1
|
Dessin C, Schachtsiek T, Voss J, Abel AC, Neumann B, Stammler HG, Prota AE, Sewald N. Highly Cytotoxic Cryptophycin Derivatives with Modification in Unit D for Conjugation. Angew Chem Int Ed Engl 2024:e202416210. [PMID: 39324938 DOI: 10.1002/anie.202416210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Cytotoxic payloads for drug conjugates suitable for directed tumor therapy need to be highly potent and require a functional group for conjugation with the homing device (antibody, peptide, or small molecule). Cryptophycins are cyclodepsipeptides that stand out from the realm of natural products due to their extraordinarily high cytotoxicity. However, the installation of a suitable conjugation handle without compromising the toxicity is highly challenging. The unit D, natively 2-hydroxyisocaproic acid (leucic acid), was envisaged as a promising attachment site based on structural information from X-ray analysis. A versatile, scalable and efficient synthetic route towards conjugable cryptophycins with modification in unit D was developed and an array of new cryptophycin analogues was synthesized. Several derivatives, especially those containing lipophilic groups with low steric demand such as alkylated amino groups, exhibit low picomolar cytotoxicity often combined with efficacy against multidrug-resistant tumor cells. The newly established cryptophycin analogues comprise a broad range of relevant functional groups used as conjugation handles, among them amino, hydroxy, carboxy, as well as sulfur-containing derivatives. X-ray crystallographic analysis of a tubulin-bound cryptophycin together with quantitative structure activity relationship manifested rationales for the synthesis of most potent cryptophycin derivatives and further confirmed the suitability of modifications in unit D.
Collapse
Affiliation(s)
- Cedric Dessin
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Schachtsiek
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Jona Voss
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Anne-Catherine Abel
- PSI Center for Life Sciences, Forschungsstraße 111, 5232, Villigen PSI, Switzerland
| | - Beate Neumann
- Inorganic and Structural Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Inorganic and Structural Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Andrea E Prota
- PSI Center for Life Sciences, Forschungsstraße 111, 5232, Villigen PSI, Switzerland
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
2
|
Mihara Y, Kadoya H, Kakihana S, Kotoku N. Concise and Stereospecific Total Synthesis of Arenastatin A and Its Segment B Analogs. Molecules 2024; 29:4058. [PMID: 39274905 PMCID: PMC11396571 DOI: 10.3390/molecules29174058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
A novel and concise synthetic method for arenastatin A, a cytotoxic cyclic depsipeptide of marine origin, was developed in this study. The convergent assembly of the four segments, including the cross-metathesis reaction, gave a cyclization precursor, and Fmoc deprotection caused simultaneous macrocyclization. The Corey-Chaykovsky reaction using a chiral sulfur ylide afforded arenastatin A with complete stereoselectivity in the longest linear sequence of seven reaction steps from the known compound. Using this synthetic method, some analogs of segment B were prepared through a late-stage diversification strategy. The simple SN2 reaction of the thiolate toward the tosylate precursor, prepared using almost the same synthetic method as described above, provided the desired sulfide analogs.
Collapse
Affiliation(s)
| | | | | | - Naoyuki Kotoku
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (H.K.); (S.K.)
| |
Collapse
|
3
|
Qiao S, Cheng Z, Li F. Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization. Beilstein J Org Chem 2024; 20:721-733. [PMID: 38590533 PMCID: PMC10999997 DOI: 10.3762/bjoc.20.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Chemoenzymatic strategies that combine synthetic and enzymatic transformations offer efficient approaches to yield target molecules, which have been increasingly employed in the synthesis of bioactive natural products. In the biosynthesis of macrocyclic nonribosomal peptides, polyketides, and their hybrids, thioesterase (TE) domains play a significant role in late-stage macrocyclization. These domains can accept mimics of native substrates in vitro and exhibit potential for use in total synthesis. This review summarizes the recent advances of TE domains in the chemoenzymatic synthesis for these natural products that aim to address the common issues in classical synthetic approaches and increase synthetic efficiencies, which have the potential to facilitate further pharmaceutical research.
Collapse
Affiliation(s)
- Senze Qiao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhongyu Cheng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Fuzhuo Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203, China
| |
Collapse
|
4
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
5
|
Halogenation of Peptides and Proteins Using Engineered Tryptophan Halogenase Enzymes. Biomolecules 2022; 12:biom12121841. [PMID: 36551269 PMCID: PMC9775415 DOI: 10.3390/biom12121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Halogenation of bioactive peptides via incorporation of non-natural amino acid derivatives during chemical synthesis is a common strategy to enhance functionality. Bacterial tyrptophan halogenases efficiently catalyze regiospecific halogenation of the free amino acid tryptophan, both in vitro and in vivo. Expansion of their substrate scope to peptides and proteins would facilitate highly-regulated post-synthesis/expression halogenation. Here, we demonstrate novel in vitro halogenation (chlorination and bromination) of peptides by select halogenase enzymes and identify the C-terminal (G/S)GW motif as a preferred substrate. In a first proof-of-principle experiment, we also demonstrate chemo-catalyzed derivatization of an enzymatically chlorinated peptide, albeit with low efficiency. We further rationally derive PyrH halogenase mutants showing improved halogenation of the (G/S)GW motif, both as a free peptide and when genetically fused to model proteins with efficiencies up to 90%.
Collapse
|
6
|
Bendelac A, Benedetti F, Doublet-Decabras V, Lokovi R, Decalogne F, Bigot A. Fit-for-Purpose Synthesis of an Aza-Cryptophycin Analogue as the Payload for an Antibody–Drug Conjugate. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Audrey Bendelac
- ADC Conjugation Development, Sanofi, 13 Quai Jules Guesde, 94403 Vitry-sur-Seine Cedex, France
| | - Françoise Benedetti
- Early Development Chemistry, Sanofi, 13 Quai Jules Guesde, 94403 Vitry-sur-Seine Cedex, France
| | | | - Rachel Lokovi
- Early Development Chemistry, Sanofi, 13 Quai Jules Guesde, 94403 Vitry-sur-Seine Cedex, France
| | - François Decalogne
- Early Development Chemistry, Sanofi, 13 Quai Jules Guesde, 94403 Vitry-sur-Seine Cedex, France
| | - Antony Bigot
- Early Development Chemistry, Sanofi, 13 Quai Jules Guesde, 94403 Vitry-sur-Seine Cedex, France
| |
Collapse
|
7
|
Srivastava A, Shukla P. Cyanobacterial Peptides: Metabolic Potential and Environmental Fate. Protein Pept Lett 2022; 29:375-378. [DOI: 10.2174/0929866529666220314111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States of America
| | - Pratyoosh Shukla
- Enzyme
Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu
University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
8
|
Sana B, Ho T, Kannan S, Ke D, Li EHY, Seayad J, Verma CS, Duong HA, Ghadessy FJ. Engineered RebH Halogenase Variants Demonstrating a Specificity Switch from Tryptophan towards Novel Indole Compounds. Chembiochem 2021; 22:2791-2798. [PMID: 34240527 PMCID: PMC8518859 DOI: 10.1002/cbic.202100210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Indexed: 01/21/2023]
Abstract
Activating industrially important aromatic hydrocarbons by installing halogen atoms is extremely important in organic synthesis and often improves the pharmacological properties of drug molecules. To this end, tryptophan halogenase enzymes are potentially valuable tools for regioselective halogenation of arenes, including various industrially important indole derivatives and similar scaffolds. Although endogenous enzymes show reasonable substrate scope towards indole compounds, their efficacy can often be improved by engineering. Using a structure-guided semi-rational mutagenesis approach, we have developed two RebH variants with expanded biocatalytic repertoires that can efficiently halogenate several novel indole substrates and produce important pharmaceutical intermediates. Interestingly, the engineered enzymes are completely inactive towards their natural substrate tryptophan in spite of their high tolerance to various functional groups in the indole ring. Computational modelling and molecular dynamics simulations provide mechanistic insights into the role of gatekeeper residues in the substrate binding site and the dramatic switch in substrate specificity when these are mutated.
Collapse
Affiliation(s)
- Barindra Sana
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| | - Timothy Ho
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics InstituteAgency for Science Technology And Research (A*STAR)30 Biopolis Street, #07-01 MatrixSingapore138671Singapore
| | - Ding Ke
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| | - Eunice H. Y. Li
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Chandra S. Verma
- Bioinformatics InstituteAgency for Science Technology And Research (A*STAR)30 Biopolis Street, #07-01 MatrixSingapore138671Singapore
- School of Biological SciencesNanyang Technological University60 Nanyang DriveSingapore637551Singapore
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Hung A. Duong
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Farid J. Ghadessy
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| |
Collapse
|
9
|
Cirillo M, Giacomini D. Molecular Delivery of Cytotoxic Agents via Integrin Activation. Cancers (Basel) 2021; 13:299. [PMID: 33467465 PMCID: PMC7830197 DOI: 10.3390/cancers13020299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Integrins are cell adhesion receptors overexpressed in tumor cells. A direct inhibition of integrins was investigated, but the best inhibitors performed poorly in clinical trials. A gained attention towards these receptors arouse because they could be target for a selective transport of cytotoxic agents. Several active-targeting systems have been developed to use integrins as a selective cell entrance for some antitumor agents. The aim of this review paper is to report on the most recent results on covalent conjugates between integrin ligands and antitumor drugs. Cytotoxic drugs thus conjugated through specific linker to integrin ligands, mainly RGD peptides, demonstrated that the covalent conjugates were more selective against tumor cells and hopefully with fewer side effects than the free drugs.
Collapse
Affiliation(s)
| | - Daria Giacomini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
10
|
Borys F, Tobiasz P, Poterała M, Krawczyk H. Development of novel derivatives of stilbene and macrocyclic compounds as potent of anti-microtubule factors. Biomed Pharmacother 2020; 133:110973. [PMID: 33378993 DOI: 10.1016/j.biopha.2020.110973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022] Open
Abstract
Microtubules (composed of α- and β-tubulin heterodimers) ubiquitous cellular polymers are important components of the cytoskeleton and play diverse roles within the cell, such as maintenance of cell structure, protein trafficking or chromosomal segregation during cell division. The polymers of tubulin play a pivotal role in mitosis and are regarded as an excellent target for chemotherapeutic agents to treat cancer. This review presents a brief overview of the synthesis and mechanism of action of new compounds targeting the dynamic of microtubule - tubulin polymerization/depolymerization. It is divided into the following parts: section I concerns targeting microtubules- tubulin-binding drugs derivatives of stilbene. In section II there are presented photoswitchable inhibitors of microtubule dynamics. Section III concerns using macrocyclic compounds as tubulin inhibitors. In this review, the authors focused primarily on reports produced inthe last five years and the latest strategies in this field.
Collapse
Affiliation(s)
- Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland; The Nencki Institute of Experimental Biology Polish Academy of Sciences, Poland
| | - Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Marcin Poterała
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
11
|
Lai Q, Wu M, Wang R, Lai W, Tao Y, Lu Y, Wang Y, Yu L, Zhang R, Peng Y, Jiang X, Fu Y, Wang X, Zhang Z, Guo C, Liao W, Zhang Y, Kang T, Chen H, Yao Y, Gou L, Yang J. Cryptophycin-55/52 based antibody-drug conjugates: Synthesis, efficacy, and mode of action studies. Eur J Med Chem 2020; 199:112364. [PMID: 32402935 DOI: 10.1016/j.ejmech.2020.112364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 02/05/2023]
Abstract
Cryptophycin-52 (CR52), a tubulin inhibitor, exhibits promising antitumor activity in vitro (picomolar level) and in mouse xenograft models. However, the narrow therapeutic window in clinical trials limits its further development. Antibody-drug conjugate (ADC), formed by coupling cytotoxic compound (payload) to an antibody via a linker, can deliver drug to tumor locations in a targeted manner by antibody, enhancing the therapeutic effects and reducing toxic and side effects. In this study, we aim to explore the possibility of CR52-based ADC for tumor targeted therapy. Due to the lack of a coupling site in CR52, its prodrug cryptophycin-55 (CR55) containing a free hydroxyl was synthesized and conjugated to the model antibody trastuzumab (anti-HER2 antibody drug approved by FDA for breast cancer therapy) via the linkers based on Mc-NHS and Mc-Val-Cit-PAB-PNP. The average drug-to-antibody ratios (DARs) of trastuzumab-CR55 conjugates (named T-L1-CR55, T-L2-CR55, and T-L3-CR55) were 3.50, 3.29, and 3.35, respectively. These conjugates exhibited potent cytotoxicity in HER2-positive tumor cell lines with IC50 values at low nanomolar levels (0.58-1.19 nM). Further, they displayed significant antitumor activities at the doses of 10 mg/kg in established ovarian cancer (SKOV3) and gastric cancer (NCI-N87) xenograft models without overt toxicities. Finally, the drug releases were analyzed and the results indicated that T-L3-CR55 was able to effectively release CR55 and further epoxidized to CR52, which may be responsible for its best performance in antitumor activities. In conclusion, our results demonstrated that these conjugates have the potential for tumor targeted therapy, which provides insights to further research the CR55/CR52-based ADC for tumor therapy.
Collapse
Affiliation(s)
- Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ruixue Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Weirong Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yiran Tao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ying Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center/ Sichuan University, Chengdu, PR China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lin Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, PR China
| | - Ruirui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuyin Fu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Cuiyu Guo
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wei Liao
- The 32265 Army Hospital of PLA, Guangzhou, PR China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tairan Kang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Hao Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuqin Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center/ Sichuan University, Chengdu, PR China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
12
|
Design, Synthesis and Biological Evaluation of Jahanyne Analogs as Cell Cycle Arrest Inducers. Mar Drugs 2020; 18:md18030176. [PMID: 32210159 PMCID: PMC7142928 DOI: 10.3390/md18030176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
Jahanyne, a lipopeptide with a unique terminal alkynyl and OEP (2-(1-oxo-ethyl)-pyrrolidine) moiety, exhibits anticancer activity. We synthesized jahanyne and analogs modified at the OEP moiety, employing an α-fluoromethyl ketone (FMK) strategy. Preliminary bioassays indicated that compound 1b (FMK-jahanyne) exhibited decreased activities to varying degrees against most of the cancer cells tested, whereas the introduction of a fluorine atom to the α-position of a hydroxyl group (2b) enhanced activities against all lung cancer cells. Moreover, jahanyne and 2b could induce G0/G1 cell cycle arrest in a concentration-dependent manner.
Collapse
|
13
|
Linden A, Magirius JEF, Heimgartner H. Solid-state conformations of linear depsipeptide amides with an alternating sequence of α,α-disubstituted α-amino acid and α-hydroxy acid. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:1-9. [PMID: 31919301 DOI: 10.1107/s2053229619016073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/28/2019] [Indexed: 11/10/2022]
Abstract
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α-disubstituted α-amino acid and an α-hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)-Pms-Acp-(S)-Pms-Acp-(S)-Pms-Acp-NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, (3b), as well as in the related linear tetradepsipeptide amide (S)-Pms-Aib-(S)-Pms-Aib-NMe2, C28H37N3O6, (5a), the diastereoisomeric mixture (S,R)-Pms-Acp-(R,S)-Pms-Acp-NMe2/(R,S)-Pms-Acp-(R,S)-Pms-Acp-NMe2 (1:1), C32H41N3O6, (5b), and (R,S)-Mns-Acp-(S,R)-Mns-Acp-NMe2, C30H37N3O6, (5c) (Pms is phenyllactic acid, Acp is 1-aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β-turn conformation in the solid state, which is stabilized by intramolecular N-H...O hydrogen bonds. Whereas β-turns of type I (or I') are formed in the cases of (3b), (5a) and (5b), which contain phenyllactic acid, the torsion angles for (5c), which incorporates mandelic acid, indicate a β-turn in between type I and type III. Intermolecular N-H...O and O-H...O hydrogen bonds link the molecules of (3a) and (5b) into extended chains, and those of (5a) and (5c) into two-dimensional networks.
Collapse
Affiliation(s)
- Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - J E Florian Magirius
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Heinz Heimgartner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
14
|
Bioactive Peptides Produced by Cyanobacteria of the Genus Nostoc: A Review. Mar Drugs 2019; 17:md17100561. [PMID: 31569531 PMCID: PMC6835634 DOI: 10.3390/md17100561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteria of the genus Nostoc are widespread in all kinds of habitats. They occur in a free-living state or in association with other organisms. Members of this genus belong to prolific producers of bioactive metabolites, some of which have been recognized as potential therapeutic agents. Of these, peptides and peptide-like structures show the most promising properties and are of a particular interest for both research laboratories and pharmaceutical companies. Nostoc is a sole source of some lead compounds such as cytotoxic cryptophycins, antiviral cyanovirin-N, or the antitoxic nostocyclopeptides. Nostoc also produces the same bioactive peptides as other cyanobacterial genera, but they frequently have some unique modifications in the structure. This includes hepatotoxic microcystins and potent proteases inhibitors such as cyanopeptolins, anabaenopeptins, and microginins. In this review, we described the most studied peptides produced by Nostoc, focusing especially on the structure, the activity, and a potential application of the compounds.
Collapse
|
15
|
Borbély A, Figueras E, Martins A, Bodero L, Raposo Moreira Dias A, López Rivas P, Pina A, Arosio D, Gallinari P, Frese M, Steinkühler C, Gennari C, Piarulli U, Sewald N. Conjugates of Cryptophycin and RGD or isoDGR Peptidomimetics for Targeted Drug Delivery. ChemistryOpen 2019; 8:737-742. [PMID: 31275795 PMCID: PMC6587324 DOI: 10.1002/open.201900110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
RGD-cryptophycin and isoDGR-cryptophycin conjugates were synthetized by combining peptidomimetic integrin ligands and cryptophycin, a highly potent tubulin-binding antimitotic agent across lysosomally cleavable Val-Ala or uncleavable linkers. The conjugates were able to effectively inhibit binding of biotinylated vitronectin to integrin αvβ3, showing a binding affinity in the same range as that of the free ligands. The antiproliferative activity of the novel conjugates was evaluated on human melanoma cells M21 and M21-L with different expression levels of integrin αvβ3, showing nanomolar potency of all four compounds against both cell lines. Conjugates containing uncleavable linker show reduced activity compared to the corresponding cleavable conjugates, indicating efficient intracellular drug release in the case of cryptophycin-based SMDCs. However, no significant correlation between the in vitro biological activity of the conjugates and the integrin αvβ3 expression level was observed, which is presumably due to a non-integrin-mediated uptake. This reveals the complexity of effective and selective αvβ3 integrin-mediated drug delivery.
Collapse
Affiliation(s)
- Adina Borbély
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | - Ana Martins
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
- Exiris s.r.l.Via di Castel Romano 100IT-00128RomeItaly
| | - Lizeth Bodero
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 11IT-22100ComoItaly
| | | | - Paula López Rivas
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Arianna Pina
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM)CNRVia C. Golgi, 19IT-20133MilanoItaly
| | | | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | | | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 11IT-22100ComoItaly
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| |
Collapse
|
16
|
Octreotide Conjugates for Tumor Targeting and Imaging. Pharmaceutics 2019; 11:pharmaceutics11050220. [PMID: 31067748 PMCID: PMC6571972 DOI: 10.3390/pharmaceutics11050220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor targeting has emerged as an advantageous approach to improving the efficacy and safety of cytotoxic agents or radiolabeled ligands that do not preferentially accumulate in the tumor tissue. The somatostatin receptors (SSTRs) belong to the G-protein-coupled receptor superfamily and they are overexpressed in many neuroendocrine tumors (NETs). SSTRs can be efficiently targeted with octreotide, a cyclic octapeptide that is derived from native somatostatin. The conjugation of cargoes to octreotide represents an attractive approach for effective tumor targeting. In this study, we conjugated octreotide to cryptophycin, which is a highly cytotoxic depsipeptide, through the protease cleavable Val-Cit dipeptide linker using two different self-immolative moieties. The biological activity was investigated in vitro and the self-immolative part largely influenced the stability of the conjugates. Replacement of cryptophycin by the infrared cyanine dye Cy5.5 was exploited to elucidate the tumor targeting properties of the conjugates in vitro and in vivo. The compound efficiently and selectively internalized in cells overexpressing SSTR2 and accumulated in xenografts for a prolonged time. Our results on the in vivo properties indicate that octreotide may serve as an efficient delivery vehicle for tumor targeting.
Collapse
|
17
|
Borbély A, Figueras E, Martins A, Esposito S, Auciello G, Monteagudo E, Di Marco A, Summa V, Cordella P, Perego R, Kemker I, Frese M, Gallinari P, Steinkühler C, Sewald N. Synthesis and Biological Evaluation of RGD⁻Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics 2019; 11:E151. [PMID: 30939768 PMCID: PMC6523311 DOI: 10.3390/pharmaceutics11040151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cryptophycins are potent tubulin polymerization inhibitors with picomolar antiproliferative potency in vitro and activity against multidrug-resistant (MDR) cancer cells. Because of neurotoxic side effects and limited efficacy in vivo, cryptophycin-52 failed as a clinical candidate in cancer treatment. However, this class of compounds has emerged as attractive payloads for tumor-targeting applications. In this study, cryptophycin was conjugated to the cyclopeptide c(RGDfK), targeting integrin αvβ₃, across the protease-cleavable Val-Cit linker and two different self-immolative spacers. Plasma metabolic stability studies in vitro showed that our selected payload displays an improved stability compared to the parent compound, while the stability of the conjugates is strongly influenced by the self-immolative moiety. Cathepsin B cleavage assays revealed that modifications in the linker lead to different drug release profiles. Antiproliferative effects of Arg-Gly-Asp (RGD)⁻cryptophycin conjugates were evaluated on M21 and M21-L human melanoma cell lines. The low nanomolar in vitro activity of the novel conjugates was associated with inferior selectivity for cell lines with different integrin αvβ₃ expression levels. To elucidate the drug delivery process, cryptophycin was replaced by an infrared dye and the obtained conjugates were studied by confocal microscopy.
Collapse
Affiliation(s)
- Adina Borbély
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Ana Martins
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
| | - Simone Esposito
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Giulio Auciello
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Edith Monteagudo
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | | | - Vincenzo Summa
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Paola Cordella
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Raffaella Perego
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Isabell Kemker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Paola Gallinari
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
| | - Christian Steinkühler
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| |
Collapse
|
18
|
Cazzamalli S, Figueras E, Pethő L, Borbély A, Steinkühler C, Neri D, Sewald N. In Vivo Antitumor Activity of a Novel Acetazolamide-Cryptophycin Conjugate for the Treatment of Renal Cell Carcinomas. ACS OMEGA 2018; 3:14726-14731. [PMID: 30533574 PMCID: PMC6276201 DOI: 10.1021/acsomega.8b02350] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Traditional chemotherapeutics used in cancer therapy do not preferentially accumulate in tumor tissues. The conjugation to delivery vehicles like antibodies or small molecules has been proposed as a strategy to increase the tumor uptake and improve the therapeutic window of these drugs. Here, we report the synthesis and the biological evaluation of a novel small molecule-drug conjugate (SMDC) comprising a high-affinity bidentate acetazolamide derivative, targeting carbonic anhydrase IX (CAIX), and cryptophycin, a potent microtubule destabilizer. The biological activity of the novel SMDC was evaluated in vitro, measuring binding to the CAIX antigen by surface plasmon resonance and cytotoxicity against SKRC-52 cells. In vivo studies showed a delayed growth of tumors in nude mice bearing SKRC-52 renal cell carcinomas.
Collapse
Affiliation(s)
- Samuele Cazzamalli
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Eduard Figueras
- Department
of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Lilla Pethő
- Department
of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
- MTA-ELTE
Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, H-1117 Budapest, Hungary
| | - Adina Borbély
- Department
of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | | | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Norbert Sewald
- Department
of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
19
|
Figueras E, Borbély A, Ismail M, Frese M, Sewald N. Novel unit B cryptophycin analogues as payloads for targeted therapy. Beilstein J Org Chem 2018; 14:1281-1286. [PMID: 29977395 PMCID: PMC6009196 DOI: 10.3762/bjoc.14.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Cryptophycins are naturally occurring cytotoxins with great potential for chemotherapy. Since targeted therapy provides new perspectives for treatment of cancer, new potent analogues of cytotoxic agents containing functional groups for conjugation to homing devices are required. We describe the design, synthesis and biological evaluation of three new unit B cryptophycin analogues. The O-methyl group of the unit B D-tyrosine analogue was replaced by an O-(allyloxyethyl) moiety, an O-(hydroxyethyl) group, or an O-(((azidoethoxy)ethoxy)ethoyxethyl) substituent. While the former two maintain cytotoxicity in the subnanomolar range, the attachment of the triethylene glycol spacer with a terminal azide results in a complete loss of activity. Docking studies of the novel cryptophycin analogues to β-tubulin provided a rationale for the observed cytotoxicities.
Collapse
Affiliation(s)
- Eduard Figueras
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Adina Borbély
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Mohamed Ismail
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Marcel Frese
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Neubauer PR, Widmann C, Wibberg D, Schröder L, Frese M, Kottke T, Kalinowski J, Niemann HH, Sewald N. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS One 2018; 13:e0196797. [PMID: 29746521 PMCID: PMC5945002 DOI: 10.1371/journal.pone.0196797] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/19/2018] [Indexed: 12/04/2022] Open
Abstract
Flavin-dependent halogenases catalyse halogenation of aromatic compounds. In most cases, this reaction proceeds with high regioselectivity and requires only the presence of FADH2, oxygen, and halide salts. Since marine habitats contain high concentrations of halides, organisms populating the oceans might be valuable sources of yet undiscovered halogenases. A new Hidden-Markov-Model (HMM) based on the PFAM tryptophan halogenase model was used for the analysis of marine metagenomes. Eleven metagenomes were screened leading to the identification of 254 complete or partial putative flavin-dependent halogenase genes. One predicted halogenase gene (brvH) was selected, codon optimised for E. coli, and overexpressed. Substrate screening revealed that this enzyme represents an active flavin-dependent halogenase able to convert indole to 3-bromoindole. Remarkably, bromination prevails also in a large excess of chloride. The BrvH crystal structure is very similar to that of tryptophan halogenases but reveals a substrate binding site that is open to the solvent instead of being covered by a loop.
Collapse
Affiliation(s)
- Pia R. Neubauer
- Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| | - Christiane Widmann
- Structural Biochemistry (BCIV), Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Lea Schröder
- Physical Chemistry (PCIII), Bielefeld University, Bielefeld, Germany
| | - Marcel Frese
- Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Physical Chemistry (PCIII), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Hartmut H. Niemann
- Structural Biochemistry (BCIV), Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
21
|
Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy. Molecules 2017; 22:molecules22081281. [PMID: 28763044 PMCID: PMC6152078 DOI: 10.3390/molecules22081281] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/29/2017] [Indexed: 11/16/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of highly potent biopharmaceutical drugs generated by conjugating cytotoxic drugs with specific monoclonal antibodies through appropriate linkers. Specific antibodies used to guide potent warheads to tumor tissues can effectively reduce undesired side effects of the cytotoxic drugs. An in-depth understanding of antibodies, linkers, conjugation strategies, cytotoxic drugs, and their molecular targets has led to the successful development of several approved ADCs. These ADCs are powerful therapeutics for cancer treatment, enabling wider therapeutic windows, improved pharmacokinetic/pharmacodynamic properties, and enhanced efficacy. Since tubulin inhibitors are one of the most successful cytotoxic drugs in the ADC armamentarium, this review focuses on the progress in tubulin inhibitor-based ADCs, as well as lessons learned from the unsuccessful ADCs containing tubulin inhibitors. This review should be helpful to facilitate future development of new generations of tubulin inhibitor-based ADCs for cancer therapy.
Collapse
|
22
|
Weiss C, Figueras E, Borbely AN, Sewald N. Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting. J Pept Sci 2017; 23:514-531. [PMID: 28661555 DOI: 10.1002/psc.3015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Cryptophycins are a class of 16-membered highly cytotoxic macrocyclic depsipeptides isolated from cyanobacteria. The biological activity is based on their ability to interact with tubulin. They interfere with microtubule dynamics and prevent microtubules from forming correct mitotic spindles, which causes cell-cycle arrest and apoptosis. Their strong antiproliferative activities with 100-fold to 1000-fold potency compared with those of paclitaxel and vinblastine have been observed. Cryptophycins are highly promising drug candidates, as their biological activity is not negatively affected by P-glycoprotein, a drug efflux system commonly found in multidrug-resistant cancer cell lines and solid tumors. Cryptophycin-52 had been investigated in phase II clinical trials but failed because of its high neurotoxicity. Recently, cryptophycin conjugates with peptides and antibodies have been developed for targeted delivery in tumor therapy. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christine Weiss
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Adina N Borbely
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| |
Collapse
|
23
|
Goswami D, Koli MR, Chatterjee S, Chattopadhyay S, Sharma A. syn-Selective crotylation of aldehydes using bismuth-crotyl bromide-(1-butyl-3-methylimidazolium bromide) combination: some synthetic applications. Org Biomol Chem 2017; 15:3756-3774. [PMID: 28406519 DOI: 10.1039/c7ob00626h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Bi-[bmim][Br] combination has been found to offer high syn-selectivity in the crotylation of aldehydes with crotyl bromide using practically stoichiometric amounts of the reagents. The room temperature ionic liquid (RTIL), [bmim][Br], activated Bi metal in the presence of oxygen to produce crotylbismuthdibromide, which reacted with the aldehydes at room temperature. The major anti-syn diastereomeric product obtained from the crotylation of (R)-cyclohexylideneglyceraldehyde was utilized for the synthesis of dictyostatin and cryptophycin segments, and (+)-cis-aerangis lactone, using standard synthetic protocols.
Collapse
Affiliation(s)
- Dibakar Goswami
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | | | | | | | | |
Collapse
|
24
|
Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep 2016; 33:348-64. [PMID: 26758451 DOI: 10.1039/c5np00097a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyanobacteria are a prolific source of structurally unique and biologically active natural products that derive from intriguing biochemical pathways. Advancements in genome sequencing have accelerated the identification of unique modular biosynthetic gene clusters in cyanobacteria and reveal a wealth of unusual enzymatic reactions involved in their construction. This article examines several interesting mechanistic transformations involved in cyanobacterial secondary metabolite biosynthesis with a particular focus on marine derived modular polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS) and combinations thereof to form hybrid natural products. Further, we focus on the cyanobacterial genus Moorea and the co-evolution of its enzyme cassettes that create metabolic diversity. Progress in the development of heterologous expression systems for cyanobacterial gene clusters along with chemoenzymatic synthesis makes it possible to create new analogs. Additionally, phylum-wide genome sequencing projects have enhanced the discovery rate of new natural products and their distinctive enzymatic reactions. Summarizing, cyanobacterial biosynthetic gene clusters encode for a large toolbox of novel enzymes that catalyze unique chemical reactions, some of which may be useful in synthetic biology.
Collapse
Affiliation(s)
- Karin Kleigrewe
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| |
Collapse
|
25
|
Cyanobacterial Metabolite Calothrixins: Recent Advances in Synthesis and Biological Evaluation. Mar Drugs 2016; 14:17. [PMID: 26771620 PMCID: PMC4728514 DOI: 10.3390/md14010017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/30/2022] Open
Abstract
The marine environment is host to unparalleled biological and chemical diversity, making it an attractive resource for the discovery of new therapeutics for a plethora of diseases. Compounds that are extracted from cyanobacteria are of special interest due to their unique structural scaffolds and capacity to produce potent pharmaceutical and biotechnological traits. Calothrixins A and B are two cyanobacterial metabolites with a structural assembly of quinoline, quinone, and indole pharmacophores. This review surveys recent advances in the synthesis and evaluation of the biological activities of calothrixins. Due to the low isolation yields from the marine source and the promise this scaffold holds for anticancer and antimicrobial drugs, organic and medicinal chemists around the world have embarked on developing efficient synthetic routes to produce calothrixins. Since the first review appeared in 2009, 11 novel syntheses of calothrixins have been published in the efforts to develop methods that contain fewer steps and higher-yielding reactions. Calothrixins have shown their potential as topoisomerase I poisons for their cytotoxicity in cancer. They have also been observed to target various aspects of RNA synthesis in bacteria. Further investigation into the exact mechanism for their bioactivity is still required for many of its analogs.
Collapse
|
26
|
Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol (Amst) 2015; 2015:690916. [PMID: 26484003 PMCID: PMC4592889 DOI: 10.1155/2015/690916] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 11/17/2022] Open
Abstract
Microtubules are dynamic and structural cellular components involved in several cell functions, including cell shape, motility, and intracellular trafficking. In proliferating cells, they are essential components in the division process through the formation of the mitotic spindle. As a result of these functions, tubulin and microtubules are targets for anticancer agents. Microtubule-targeting agents can be divided into two groups: microtubule-stabilizing, and microtubule-destabilizing agents. The former bind to the tubulin polymer and stabilize microtubules, while the latter bind to the tubulin dimers and destabilize microtubules. Alteration of tubulin-microtubule equilibrium determines the disruption of the mitotic spindle, halting the cell cycle at the metaphase-anaphase transition and, eventually, resulting in cell death. Clinical application of earlier microtubule inhibitors, however, unfortunately showed several limits, such as neurological and bone marrow toxicity and the emergence of drug-resistant tumor cells. Here we review several natural and synthetic microtubule-targeting agents, which showed antitumor activity and increased efficacy in comparison to traditional drugs in various preclinical and clinical studies. Cryptophycins, combretastatins, ombrabulin, soblidotin, D-24851, epothilones and discodermolide were used in clinical trials. Some of them showed antiangiogenic and antivascular activity and others showed the ability to overcome multidrug resistance, supporting their possible use in chemotherapy.
Collapse
|
27
|
Kumar A, Kumar M, Sharma S, Guru SK, Bhushan S, Shah BA. Design and synthesis of a new class of cryptophycins based tubulin inhibitors. Eur J Med Chem 2015; 93:55-63. [DOI: 10.1016/j.ejmech.2014.11.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/10/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
|
28
|
Vasudevan N, Kashinath K, Reddy DS. Total Synthesis of Deoxy-solomonamide B by Mimicking Biogenesis. Org Lett 2014; 16:6148-51. [DOI: 10.1021/ol503011g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- N. Vasudevan
- CSIR-National Chemical Laboratory, Division
of Organic Chemistry, Dr. Homi Bhabha Road, Pune, 411008, India
| | - K. Kashinath
- CSIR-National Chemical Laboratory, Division
of Organic Chemistry, Dr. Homi Bhabha Road, Pune, 411008, India
| | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory, Division
of Organic Chemistry, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
29
|
Frese M, Guzowska PH, Voß H, Sewald N. Regioselective Enzymatic Halogenation of Substituted Tryptophan Derivatives using the FAD-Dependent Halogenase RebH. ChemCatChem 2014. [DOI: 10.1002/cctc.201301090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Kalesse M, Cordes M, Symkenberg G, Lu HH. The vinylogous Mukaiyama aldol reaction (VMAR) in natural product synthesis. Nat Prod Rep 2014; 31:563-94. [DOI: 10.1039/c3np70102f] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review will provide an overview on the recent developments of polyketide synthesis using the vinylogous Mukaiyama aldol reaction for the construction of advanced intermediates. In general, four different motifs can be constructed efficiently using the recent developments of asymmetric variants of this strategy.
Collapse
Affiliation(s)
- Markus Kalesse
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover, Germany
- Helmholtz Centre for Infection Research (HZI)
- Braunschweig, Germany
| | - Martin Cordes
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover, Germany
| | - Gerrit Symkenberg
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover, Germany
| | - Hai-Hua Lu
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover, Germany
| |
Collapse
|