1
|
Aggarwal V, Singh D, Bhagwan S, Saini RK, Jakhar K, Kumar S, Kumar P, Sindhu J. Tuning emissive color of trivalent terbium ion through environmental factors: optoelectronic insights from theoretical, spectral and computational studies. RSC Adv 2024; 14:39569-39587. [PMID: 39691219 PMCID: PMC11650364 DOI: 10.1039/d4ra05334f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
The combination of 4,4,4-trifluoro-1-phenyl-1,3-butanedione (TFPB) and pyrazine (pyz) with Tb3+ ions forms two distinct types of complexes, represented by the formulas [Tb(TFPB)3(L)2], where L is either H2O or pyz, and [(Tb(TFPB)3)2pyz]. A detailed examination of the impact of the surrounding environment on the photophysical properties of these synthesized complexes was conducted. Photoluminescence (PL) analysis indicated that the magnetic dipole transition (5D4 → 7F5) is dominant in Tb(iii)-based systems. The prepared complexes exhibit visible luminescence in both solid and solution media. Remarkably, the luminescence intensity of the mononuclear complex is significantly higher than that of its dinuclear counterpart, highlighting the impact of efficient energy transfer on emission intensity. The CIE color coordinates of these complexes in solution closely align with NTSC standard values. Additionally, modulation of emissive color is evident when the surrounding media (from solid to solution) and solvent nature are altered. Density Functional Theory (DFT) calculations were performed to elucidate the electronic density distribution in the synthesized complexes. Additionally, a comprehensive analysis, including IR, UV, NMR, thermogravimetry and cyclic voltammetry, was conducted, along with theoretical calculations using Judd-Ofelt analysis.
Collapse
Affiliation(s)
- Vandana Aggarwal
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 Haryana India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 Haryana India
- Department of Chemistry, Lovely Professional University Phagwara Jalandhar-144411 Punjab India
| | - Shri Bhagwan
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 Haryana India
| | - Raman Kumar Saini
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 Haryana India
| | - Komal Jakhar
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 Haryana India
| | - Sumit Kumar
- Department of Chemistry, DCR University of Science & Technology Murthal-131039 Haryana India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra-136119 Haryana India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar-125004 Haryana India
| |
Collapse
|
2
|
Freire RVM, Coelho DMA, Maciel LG, Jesus LT, Freire RO, Dos Anjos JV, Junior SA. Luminescent Supramolecular Metallogels: Drug Loading and Eu(III) as Structural Probe. Chemistry 2024; 30:e202400680. [PMID: 38593232 DOI: 10.1002/chem.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Supramolecular metallogels combine the rheological properties of gels with the color, magnetism, and other properties of metal ions. Lanthanide ions such as Eu(III) can be valuable components of metallogels due to their fascinating luminescence. In this work, we combine Eu(III) and iminodiacetic acid (IDA) into luminescent hydrogels. We investigate the tailoring of the rheological properties of these gels by changes in their metal:ligand ratio. Further, we use the highly sensitive Eu(III) luminescence to obtain information about the chemical structure of the materials. In special, we take advantage of computational calculations to employ an indirect method for structural elucidation, in which the simulated luminescent properties of candidate structures are matched to the experimental data. With this strategy, we can propose molecular structures for different EuIDA gels. We also explore the usage of these gels for the loading of bioactive molecules such as OXA, observing that its aldose reductase activity remains present in the gel. We envision that the findings from this work could inspire the development of luminescent hydrogels with tunable rheology for applications such as 3D printing and imaging-guided drug delivery platforms. Finally, Eu(III) emission-based structural elucidation could be a powerful tool in the characterization of advanced materials.
Collapse
Affiliation(s)
- Rafael V M Freire
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| | - Dhiego M A Coelho
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| | - Larissa G Maciel
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| | - Larissa T Jesus
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
- Pople Computational Chemistry Laboratory, Department of Chemistry, Federal University of Sergipe, 49107-230, São Cristóvão, SE, Brazil
| | - Ricardo O Freire
- Pople Computational Chemistry Laboratory, Department of Chemistry, Federal University of Sergipe, 49107-230, São Cristóvão, SE, Brazil
| | - Janaína V Dos Anjos
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| | - Severino A Junior
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| |
Collapse
|
3
|
Dhibar S, Mohan A, Karmakar K, Mondal B, Roy A, Babu S, Garg P, Ruidas P, Bhattacharjee S, Roy S, Bera A, Ray SJ, Predeep P, Saha B. Novel supramolecular luminescent metallogels containing Tb(iii) and Eu(iii) ions with benzene-1,3,5-tricarboxylic acid gelator: advancing semiconductor applications in microelectronic devices. RSC Adv 2024; 14:12829-12840. [PMID: 38645531 PMCID: PMC11027726 DOI: 10.1039/d3ra07903a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
A novel strategy was employed to create supramolecular metallogels incorporating Tb(iii) and Eu(iii) ions using benzene-1,3,5-tricarboxylic acid (TA) as a gelator in N,N-dimethylformamide (DMF). Rheological analysis demonstrated their mechanical robustness under varying stress levels and angular frequencies. FESEM imaging revealed a flake-like hierarchical network for Tb-TA and a rod-shaped architecture for Eu-TA. EDX analysis confirmed essential chemical constituents within the metallogels. FT-IR, PXRD, Raman spectroscopy, and thermogravimetric analysis assessed their gelation process and material properties, showing semiconducting characteristics, validated by optical band-gap measurements. Metal-semiconductor junction-based devices integrating Al metal with Tb(iii)- and Eu(iii)-metallogels exhibited non-linear charge transport akin to a Schottky diode, indicating potential for advanced electronic device development. Direct utilization of benzene-1,3,5-tricarboxylic acid and Tb(iii)/Eu(iii) sources underscores their suitability as semiconducting materials for device fabrication. This study explores the versatile applications of Tb-TA and Eu-TA metallogels, offering insights for material science researchers.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur 495009 Chhattisgarh India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Saranya Babu
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Sanjay Roy
- Department of Chemistry, School of Science, Netaji Subhas Open University, Kalyani Regional Centre Kolkata 741251 India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
4
|
Chiang PY, Zeng PH, Yeh YC. Luminescent lanthanide-containing gelatin/polydextran/laponite nanocomposite double-network hydrogels for processing and sensing applications. Int J Biol Macromol 2024; 260:129359. [PMID: 38242388 DOI: 10.1016/j.ijbiomac.2024.129359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Lanthanide-containing nanomaterials have gained significant popularity for their utilization in polymeric networks, enabling the creation of luminescent nanocomposites for advanced applications. In this study, we developed a new type of lanthanide-containing nanocomposite hydrogels by incorporating terbium-containing laponite (Tb3+@Lap) into the networks of polyethyleneimine-modified gelatin/polydextran aldehyde (PG/PDA) through dynamic bonds. The structures and properties of the Tb3+@Lap-containing nanocomposite double-network (ncDN) hydrogels were comprehensively investigated in comparison with the DN hydrogels with a pure polymeric network and the Lap-containing ncDN hydrogels. The PG/PDA/Tb3+@Lap ncDN hydrogels with multiple dynamic bonds (i.e., imine bonds, coordination bonds, hydrogen bonds, and electrostatic interactions) exhibited remarkable characteristics of shear-thinning and self-healing, making them suitable for the construction of hydrogel scaffolds on a macroscale using fabrication techniques such as electrospinning and 3D printing. Moreover, the PG/PDA/Tb3+@Lap ncDN hydrogels have been demonstrated to act as sensitive and selective luminescent sensors for detecting copper ions. Taken together, a versatile lanthanide-containing ncDN hydrogel platform capable of dynamic features is developed for processing and sensing applications.
Collapse
Affiliation(s)
- Pei-Yu Chiang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Han Zeng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
5
|
Wang XJ, Long Y, Wei CW, Gao SQ, Lin YW. Peroxidase activity of a Cu-Fe bimetallic hydrogel and applications for colorimetric detection of ascorbic acid. Phys Chem Chem Phys 2024; 26:1077-1085. [PMID: 38098362 DOI: 10.1039/d3cp05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A Cu-Fe bimetallic hydrogel (2-QF-CuFe-G) was constructed through a simple method. The 2-QF-CuFe-G metallohydrogel possesses excellent peroxidase-like activity to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic mechanism was confirmed by the addition of •OH radical scavenger isopropyl alcohol (IPA), tert-butyl alcohol (TBA) and ˙OH trapping agent terephthalic acid (TA). Remarkably, the resultant blue ox-TMB system can be used to selectively and sensitively detect ascorbic acid (AA) with an LOD of 0.93 μM in the range of 4-36 μM through the colorimetric method. Moreover, the assay based on the 2-QF-CuFe-G metallohydrogel can be successfully applied to detect AA in fresh fruits.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yan Long
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
6
|
Karachousos-Spiliotakopoulos K, Tangoulis V, Tasiopoulos A, Panagiotou N, Charalambous E, Nastopoulos V, Christodoulou S. Dual Emission in the Near-Infrared and Visible Regions from a Mixed Cyanido-Bridged Eu III/Nd III(4-OHpy)-Co III Layered Material. Inorg Chem 2022; 61:15806-15811. [PMID: 36153980 PMCID: PMC9554905 DOI: 10.1021/acs.inorgchem.2c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coordination polymers (CPs) with a dual emission spanning from the visible (vis) to near-infrared (NIR) regions of the electromagnetic spectrum are used for optical sensors, medical diagnostics, and telecommunication technologies. We herein report the synthesis, structural characterization, and optical response of heterometallic cyanido-bridged layered {[EuxNdy(4-OHpy)2(H2O)3][Co(CN)6]} CPs, where 4-OHpy = 4-hydroxypyridine, with a multicolor emission profile across the vis and NIR regions. The crystals show an efficient energy transfer (ET) from the 4-OHpy ligand and the [Co(CN)6] ions to the Eu3+ and Nd3+ ions, resulting in an enhanced photoluminescence (PL) efficiency. We study the ET with steady-state and time-resolved PL, reporting an ET between the Ln3+ centers. The excitation-dependent emission of the mixed Ln3+ CPs and the control over the PL lifetime yield new insights into the optoelectronic properties of these materials.
Collapse
Affiliation(s)
| | | | | | - Nikos Panagiotou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus
| | - Elefhteria Charalambous
- Inorganic Nanocrystals Laboratory, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus.,Experimental Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | | | - Sotirios Christodoulou
- Inorganic Nanocrystals Laboratory, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus
| |
Collapse
|
7
|
Li Y, Wei CW, Wang XJ, Gao SQ, Lin YW. Amino acid derivative-based Ln-metallohydrogels with multi-stimuli responsiveness and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120901. [PMID: 35077980 DOI: 10.1016/j.saa.2022.120901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Metallohydrogels and lanthanide (Ln) fluorescent materials have gained much attention recently. In this study, we designed and synthesized a facile gelator of a phenylalanine-based derivative containing an indazole group (namely IZF). It was found that IZF can self-assemble to form hydrogel at pH ≤ 7. Meanwhile, IZF and Tb3+/Eu3+ can co-assemble to generate IZF-Tb and IZF-Eu metallohydrogels with green and red fluorescence, respectively, at pH 8-11, with excellent multi-stimuli responsiveness. The bimetallic hydrogels of IZF-Tb/Eu exhibit different colors under UV light by adjusting the ratio of Tb3+ and Eu3+. Moreover, white light emission was achieved with IZF-Tb/Eu bimetallic gels through doping carbon dots (CDs) by tailoring the stoichiometric ratio of Ln-complex and CDs. Remarkably, IZF-Tb and IZF-Eu could be used as fluorescent inks with excellent stability. This study indicates that the amino acid derivative-based Ln-metallohydrogels are excellent candidates for constructing information storage and multiple anti-counterfeiting materials.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Human Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Key Lab of Protein Structure and Function of Universities in Human Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Zhang G, Xia X, Xia L, Sun F, Dong J, Li R, Wu H. A series of new hetero-decanucleus sandwich Cd–Ln clusters constructed from open-chain ether Schiff base and niacin ligands: Synthesis, structure, luminescence and antioxidant activity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Li S, Wang X, Zhu J, Wang Z, Wang L. Synthesis and characterization of photothermal antibacterial hydrogel with enhanced mechanical properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj02529e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Based on Fe3O4 nanoparticles, a hydrogel with controllable crosslinking density, good mechanical properties, photothermal and antibacterial abilities was constructed.
Collapse
Affiliation(s)
- Shubin Li
- Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, Harbin 150001, P. R. China
| | - Xiao Wang
- Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, Harbin 150001, P. R. China
| | - Jiang Zhu
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin 150001, P. R. China
| | - Zhenyu Wang
- Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, Harbin 150001, P. R. China
| | - Lu Wang
- Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, Harbin 150001, P. R. China
| |
Collapse
|
10
|
de Andrade JCD, Silva LAT, Lima-Junior CG, Chojnacki J, Vasconcellos MLADA, da Silva R, Alves Júnior S, da Silva FF. Copper and copper-manganese 1D coordination polymers: Synthesis optimization, crystal structure and preliminary studies as catalysts for Baylis–Hillman reactions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Cheng Q, Hao A, Xing P. Stimulus-responsive luminescent hydrogels: Design and applications. Adv Colloid Interface Sci 2020; 286:102301. [PMID: 33160099 DOI: 10.1016/j.cis.2020.102301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/15/2022]
Abstract
Luminescent hydrogels are emerging soft materials with applications in photoelectric, biomedicine, sensors and actuators, which are fabricated via covalently conjugation of luminophors to hydrogelators or physical loading of luminescent organic/inorganic materials into hydrogel matrices. Due to the intrinsic stimulus-responsiveness for hydrogels such as thermo-, pH, ionic strength, light and redox, luminescent hydrogels could respond to external physical or chemical stimuli through varying the luminescent properties such as colors, fluorescent intensity and so on, affording diverse application potential in addition to the pristine individual hydrogels or luminescent materials. Based on the rapid development of such area, here we systematically summarize and discuss the design protocols, properties as well as the applications of stimulus-responsive luminescent hydrogels. Because of the stimuli-responsiveness, biocompatibility, injectable and controllability of luminescent hydrogels, they are widely used as functional smart materials. We illustrate the applications of luminescent hydrogels. The future developments about luminescent hydrogels are also presented.
Collapse
Affiliation(s)
- Qiuhong Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
12
|
Shankar S, Junaid Ur Rahim, Rai R. Self-Assembly in Peptides Containing β-and γ-amino Acids. Curr Protein Pept Sci 2020; 21:584-597. [DOI: 10.2174/1389203721666200127112244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
The peptides containing β-and γ-amino acids as building blocks display well-defined secondary
structures with unique morphologies. The ability of such peptides to self-assemble into complex
structures of controlled geometries has been exploited in biomedical applications. Herein, we have
provided an updated overview about the peptides containing β-and γ-amino acids considering the significance
and advancement in the area of development of peptide-based biomaterials having diverse
applications.
Collapse
Affiliation(s)
- Sudha Shankar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Junaid Ur Rahim
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Rajkishor Rai
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| |
Collapse
|
13
|
Dhibar S, Dey A, Majumdar S, Dey A, Ray PP, Dey B. Organic-Acid-Mediated Luminescent Supramolecular Tb(III)-metallogel Applied in an Efficient Photosensitive Electronic Device with Excellent Charge Transport Properties. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Arka Dey
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
- Department of Physics, Jadavpur University, Kolkata700032, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
14
|
Zhou Q, Dong X, Yuan J, Zhang B, Lu S, Xiong Y, Liao Y, Wang Q, Yang Y, Wang H. Supramolecular lanthanide metallogels rapidly formed at room temperature and their thermally stable luminescence behavior. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Wang X, Wei C, Gao S, He B, Lin Y. Assembly of (l+d)-Tryptophan Derivatives Containing an Imidazole Group Selectively Forms a Rare Purple Ni 2+-Hydrogel. ChemistryOpen 2019; 8:1172-1175. [PMID: 31497471 PMCID: PMC6718073 DOI: 10.1002/open.201900214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
Design of metal-selective hydrogels is attractive due to potential applications in materials and biological sciences. Although much progress has been made, assembly of both l- and d-amino acid derivatives was less explored for design of metallohydrogels. In this study, we synthesized a facile and small tryptophan derivative containing an imidazole ligand with both l- and d- configurations (denoted as l/d-ImW). Intriguingly, the assembly of (l+d)-ImW gelators was found to selectively form a Ni2+-hydrogel in aqueous medium at room temperature, which shows a rare purple color and exhibits excellent multi-responsiveness. In addition to insights into the gelation mechanism, this study provides a novel approach to the design of metallohydrogels, by the assembly of (l+d)-amino acid derivatives containing both aromatic rings and multiple metal coordination sites.
Collapse
Affiliation(s)
- Xiao‐Juan Wang
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
| | - Chuan‐Wan Wei
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
| | - Shu‐Qin Gao
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001China
| | - Bo He
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001China
| |
Collapse
|
16
|
Wei CW, Wang XJ, Gao SQ, Wen GB, Lin YW. A La 3+-selective metallohydrogel with a facile gelator of a phenylalanine derivative containing an imidazole group. Dalton Trans 2018; 47:13788-13791. [PMID: 30252009 DOI: 10.1039/c8dt03557a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first La3+-selective metallohydrogel was constructed by using a facile gelator of a phenylalanine derivative containing an imidazole group, N-(1H-imidazol-4-yl)methylidene-l-phenylalanine, namely La-ImF, which exhibits multi-stimuli responsive properties, including to heat, shearing, pH, etc. Various measurements were also carried out to obtain insights into the mechanism of gelation. Moreover, the La-ImF hydrogel can adsorb toxic dyes, making it a potential candidate for sewage treatment.
Collapse
Affiliation(s)
- Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | | | | | | | | |
Collapse
|
17
|
Bejan A, Ailincai D, Simionescu BC, Marin L. Chitosan hydrogelation with a phenothiazine based aldehyde: a synthetic approach toward highly luminescent biomaterials. Polym Chem 2018. [DOI: 10.1039/c7py01678f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogelation of chitosan with a photoactive aldehyde via covalent dynamic chemistry proved an original approach towards efficient luminescent biomaterials.
Collapse
Affiliation(s)
- Andrei Bejan
- “Petru Poni” Institute of Macromolecular Chemistry
- Romanian Academy
- 700487 Iasi
- Romania
| | - Daniela Ailincai
- “Petru Poni” Institute of Macromolecular Chemistry
- Romanian Academy
- 700487 Iasi
- Romania
| | - Bogdan C. Simionescu
- “Petru Poni” Institute of Macromolecular Chemistry
- Romanian Academy
- 700487 Iasi
- Romania
- Department of Synthetic and Natural Polymers
| | - Luminita Marin
- “Petru Poni” Institute of Macromolecular Chemistry
- Romanian Academy
- 700487 Iasi
- Romania
| |
Collapse
|
18
|
Silva JYR, da Luz LL, Mauricio FGM, Vasconcelos Alves IB, Ferro JNDS, Barreto E, Weber IT, de Azevedo WM, Júnior SA. Lanthanide-Organic Gels as a Multifunctional Supramolecular Smart Platform. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16458-16465. [PMID: 28447448 DOI: 10.1021/acsami.6b15667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A multifunctional smart supramolecular platform based on a lanthanide-organic hydrogel is presented. This platform, which provides unique biocompatibility and tunable optical properties, is synthesized by a simple, fast, and reproducible eco-friendly microwave-assisted route. Photoluminescent properties enable the production of coated light-emitting diodes (LED), unique luminescent barcodes dependent on the excitation wavelength and thin-films for use in tamper seals. Moreover, piroxicam entrapped in hydrogel acts as a transdermal drug release device efficient in inhibiting edemas as compared to a commercial reference.
Collapse
Affiliation(s)
| | | | | | | | | | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas , Maceió, Alagoas 57072-970, Brazil
| | - Ingrid Távora Weber
- Inorganic and Materials Laboratory, University of Brasília , Asa Norte, Brasília, Distrito Federal 70910-000, Brazil
| | | | | |
Collapse
|
19
|
Motamed S, Del Borgo MP, Kulkarni K, Habila N, Zhou K, Perlmutter P, Forsythe JS, Aguilar MI. A self-assembling β-peptide hydrogel for neural tissue engineering. SOFT MATTER 2016; 12:2243-2246. [PMID: 26853859 DOI: 10.1039/c5sm02902c] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a new class of β-peptide based hydrogel for neural tissue engineering. Our β-peptide forms a network of nanofibres in aqueous solution, resulting in a stable hydrogel at physiological conditions. The hydrogel shows excellent compatibility with neural cells and provides a suitable environment for cells to adhere and proliferate.
Collapse
Affiliation(s)
- S Motamed
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Vic 3800, Australia.
| | - M P Del Borgo
- Monash Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Vic 3800, Australia.
| | - K Kulkarni
- School of Chemistry, Monash University, Clayton, Vic 3800, Australia
| | - N Habila
- Monash Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Vic 3800, Australia.
| | - K Zhou
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Vic 3800, Australia.
| | - P Perlmutter
- School of Chemistry, Monash University, Clayton, Vic 3800, Australia
| | - J S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Vic 3800, Australia.
| | - M I Aguilar
- Monash Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Vic 3800, Australia.
| |
Collapse
|
20
|
Du X, Zhou J, Shi J, Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem Rev 2015; 115:13165-307. [PMID: 26646318 PMCID: PMC4936198 DOI: 10.1021/acs.chemrev.5b00299] [Citation(s) in RCA: 1342] [Impact Index Per Article: 134.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Indexed: 12/19/2022]
Abstract
In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
21
|
de Jesus RA, da Luz LL, Santos DO, Costa JAS, Navickiene S, Gatto CC, Júnior SA, de Mesquita ME. Dual emission tunable in the near-infrared (NIR) and visible (VIS) spectral range by mix-LnMOF. Dalton Trans 2015; 44:17318-25. [DOI: 10.1039/c5dt01920f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we describe the synthetic approach, crystallographic structure, luminescent behavior in heteronuclear coordination polymers with emission in the visible (Eu3+ and organic ligand) and near-infrared (Nd3+) range.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Cristina Gatto
- University of Brasilia (IQ-UnB)
- campus Universitário Darcy Ribeiro
- CEP 70904970
- Brasília
- Brazil
| | | | | |
Collapse
|
22
|
Kang C, Wang L, Bian Z, Guo H, Ma X, Qiu X, Gao L. Supramolecular hydrogels derived from cyclic amino acids and their applications in the synthesis of Pt and Ir nanocrystals. Chem Commun (Camb) 2014; 50:13979-82. [DOI: 10.1039/c4cc06419d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single amino acid was used for water gelation and templating the synthesis of Pt and Ir nanocrystals.
Collapse
Affiliation(s)
- Chuanqing Kang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Lanlan Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Zheng Bian
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Haiquan Guo
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Xiaoye Ma
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Xuepeng Qiu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Lianxun Gao
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| |
Collapse
|