipid composition of different organs, or changes in the turnover of the proteins, have typically been observed using liquid mass spectrometry methods, averaging the effect of animal behavior across tissue samples containing multiple cells. These methods have provided the scientific community with valuable information, but have limited resolution, making it difficult if not impossible to examine metabolic effects at the cellular and subcellular levels. Recent advances in the field of secondary ion mass spectrometry (SIMS) have made it possible to examine the metabolic effects of animal behavior with high resolution at the nanoscale, enabling the analysis of the metabolic effects of behavior on individual cells. In this review we summarize and present these emerging methods, beginning with an overview of the SIMS technique. We then discuss the specific application of nanoscale SIMS (NanoSIMS) to examine cell behavior. This often requires the use of isotope labeling to highlight specific sections of the cell for analysis, an approach that is presented at length in this review article. We also present SIMS applications concerning animal and cell behavior, from development and aging to changes in the cellular activity programs. We conclude that the emerging group of SIMS technologies represents an exciting set of tools for the study of animal behavior and of its effects on internal metabolism at the smallest possible scales.
Collapse
Affiliation(s)
- Elisa A. Bonnin
- Department of Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
6
|
Hartnell D, Andrews W, Smith N, Jiang H, McAllum E, Rajan R, Colbourne F, Fitzgerald M, Lam V, Takechi R, Pushie MJ, Kelly ME, Hackett MJ. A Review of ex vivo Elemental Mapping Methods to Directly Image Changes in the Homeostasis of Diffusible Ions (Na +, K +, Mg 2 +, Ca 2 +, Cl -) Within Brain Tissue. Front Neurosci 2020; 13:1415. [PMID: 32038130 PMCID: PMC6987141 DOI: 10.3389/fnins.2019.01415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Diffusible ions (Na+, K+, Mg2+, Ca2+, Cl-) are vital for healthy function of all cells, especially brain cells. Unfortunately, the diffusible nature of these ions renders them difficult to study with traditional microscopy in situ within ex vivo brain tissue sections. This mini-review examines the recent progress in the field, using direct elemental mapping techniques to study ion homeostasis during normal brain physiology and pathophysiology, through measurement of ion distribution and concentration in ex vivo brain tissue sections. The mini-review examines the advantages and limitations of specific techniques: proton induced X-ray emission (PIXE), X-ray fluorescence microscopy (XFM), secondary ion mass spectrometry (SIMS), laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and the sample preparation requirements to study diffusible ions with these methods.
Collapse
Affiliation(s)
- David Hartnell
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| | - Wendy Andrews
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| | - Nicole Smith
- School of Molecular Sciences, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Haibo Jiang
- School of Molecular Sciences, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Erin McAllum
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ramesh Rajan
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Frederick Colbourne
- Department of Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AL, Canada
- Department of Psychology, Faculty of Arts, University of Alberta, Edmonton, AL, Canada
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - M. Jake Pushie
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark J. Hackett
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| |
Collapse
|
7
|
Decelle J, Stryhanyuk H, Gallet B, Veronesi G, Schmidt M, Balzano S, Marro S, Uwizeye C, Jouneau PH, Lupette J, Jouhet J, Maréchal E, Schwab Y, Schieber NL, Tucoulou R, Richnow H, Finazzi G, Musat N. Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Curr Biol 2019; 29:968-978.e4. [PMID: 30827917 DOI: 10.1016/j.cub.2019.01.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 01/12/2023]
Abstract
Photosymbiosis between single-celled hosts and microalgae is common in oceanic plankton, especially in oligotrophic surface waters. However, the functioning of this ecologically important cell-cell interaction and the subcellular mechanisms allowing the host to accommodate and benefit from its microalgae remain enigmatic. Here, using a combination of quantitative single-cell structural and chemical imaging techniques (FIB-SEM, nanoSIMS, Synchrotron X-ray fluorescence), we show that the structural organization, physiology, and trophic status of the algal symbionts (the haptophyte Phaeocystis) significantly change within their acantharian hosts compared to their free-living phase in culture. In symbiosis, algal cell division is blocked, photosynthesis is enhanced, and cell volume is increased by up to 10-fold with a higher number of plastids (from 2 to up to 30) and thylakoid membranes. The multiplication of plastids can lead to a 38-fold increase of the total plastid volume in a cell. Subcellular mapping of nutrients (nitrogen and phosphorous) and their stoichiometric ratios shows that symbiotic algae are impoverished in phosphorous and suggests a higher investment in energy-acquisition machinery rather than in growth. Nanoscale imaging also showed that the host supplies a substantial amount of trace metals (e.g., iron and cobalt), which are stored in algal vacuoles at high concentrations (up to 660 ppm). Sulfur mapping reveals a high concentration in algal vacuoles that may be a source of antioxidant molecules. Overall, this study unveils an unprecedented morphological and metabolic transformation of microalgae following their integration into a host, and it suggests that this widespread symbiosis is a farming strategy wherein the host engulfs and exploits microalgae.
Collapse
Affiliation(s)
- Johan Decelle
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany.
| | - Hryhoriy Stryhanyuk
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany
| | - Benoit Gallet
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38044 Grenoble, France
| | - Giulia Veronesi
- Laboratoire de Chimie et Biologie des Métaux UMR 5249, Université Grenoble Alpes, CNRS, CEA, 17 Avenue des Martyrs, 38054 Grenoble, France; ESRF, The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany
| | - Sergio Balzano
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, PO Box 59, 1790 AB Den Burg, the Netherlands
| | - Sophie Marro
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche UMR7093, Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Clarisse Uwizeye
- Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France
| | - Pierre-Henri Jouneau
- Institut Nanosciences et Cryogénie, Université Grenoble Alpes, CEA, 38054 Grenoble, France
| | - Josselin Lupette
- Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France
| | - Juliette Jouhet
- Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France
| | - Eric Maréchal
- Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nicole L Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Rémi Tucoulou
- ESRF, The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Hans Richnow
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany
| | - Giovanni Finazzi
- Cell & Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France
| | - Niculina Musat
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany
| |
Collapse
|
8
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|
9
|
O'Hare Doig RL, Chiha W, Giacci MK, Yates NJ, Bartlett CA, Smith NM, Hodgetts SI, Harvey AR, Fitzgerald M. Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma. BMC Neurosci 2017; 18:62. [PMID: 28806920 PMCID: PMC5557315 DOI: 10.1186/s12868-017-0380-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/05/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca2+ channel inhibitor Lomerizine (Lom), the Ca2+ permeable AMPA receptor inhibitor YM872 and the P2X7 receptor inhibitor oxATP. RESULTS Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. CONCLUSIONS Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs.
Collapse
Affiliation(s)
- Ryan L O'Hare Doig
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Wissam Chiha
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Marcus K Giacci
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nathanael J Yates
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicole M Smith
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Experimental and Regenerative Neurosciences, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Stuart I Hodgetts
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Verdun St, Nedlands, WA, 6009, Australia
| | - Alan R Harvey
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Verdun St, Nedlands, WA, 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia. .,Perron Institute for Neurological and Translational Science, Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
10
|
Smith NM, Gachulincova I, Ho D, Bailey C, Bartlett CA, Norret M, Murphy J, Buckley A, Rigby PJ, House MJ, St Pierre T, Fitzgerald M, Iyer KS, Dunlop SA. An Unexpected Transient Breakdown of the Blood Brain Barrier Triggers Passage of Large Intravenously Administered Nanoparticles. Sci Rep 2016; 6:22595. [PMID: 26940762 PMCID: PMC4778073 DOI: 10.1038/srep22595] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/18/2016] [Indexed: 12/24/2022] Open
Abstract
The highly restrictive blood-brain barrier (BBB) plays a critically important role in maintaining brain homeostasis and is pivotal for proper neuronal function. The BBB is currently considered the main limiting factor restricting the passage of large (up to 200 nm) intravenously administered nanoparticles to the brain. Breakdown of the barrier occurs as a consequence of cerebrovascular diseases and traumatic brain injury. In this article, we report that remote injuries in the CNS are also associated with BBB dysfunction. In particular, we show that a focal partial transection of the optic nerve triggers a previously unknown transient opening of the mammalian BBB that occurs in the visual centres. Importantly, we demonstrate that this transient BBB breakdown results in a dramatic change in the biodistribution of intravenously administered large polymeric nanoparticles which were previously deemed as BBB-impermeable.
Collapse
Affiliation(s)
- Nicole M Smith
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA 6009, Australia.,School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Ivana Gachulincova
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Diwei Ho
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Charlotte Bailey
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Marck Norret
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - John Murphy
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Alysia Buckley
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Paul J Rigby
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Michael J House
- School of Physics, The University of Western Australia, Perth, WA 6009, Australia
| | - Timothy St Pierre
- School of Physics, The University of Western Australia, Perth, WA 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - K Swaminathan Iyer
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
11
|
Lozić I, Hartz RV, Bartlett CA, Shaw JA, Archer M, Naidu PSR, Smith NM, Dunlop SA, Iyer KS, Kilburn MR, Fitzgerald M. Enabling dual cellular destinations of polymeric nanoparticles for treatment following partial injury to the central nervous system. Biomaterials 2015; 74:200-16. [PMID: 26461115 DOI: 10.1016/j.biomaterials.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
Following neurotrauma, oxidative stress is spread via the astrocytic syncytium and is associated with increased aquaporin 4 (AQP4), inflammatory cell infiltration, loss of neurons and glia and functional deficits. Herein we evaluate multimodal polymeric nanoparticles functionalized with an antibody to an extracellular epitope of AQP4, for targeted delivery of an anti-oxidant as a therapeutic strategy following partial optic nerve transection. Using fluorescence microscopy, spectrophotometry, correlative nanoscale secondary ion mass spectrometry (NanoSIMS) and transmission electron microscopy, in vitro and in vivo, we demonstrate that functionalized nanoparticles are coated with serum proteins such as albumin and enter both macrophages and astrocytes when administered to the site of a partial optic nerve transection in rat. Antibody functionalized nanoparticles synthesized to deliver the antioxidant resveratrol are effective in reducing oxidative damage to DNA, AQP4 immunoreactivity and preserving visual function. Non-functionalized nanoparticles evade macrophages more effectively and are found more diffusely, including in astrocytes, however they do not preserve the optic nerve from oxidative damage or functional loss following injury. Our study highlights the need to comprehensively investigate nanoparticle location, interactions and effects, both in vitro and in vivo, in order to fully understand functional outcomes.
Collapse
Affiliation(s)
- I Lozić
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia; Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - R V Hartz
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - C A Bartlett
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - J A Shaw
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - M Archer
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - P S R Naidu
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia; Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - N M Smith
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia; Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - S A Dunlop
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - K Swaminathan Iyer
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - M R Kilburn
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - M Fitzgerald
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia.
| |
Collapse
|
12
|
Kotula L, Khan HA, Quealy J, Turner NC, Vadez V, Siddique KHM, Clode PL, Colmer TD. Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes. PLANT, CELL & ENVIRONMENT 2015; 38:1565-77. [PMID: 25615287 DOI: 10.1111/pce.12506] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/04/2015] [Indexed: 05/22/2023]
Abstract
The reproductive phase in chickpea (Cicer arietinum L.) is affected by salinity, but little is known about the underlying cause. We investigated whether high concentrations of Na(+) and Cl(-) in the reproductive structures influence reproductive processes. Chickpea genotypes contrasting in tolerance were subjected to 0, 35 or 50 mm NaCl applied to soil in pots. Flower production and abortion, pod number, percentage of empty pods, seed number and size were evaluated. The concentrations of Na(+) , K(+) and Cl(-) were measured in various plant tissues and, using X-ray microanalysis, in specific cells of developing reproductive structures. Genotypic variation in reproductive success measured as seed yield in saline conditions was associated with better maintenance of flower production and higher numbers of filled pods (and thus seed number), whereas seed size decreased in all genotypes. Despite the variation in reproductive success, the accumulation of Na(+) and Cl(-) in the early reproductive tissues of developing pods did not differ between a tolerant (Genesis836) and a sensitive (Rupali) genotype. Similarly, salinity tolerance was not associated with the accumulation of salt ions in leaves at the time of reproduction or in seeds at maturity.
Collapse
Affiliation(s)
- Lukasz Kotula
- School of Plant Biology (M084), Faculty of Science, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Hammad A Khan
- School of Plant Biology (M084), Faculty of Science, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- The UWA Institute of Agriculture (M082), The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - John Quealy
- School of Plant Biology (M084), Faculty of Science, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Centre for Plant Genetics and Breeding (M080), The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Neil C Turner
- The UWA Institute of Agriculture (M082), The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Centre for Plant Genetics and Breeding (M080), The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, 502 324, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture (M082), The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Peta L Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Timothy D Colmer
- School of Plant Biology (M084), Faculty of Science, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- The UWA Institute of Agriculture (M082), The University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
13
|
Fitzgerald M. Strategies to limit dysmyelination during secondary degeneration following neurotrauma. Neural Regen Res 2014; 9:1096-9. [PMID: 25206765 PMCID: PMC4146096 DOI: 10.4103/1673-5374.135307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 11/04/2022] Open
Affiliation(s)
- Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Hackett Drive, Crawley, WA 6009, Australia
| |
Collapse
|