1
|
Bernkop-Schnürch A, Hermann M, Leitner D, Talasz H, Descher HA, Hohloch S, Gust R, Kircher B. Transferrin Receptor-Mediated Cellular Uptake of Fluorinated Chlorido[ N, N'-bis(salicylidene)-1,2-phenylenediamine]iron(III) Complexes. ACS OMEGA 2024; 9:35394-35407. [PMID: 39184483 PMCID: PMC11340086 DOI: 10.1021/acsomega.4c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 08/27/2024]
Abstract
Fluorinated chlorido[salophene]iron(III) complexes (salophene = N,N'-bis(salicylidene)-1,2-phenylenediamine) are promising anticancer agents. Apoptosis and necrosis induction have already been described as part of their mode of action. However, the involvement of ferroptosis in cell death induction, as confirmed for other chlorido[salophene]iron(III) complexes, has not yet been investigated. Furthermore, the mechanism of cellular uptake of these compounds is unknown. Therefore, the biological activity of the fluorescent chlorido[salophene]iron(III) complexes with a fluorine substituent at positions 3, 4, 5, or 6 at the salicylidene moieties (C1-C4) was evaluated in malignant and nonmalignant cell lines with focus on the involvement of the transferrin receptor-1 (TfR-1) in cellular uptake, the influence of the complexes on mitochondrial function, and the analysis of the molecular mechanism of cell death. All complexes significantly decreased the metabolic activity in the tested ovarian cancer (A2780, A2780cis), breast cancer (MDA-MB 231), and leukemia (HL-60) cell lines, while the nonmalignant human stroma cell line HS-5 at a concentration of 0.5 μM, which represents the IC50 of the complexes in most of the used tumorigenic cell lines, was not affected. The mitochondrial function was impaired, as evidenced by a reduced mitochondrial membrane potential ΔΨm and decreased mitochondrial activity. Besides apoptosis and necroptosis, ferroptosis was identified as part of the mode of action. It was further demonstrated for the first time that fluorinated chlorido[salophene]iron(III) complexes downregulate TfR-1 expression, comparable to ferristatin II, an iron transport inhibitor that acts via TfR-1 degradation. FerroOrange staining further indicated that the complexes strongly increased the intracellular iron(II) level as a driving force to induce ferroptosis. In conclusion, these fluorinated chlorido[salophene]iron(III) complexes are potent, tumor cell-specific chemotherapeutic agents, with the potential to treat various types of cancers.
Collapse
Affiliation(s)
- Astrid
Dagmar Bernkop-Schnürch
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI—Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Hermann
- Department
of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Daniel Leitner
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Heribert Talasz
- Biocenter,
Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hubert Aaron Descher
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI—Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Stephan Hohloch
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI—Center
for Molecular Biosciences Innsbruck, CCB—Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Brigitte Kircher
- Immunobiology
and Stem Cell Laboratory, Department of Internal Medicine V (Hematology
and Oncology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Tyrolean
Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This review presents representative examples illustrating how the Lewis acidic character of the Zn(II) metal center in Zn(salen)-type complexes, as well as in complexes of other tetradentate ligands, and the nature of the medium govern their supramolecular aggregation, leading to the formation of a variety of supramolecular structures, either in solution or in the solid state. Stabilization of these Lewis acidic complexes is almost always reached through an axial coordination of a Lewis base, leading to a penta-coordinated square-pyramidal geometry around the metal center. The coverage is not exhaustive, mainly focused on their crystallographic structures, but also on their aggregation and sensing properties in solution, and on their self-assembled and responsive nanostructures, summarizing their salient aspects. The axial ligands can easily be displaced, either in solution or in the solid state, with suitable Lewis bases, thus being responsive supramolecular structures useful for sensing. This contribution represents the first attempt to relate some common features of the chemistry of different families of Zn(II) complexes of tetradentate ligands to their intrinsic Lewis acidic character.
Collapse
|
3
|
Ullmann S, Börner M, Kahnt A, Abel B, Kersting B. Green‐Emissive Zn
2+
Complex Supported by a Macrocyclic Schiff‐Base/Calix[4]arene‐Ligand: Crystallographic and Spectroscopic Characterization. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Steve Ullmann
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
- Institut für Nichtklassische Chemie e.V. Permoserstraße. 15 04318 Leipzig
| | - Martin Börner
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
- Leibniz Institute of Surface Engineering (IOM) Department of Functional Surfaces Permoserstr. 15 04318 Leipzig Germany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM) Department of Functional Surfaces Permoserstr. 15 04318 Leipzig Germany
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM) Department of Functional Surfaces Permoserstr. 15 04318 Leipzig Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Germany
| | - Berthold Kersting
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
4
|
Di Bella S. Lewis acidic zinc(II) salen-type Schiff-base complexes: sensing properties and responsive nanostructures. Dalton Trans 2021; 50:6050-6063. [PMID: 33876173 DOI: 10.1039/d1dt00949d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this frontier article some peculiar characteristics of Zn(salen)-type Schiff-base complexes are reviewed. The paper is mainly focused on the most recent and relevant achievements on responsive supramolecular nanostructures and sensing properties, both of them related to the Lewis acidic character of the ZnII centre in these molecular species, providing an interpretation of these features. The sensing properties of Zn(salen)-type complexes mainly originate from optical spectroscopic changes associated with the formation of the adducts upon addition of a Lewis base (analyte), either by deaggregation of dimeric species or displacement of the solvent coordinated to the metal centre. In both cases the direct sensing is related either to the Lewis acidic character of the complex as well as to the Lewis basicity of the analyte. The formation of responsive nanostructures with fluorescent, and/or vapochromic, mechanochromic, and thermochromic characteristics is driven by non-mutual intermolecular ZnO interactions, further stabilized by π-π stacking interactions and/or interdigitation of the alkyl side groups. The Lewis acidic character is not a prerogative of Zn(salen)-type complexes of tetradentate Schiff-bases. Many other classes of ZnII complexes can possess this property. A correct interpretation of their chemistry is certainly useful for further development of these classical coordination compounds as new molecular materials.
Collapse
Affiliation(s)
- Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
5
|
Milbeo P, Quintin F, Moulat L, Didierjean C, Martinez J, Bantreil X, Calmès M, Lamaty F. Synthesis, characterisation and cytotoxic activity evaluation of new metal-salen complexes based on the 1,2-bicyclo[2.2.2]octane bridge. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Consiglio G, Oliveri IP, Cacciola S, Maccarrone G, Failla S, Di Bella S. Dinuclear zinc(ii) salen-type Schiff-base complexes as molecular tweezers. Dalton Trans 2020; 49:5121-5133. [PMID: 32219249 DOI: 10.1039/d0dt00494d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this contribution, the synthesis and the unusual aggregation/deaggregation properties in solution of two dinuclear ZnII Schiff-base complexes of tetradentate Schiff-base units, having non-conjugated spacers between each molecular unit, are reported in comparison to the mononuclear model complex. Through detailed 1H NMR, DOSY NMR, optical absorption, fluorescence emission, and multivariate analysis of optical absorption data, emerge some interesting findings. In solution of non-coordinating solvents, these Lewis acidic species are characterized as monomers stabilized by formation of intramolecular aggregates, having distinct spectroscopic properties in comparison to intermolecular aggregates derived from the mononuclear model analogue. Instead, in coordinating solvents they exhibit a typical behaviour, with formation of stable adducts showing a strong fluorescence. Deaggregation studies using pyridine as reference Lewis base allowed establishing a larger thermodynamic stability of these intramolecular aggregates, in comparison to intermolecular aggregates, even larger than that of aggregates of conjugated multinuclear complexes. The combined analysis of spectroscopic data upon deaggregation with ditopic Lewis bases unambiguously demonstrated the formation of stable 1 : 1 adducts, with higher binding constants in comparison to those related to monotopic species. Therefore, the present Lewis acidic, dinuclear complexes behave as molecular tweezers of ditopic guests having a strong Lewis basicity.
Collapse
Affiliation(s)
- Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Cacciola
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Giuseppe Maccarrone
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
7
|
Optical, electrochemical, thermal, biological and theoretical studies of some chloro and bromo based metal-salophen complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Asadi Z, Nasrollahi N, Golchin M. A water-soluble metal–organic coordination polymer of Zn(II) Schiff base complex in interaction with DNA: diagnosing the mode of binding by in vitro studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01716-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Consiglio G, Oliveri IP, Failla S, Di Bella S. On the Aggregation and Sensing Properties of Zinc(II) Schiff-Base Complexes of Salen-Type Ligands. Molecules 2019; 24:E2514. [PMID: 31324053 PMCID: PMC6651702 DOI: 10.3390/molecules24132514] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
The zinc(II) ion forms stable complexes with a wide variety of ligands, but those related to Schiff-bases are among the most largely investigated. This review deals with the peculiar aggregation characteristics of Zn(II) Schiff-base complexes from tetradentate N2O2 salen-type ligands, L, derivatives from salicylaldehydes and 1,2-diamines, and is mostly focused on their spectroscopic properties in solution. Thanks to their Lewis acidic character, ZnL complexes show interesting structural, nanostructural, and aggregation/deaggregation properties in relation to the absence/presence of a Lewis base. Deaggregation of these complexes is accompanied by relevant changes of their spectroscopic properties that can appropriately be exploited for sensing Lewis bases. Thus, ZnL complexes have been investigated as chromogenic and fluorogenic chemosensors of charged and neutral Lewis bases, including cell imaging, and have shown to be selective and sensitive to the Lewis basicity of the involved species. From these studies emerges that these popular, Lewis acidic bis(salicylaldiminato)Zn(II) Schiff-base complexes represent classical coordination compounds for modern applications.
Collapse
Affiliation(s)
- Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
10
|
Biswas N, Saha S, Khanra S, Sarkar A, Prasad Mandal D, Bhattacharjee S, Chaudhuri A, Chakraborty S, Roy Choudhury C. Example of two novel thiocyanato bridged copper (II) complexes derived from substituted thiosemicarbazone ligand: structural elucidation, DNA/albumin binding, biological profile analysis, and molecular docking study. J Biomol Struct Dyn 2018; 37:2801-2822. [PMID: 30101692 DOI: 10.1080/07391102.2018.1503564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Two novel copper (II) substituted thiosemicarbazone Schiff base complexes [Cu(L1)(µ-SCN)]n(NO3)2 (1) and [Cu2(µ-SCN)(SCN)(L2)2](NO3) (2) have been synthesized by condensing substituted thiosemicarbazides like 4-methyl-3-thiosemicarbazide or 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine. Both the metal complexes 1 and 2 are characterized using different spectroscopic techniques like IR, UV-Vis, ESR spectroscopy followed by elemental analysis, cyclic voltammetric measurement and single crystal X-ray structure analysis. X-ray crystal structure analysis reveal that complex 1 is polymeric while complex 2 is dimeric in nature. The coordination geometry around Cu(II) are square pyramidal in which thiosemicarbazone Schiff base ligand coordinate to the central Cu(II) atom in tridentate fashion. The prominent interaction patterns of 1 and 2 with CT-DNA were examined by employing electronic absorption and emission spectral titrations, cyclic voltammetry and viscosity measurements. All the results show that CT-DNA binds with both copper (II) complexes 1 and 2. Furthermore, protein binding ability in vitro of complexes 1 and 2 with both BSA and HSA were carried out using multispectroscopic techniques and a static quenching pattern was observed in both cases. Molecular docking study was employed to ascertain the exact mechanism of action of 1 and 2 with DNA and protein molecules (BSA and HSA). In vitro cytotoxicity activity of complexes 1 and 2 toward AGS and A549 was evaluated using MTT assay which demonstrates that both complexes 1 and 2 have superior prospectus to act as anticancer agents. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Niladri Biswas
- a Department of Chemistry , West Bengal State University , Barasat , India
| | - Sandeepta Saha
- a Department of Chemistry , West Bengal State University , Barasat , India.,b Sripur High School , Madhyamgram , India
| | - Sumit Khanra
- c Department of Chemistry , Indian Institute of Science Education and Research , Kolkata Mohanpur , India
| | - Arnab Sarkar
- d Department of Zoology , West Bengal State University , Barasat , India
| | - Deba Prasad Mandal
- d Department of Zoology , West Bengal State University , Barasat , India
| | | | - Ankur Chaudhuri
- e Department of Microbiology , West Bengal State University , Barasat , India
| | - Sibani Chakraborty
- e Department of Microbiology , West Bengal State University , Barasat , India
| | | |
Collapse
|
11
|
Ullmann S, Schnorr R, Laube C, Abel B, Kersting B. Photoluminescence properties of tetrahedral zinc(ii) complexes supported by calix[4]arene-based salicylaldiminato ligands. Dalton Trans 2018; 47:5801-5811. [PMID: 29644369 DOI: 10.1039/c8dt00757h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and photophysical properties of four new hybrid salicylaldiminato-calix[4]arene ligands and their corresponding zinc(ii) complexes are described. The Schiff bases were obtained from condensation reactions between cone-25,27-di(aminoethoxy)-26,28-dihydroxy-calix[4]arene and salicylaldehyde (H2L1) or o-vanillin (H2L2) and 1,3-alt-25,27-di(aminoethoxy)-26,28-di(n-propyloxy)-calix[4]arene and 3,5-di-tert-butyl-salicylaldehyde (H2L3) or o-vanillin (H2L4). Complexation reactions were investigated by ESI-MS, IR, NMR, UV-vis absorption and steady-state and time resolved fluorescence spectroscopy, and X-ray crystallography. All ligands support 1 : 1 complexes (ZnL1-ZnL4), with equilibrium constants derived from absorption spectrophotometry in the range log K11 = 5.5-8.2 (MeCN or MeOH/CH2Cl2, I = 0.01 M). The zinc complexes show blue fluorescence, both in solution as well as in the solid state, with λem, Φf, and τ ranging from 472-504 nm, 0.11-0.60, and 2-9 ns, respectively. The nature of the substituents on the salicylaldiminato fragments was found to be the main parameter that influences the photophysical properties of the zinc complexes. Insights into the electronic nature of the UV-vis transitions were obtained with time dependent density functional theory (TD-DFT) calculations.
Collapse
Affiliation(s)
- Steve Ullmann
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
12
|
Erxleben A. Transition metal salen complexes in bioinorganic and medicinal chemistry. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.060] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Supramolecular Aggregation of a New Substituted Bis(salicylaldiminato)zinc(II) Schiff-Base Complex Derived from trans-1,2-Diaminocyclohexane. INORGANICS 2018. [DOI: 10.3390/inorganics6010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this contribution is reported the synthesis, characterization, and aggregation properties in solution of a novel Zn(II) complex, (R)-2, derived from the enantiopure chiral trans-1,2-diaminocyclohexane and a substituted salicylaldehyde. Detailed 1H NMR, DOSY NMR, optical absorption, and circular dichroism spectroscopic studies and chemical evidence allowed to investigate the nature of aggregate species in solution. The high solubility of (R)-2 in solution of the non-coordinating chloroform solvent leads to formation of various aggregates, some of them consisting of large oligomers estimated to contain up to 27 monomeric units. The chiral trans-stereochemistry of the bridging diamine favors a different aggregation mode in these complexes, both in the oligomers and dimers, involving a tetrahedral coordination geometry around the metal center. Overall data suggest the formation of helical oligomers, (ZnL)n, in freshly prepared chloroform solutions which, by standing or heating, evolve towards a more thermodynamically stable, dinuclear double-helicate Zn2L2 dimer.
Collapse
|
14
|
Oliveri IP, Forte G, Consiglio G, Failla S, Di Bella S. Aggregates of Defined Stereochemical Scaffolds: A Study in Solution of a Zinc(II) Schiff Base Complex Derived from the Enantiopure trans-1,2-Cyclopentanediamine. Inorg Chem 2017; 56:14206-14213. [DOI: 10.1021/acs.inorgchem.7b02341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| | - Giuseppe Forte
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze del Farmaco, Università di Catania, I-95125 Catania, Italy
| |
Collapse
|
15
|
Yin HY, Tang J, Zhang JL. Introducing Metallosalens into Biological Studies: The Renaissance of Traditional Coordination Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700695] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; 100871 Beijing P. R. China
| | - Juan Tang
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; 100871 Beijing P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; 100871 Beijing P. R. China
| |
Collapse
|
16
|
Asatkar AK, Tripathi M, Panda S, Pande R, Zade SS. Cu(I) complexes of bis(methyl)(thia/selena) salen ligands: Synthesis, characterization, redox behavior and DNA binding studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:18-24. [PMID: 27458761 DOI: 10.1016/j.saa.2016.07.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Mononuclear cuprous complexes 1 and 2, [{CH3E(o-C6H4)CH=NCH2}2Cu]ClO4; E=S/Se, have been synthesized by the reaction of bis(methyl)(thia/selena) salen ligands and [Cu(CH3CN)4]ClO4. Both the products were characterized by elemental analysis, ESI-MS, FT-IR, 1H/13C/77Se NMR, and cyclic voltammetry. The complexes possess tetrahedral geometry around metal center with the N2S2/N2Se2 coordination core. Cyclic voltammograms of complexes 1 and 2 displayed reversible anodic waves at E1/2=+0.08V and +0.10V, respectively, corresponding to the Cu(I)/Cu(II) redox couple. DNA binding studies of both the complexes were performed applying absorbance, fluorescence and molecular docking techniques. Competitive binding experiment of complexes with ct-DNA against ethidium bromide is performed to predict the mode of binding. The results indicate the groove binding mode of complexes 1 and 2 to DNA. The binding constants revealed the strong binding affinity of complexes towards ct-DNA.
Collapse
Affiliation(s)
- Ashish K Asatkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741252 Nadia, WB, India.
| | - Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - Snigdha Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741252 Nadia, WB, India
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - Sanjio S Zade
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741252 Nadia, WB, India
| |
Collapse
|
17
|
More M, Pawal S, Lolage S, Chavan S. Syntheses, structural characterization, luminescence and optical studies of Ni(II) and Zn(II) complexes containing salophen ligand. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Forte G, Oliveri IP, Consiglio G, Failla S, Di Bella S. On the Lewis acidic character of bis(salicylaldiminato)zinc(ii) Schiff-base complexes: a computational and experimental investigation on a series of compounds varying the bridging diimine. Dalton Trans 2017; 46:4571-4581. [DOI: 10.1039/c7dt00574a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The electronic effects induced by the geometry of the 1,2-diimine bridge control the Lewis acidic character in a series of ZnII Shiff-base complexes.
Collapse
Affiliation(s)
- Giuseppe Forte
- Dipartimento di Scienze del Farmaco
- Università di Catania
- I-95125 Catania
- Italy
| | | | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| |
Collapse
|
19
|
Biswas N, Khanra S, Sarkar A, Bhattacharjee S, Prasad Mandal D, Chaudhuri A, Chakraborty S, Roy Choudhury C. One new azido bridged dinuclear copper(ii) thiosemicarbazide complex: synthesis, DNA/protein binding, molecular docking study and cytotoxicity activity. NEW J CHEM 2017. [DOI: 10.1039/c7nj01998j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biological potential of a copper(ii) complex found to exhibit in vitro antiproliferative activity towards two cell lines, AGS and A549 cancer cells.
Collapse
Affiliation(s)
- Niladri Biswas
- Department of Chemistry
- West Bengal State University
- Barasat
- India
| | - Sumit Khanra
- Department of Chemistry
- Indian Institute of Science Education and Research, Kolkata
- Mohanpur – 741 246
- India
| | - Arnab Sarkar
- Department of Zoology
- West Bengal State University
- Barasat
- India
| | | | | | - Ankur Chaudhuri
- Department of Microbiology
- West Bengal State University
- Barasat
- India
| | | | | |
Collapse
|
20
|
Jagadesan P, Whittemore T, Beirl T, Turro C, McGrier PL. Excited-State Intramolecular Proton-Transfer Properties of Three Tris(N-Salicylideneaniline)-Based Chromophores with Extended Conjugation. Chemistry 2016; 23:917-925. [PMID: 27859715 DOI: 10.1002/chem.201604315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 01/28/2023]
Abstract
The synthesis and photophysical properties of three tris(N-salicylideneaniline) (TSA) compounds containing 1,3,5-triarylbenzene, -tristyrylbenzene, and -tris(arylethynyl)benzene core units are reported. The TSA compounds underwent efficient excited-state intramolecular proton transfer (ESIPT) in solution and in solid state due to the preformed C=N⋅⋅⋅H-O hydrogen-bonded motifs of the structures. Steady-state fluorescence emission spectra of the TSA molecules revealed dual bands only in DMSO, and large Stokes shifts in other polar aprotic and protic solvents. Femtosecond transient absorption spectroscopic measurements in THF revealed lifetime values in the range of 14-16 ps for the excited-state keto-tautomer. The TSA compounds are also responsive to metal ions (Cu2+ and Zn2+ ) in DMSO, exhibit enhanced aggregate-induced emission (AIE) properties in DMSO/water mixtures, and are highly luminescent in the solid state.
Collapse
Affiliation(s)
- Pradeepkumar Jagadesan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Tyler Whittemore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Toni Beirl
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Claudia Turro
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Psaras L McGrier
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| |
Collapse
|
21
|
Consiglio G, Oliveri IP, Failla S, Di Bella S. Supramolecular Aggregates of Defined Stereochemical Scaffolds: Aggregation/Deaggregation in Schiff-Base Zinc(II) Complexes Derived from Enantiopure trans-1,2-Diaminocyclohexane. Inorg Chem 2016; 55:10320-10328. [DOI: 10.1021/acs.inorgchem.6b01580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| |
Collapse
|
22
|
Tang J, Zhang M, Yin HY, Jing J, Xie D, Xu P, Zhang JL. A photoactivatable Znsalen complex for super-resolution imaging of mitochondria in living cells. Chem Commun (Camb) 2016; 52:11583-6. [DOI: 10.1039/c6cc06531g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the first transition metal complex, Znsalen J-S-Alk, as a photoactivatable probe for super-resolution imaging of mitochondria.
Collapse
Affiliation(s)
- Juan Tang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Mingshu Zhang
- Key Laboratory of RNA Biology
- Institute of Biophysics
- Beijing Key Laboratory of Noncoding RNA
- Chinese Academy of Sciences
- Beijing
| | - Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jing Jing
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Da Xie
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Pingyong Xu
- Key Laboratory of RNA Biology
- Institute of Biophysics
- Beijing Key Laboratory of Noncoding RNA
- Chinese Academy of Sciences
- Beijing
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
23
|
Kocak A, Yilmaz H, Faiz O, Andac O. Experimental and theoretical studies on Cu(II) complex of N,N′-disalicylidene-2,3-diaminopyridine ligand reveal indirect evidence for DNA intercalation. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Vančo J, Šindelář Z, Dvořák Z, Trávníček Z. Iron-salophen complexes involving azole-derived ligands: A new group of compounds with high-level and broad-spectrum in vitro antitumor activity. J Inorg Biochem 2015; 142:92-100. [DOI: 10.1016/j.jinorgbio.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022]
|
25
|
Consiglio G, Oliveri IP, Punzo F, Thompson AL, Di Bella S, Failla S. Structure and aggregation properties of a Schiff-base zinc(ii) complex derived from cis-1,2-diaminocyclohexane. Dalton Trans 2015; 44:13040-8. [PMID: 26103462 DOI: 10.1039/c5dt01148e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of the bridging diamine upon the aggregation properties of a ZnII Schiff-base complex is reported. The X-ray crystal structure indicates the presence of an asymmetric dimer which is preserved even in solution.
Collapse
Affiliation(s)
- Giuseppe Consiglio
- Dipartimento di Ingegneria Industriale
- Università di Catania
- I-95125 Catania
- Italy
| | | | - Francesco Punzo
- Dipartimento di Scienze del Farmaco
- Sezione Chimica
- Università di Catania
- I-95125 Catania
- Italy
| | - Amber L. Thompson
- Chemical Crystallography
- Department of Chemistry
- University of Oxford
- Oxford OX1 3TA
- UK
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| | - Salvatore Failla
- Dipartimento di Ingegneria Industriale
- Università di Catania
- I-95125 Catania
- Italy
| |
Collapse
|
26
|
Xie D, Jing J, Cai YB, Tang J, Chen JJ, Zhang JL. Construction of an orthogonal ZnSalen/Salophen library as a colour palette for one- and two-photon live cell imaging. Chem Sci 2014. [DOI: 10.1039/c3sc53299b] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Oliveri IP, Failla S, Colombo A, Dragonetti C, Righetto S, Di Bella S. Synthesis, characterization, optical absorption/fluorescence spectroscopy, and second-order nonlinear optical properties of aggregate molecular architectures of unsymmetrical Schiff-base zinc(ii) complexes. Dalton Trans 2014; 43:2168-75. [DOI: 10.1039/c3dt53072h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Giannicchi I, Brissos R, Ramos D, Lapuente JD, Lima JC, Cort AD, Rodríguez L. Substituent Effects on the Biological Properties of Zn-Salophen Complexes. Inorg Chem 2013; 52:9245-53. [DOI: 10.1021/ic4004356] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ilaria Giannicchi
- Dipartimento di Chimica and
IMC-CNR Sezione Meccanismi di Reazione, Università La Sapienza, Box 34 Roma 62, 00185 Roma, Italy
| | - Rosa Brissos
- Departament de Química
Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - David Ramos
- Unitat de Toxicologia Experimental
i Ecotoxicologia, Parc Científic de Barcelona, c/Baldiri i Reixach, 10-12, 08028 Barcelona, Spain
| | - Joaquin de Lapuente
- Unitat de Toxicologia Experimental
i Ecotoxicologia, Parc Científic de Barcelona, c/Baldiri i Reixach, 10-12, 08028 Barcelona, Spain
| | - João Carlos Lima
- REQUIMTE, Departamento de Química,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal
| | - Antonella Dalla Cort
- Dipartimento di Chimica and
IMC-CNR Sezione Meccanismi di Reazione, Università La Sapienza, Box 34 Roma 62, 00185 Roma, Italy
| | - Laura Rodríguez
- Departament de Química
Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|