1
|
Goethem CV, Shen Y, Chi HY, Mensi M, Zhao K, Nijmeijer A, Just PE, Agrawal KV. Advancing Molecular Sieving via Å-Scale Pore Tuning in Bottom-Up Graphene Synthesis. ACS NANO 2024. [PMID: 38324377 PMCID: PMC10883125 DOI: 10.1021/acsnano.3c11885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min-1 to over -5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.
Collapse
Affiliation(s)
- Cédric Van Goethem
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Yueqing Shen
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Heng-Yu Chi
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Mounir Mensi
- X-ray Diffraction and Surface Analytics Platform (XRD-SAP), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Kangning Zhao
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Arian Nijmeijer
- Shell Global Solutions International B.V., P.O. Box 38000, 1030 BN Amsterdam, The Netherlands
- Inorganic Membranes, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Paul-Emmanuel Just
- Shell Global Solutions International B.V., P.O. Box 38000, 1030 BN Amsterdam, The Netherlands
| | - Kumar Varoon Agrawal
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| |
Collapse
|
2
|
Liu P, Milletto C, Monti S, Zhu C, Mathew AP. Design of ultrathin hybrid membranes with improved retention efficiency of molecular dyes. RSC Adv 2019; 9:28657-28669. [PMID: 35529612 PMCID: PMC9071203 DOI: 10.1039/c9ra04435c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022] Open
Abstract
Nanocellulose–graphene oxide ultrathin coatings for water purification membranes with excellent swelling resistance, permeability and dyes retention are presented.
Collapse
Affiliation(s)
- Peng Liu
- Division of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
| | - Charles Milletto
- Division of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
| | - Susanna Monti
- CNR-ICCOM
- Institute of Chemistry of Organometallic Compounds
- I-56124 Pisa
- Italy
| | - Chuantao Zhu
- Division of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
| | - Aji P. Mathew
- Division of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
| |
Collapse
|
3
|
Gao J, Xu Z, Chen S, Bharathi MS, Zhang YW. Computational Understanding of the Growth of 2D Materials. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Junfeng Gao
- Institute of High Performance Computing; A*STAR Singapore 138632 Singapore
| | - Ziwei Xu
- School of Materials Science & Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Shuai Chen
- Institute of High Performance Computing; A*STAR Singapore 138632 Singapore
| | | | - Yong-Wei Zhang
- Institute of High Performance Computing; A*STAR Singapore 138632 Singapore
| |
Collapse
|
4
|
Zhu C, Monti S, Mathew AP. Cellulose Nanofiber-Graphene Oxide Biohybrids: Disclosing the Self-Assembly and Copper-Ion Adsorption Using Advanced Microscopy and ReaxFF Simulations. ACS NANO 2018; 12:7028-7038. [PMID: 29889498 DOI: 10.1021/acsnano.8b02734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The self-assembly of nanocellulose and graphene oxide into highly porous biohybrid materials has inspired the design and synthesis of multifunctional membranes for removing water pollutants. The mechanisms of self-assembly, metal ion capture, and cluster formation on the biohybrids at the nano- and molecular scales are quite complex. Their elucidation requires evidence from the synergistic combination of experimental data and computational models. The AFM-based microscopy studies of (2,2,6,6-tetramethylpiperidine-1-oxylradical)-mediated oxidized cellulose nanofibers (TOCNFs), graphene oxide (GO), and their biohybrid membranes provide strong, direct evidence of self-assembly; small GO nanoparticles first attach and accumulate along a single TOCNF fiber, while the long, flexible TOCNF filaments wrap around the flat, wide GO planes, thus forming an amorphous and porous biohybrid network. The layered structure of the TOCNFs and GO membrane, derived from the self-assembly and its surface properties before and after the adsorption of Cu(II), is investigated by advanced microscopy techniques and is further clarified by the ReaxFF molecular dynamics (MD) simulations. The dynamics of the Cu(II)-ion capture by the TOCNF and GO membranes in solution and the ion cluster formation during drying are confirmed by the MD simulations. The results of this multidisciplinary investigation move the research one step forward by disclosing specific aspects of the self-assembly behavior of biospecies and suggesting effective design strategies to control the pore size and robust materials for industrial applications.
Collapse
Affiliation(s)
- Chuantao Zhu
- Division of Materials and Environmental Chemistry , Stockholm University , Stockholm , 10691 , Sweden
| | - Susanna Monti
- CNR-Institute of Chemistry of Organometallic Compounds , Area della Ricerca, Via Moruzzi 1 , 56124 Pisa , Italy
| | - Aji P Mathew
- Division of Materials and Environmental Chemistry , Stockholm University , Stockholm , 10691 , Sweden
| |
Collapse
|
5
|
Dong Y, Gahl MT, Zhang C, Lin J. Computational study of precision nitrogen doping on graphene nanoribbon edges. NANOTECHNOLOGY 2017; 28:505602. [PMID: 29087366 DOI: 10.1088/1361-6528/aa9727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nitrogen doping in graphene is important for applications spanning from electronics to metal-free electrocatalysts. Despite much experimental study, limited theoretic work has been done in understanding the mechanism of the doping process, especially from a precision perspective. Herein, we present a computational study on precision nitrogen doping on edges of graphene nanoribbons (GNRs) by combining molecular dynamics (MD) simulation at a time scale of 40 ns and density function theory (DFT) calculation. In the MD study both ammonia and acetonitrile were used as nitrogen sources. MD results revealed that the ammonia produces almost all amine-type dopants, while the acetonitrile produces a considerable amount of pyrrolic and pyridinic nitrogen dopants which are beneficial to electronics and electrocatalysts. Results also show that the concentration of pyrrolic and pyridinic dopants can be precisely controlled by the edge geometries of the GNRs. Furthermore, DFT calculation illustrated the reaction mechanism in these different types of the GNRs when using acetonitrile as the nitrogen source. The calculated energies in different reaction stages indicate the stability of dopants on various GNRs, agreeing well with the MD results. The disclosed mechanism of controllable nitrogen doping on the edges of the GNRs would provide guidance to experimental realization, paving new routes to widespread applications.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States of America
| | | | | | | |
Collapse
|
6
|
Tetlow H, Ford IJ, Kantorovich L. A free energy study of carbon clusters on Ir(111): Precursors to graphene growth. J Chem Phys 2017; 146:044702. [DOI: 10.1063/1.4974335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- H. Tetlow
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, United Kingdom
| | - I. J. Ford
- Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - L. Kantorovich
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
7
|
Chen S, Xiong W, Zhou YS, Lu YF, Zeng XC. An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing. NANOSCALE 2016; 8:9746-55. [PMID: 27117235 DOI: 10.1039/c5nr08614k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp(3)-C atoms in a-C are quickly converted to sp(2)-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp(3)-carbon or from sp(2)-carbon exhibit marked differences.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | | | | | | | | |
Collapse
|
8
|
Xu Z, Yan T, Liu G, Qiao G, Ding F. Large scale atomistic simulation of single-layer graphene growth on Ni(111) surface: molecular dynamics simulation based on a new generation of carbon-metal potential. NANOSCALE 2016; 8:921-929. [PMID: 26658834 DOI: 10.1039/c5nr06016h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results.
Collapse
Affiliation(s)
- Ziwei Xu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, Peoples Republic of China
| | - Tianying Yan
- Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, Peoples Republic of China
| | - Guiwu Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, Peoples Republic of China
| | - Guanjun Qiao
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, Peoples Republic of China
| | - Feng Ding
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
| |
Collapse
|
9
|
|
10
|
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. NANOSCALE 2015; 7:4598-810. [PMID: 25707682 DOI: 10.1039/c4nr01600a] [Citation(s) in RCA: 1000] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
Collapse
Affiliation(s)
- Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Page AJ, Ding F, Irle S, Morokuma K. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:036501. [PMID: 25746411 DOI: 10.1088/0034-4885/78/3/036501] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The discovery of carbon nanotubes (CNTs) and graphene over the last two decades has heralded a new era in physics, chemistry and nanotechnology. During this time, intense efforts have been made towards understanding the atomic-scale mechanisms by which these remarkable nanostructures grow. Molecular simulations have made significant contributions in this regard; indeed, they are responsible for many of the key discoveries and advancements towards this goal. Here we review molecular simulations of CNT and graphene growth, and in doing so we highlight the many invaluable insights gained from molecular simulations into these complex nanoscale self-assembly processes. This review highlights an often-overlooked aspect of CNT and graphene formation-that the two processes, although seldom discussed in the same terms, are in fact remarkably similar. Both can be viewed as a 0D → 1D → 2D transformation, which converts carbon atoms (0D) to polyyne chains (1D) to a complete sp(2)-carbon network (2D). The difference in the final structure (CNT or graphene) is determined only by the curvature of the catalyst and the strength of the carbon-metal interaction. We conclude our review by summarizing the present shortcomings of CNT/graphene growth simulations, and future challenges to this important area.
Collapse
Affiliation(s)
- A J Page
- Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | | | | | | |
Collapse
|
12
|
Bal KM, Neyts EC. On the time scale associated with Monte Carlo simulations. J Chem Phys 2014; 141:204104. [DOI: 10.1063/1.4902136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Kristof M. Bal
- Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Erik C. Neyts
- Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| |
Collapse
|
13
|
Weatherup RS, Amara H, Blume R, Dlubak B, Bayer BC, Diarra M, Bahri M, Cabrero-Vilatela A, Caneva S, Kidambi PR, Martin MB, Deranlot C, Seneor P, Schloegl R, Ducastelle F, Bichara C, Hofmann S. Interdependency of subsurface carbon distribution and graphene-catalyst interaction. J Am Chem Soc 2014; 136:13698-708. [PMID: 25188018 PMCID: PMC4195372 DOI: 10.1021/ja505454v] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Indexed: 01/25/2023]
Abstract
The dynamics of the graphene-catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene-catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10(-6)-10(-3) mbar). A further hydrocarbon pressure increase (to ∼10(-1) mbar) leads to weakening of the graphene-Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature.
Collapse
Affiliation(s)
- Robert S. Weatherup
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Hakim Amara
- Laboratoire
d’Etude des Microstructures, ONERA-CNRS,
BP 72, 92322 Châtillon cedex, France
| | - Raoul Blume
- Helmholtz-Zentrum
Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Bruno Dlubak
- Unité
Mixte de Physique CNRS/Thales, 91767 Palaiseau, France
- University
of Paris-Sud, 91405 Orsay, France
| | - Bernhard C. Bayer
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Mamadou Diarra
- Aix-Marseille
Université CNRS, CINaM UMR 7325, 13288 Marseille, France
- Physics and
Materials Science Research Unit, University
of Luxembourg, L-1511, Luxembourg, Luxembourg
| | - Mounib Bahri
- Laboratoire
d’Etude des Microstructures, ONERA-CNRS,
BP 72, 92322 Châtillon cedex, France
| | | | - Sabina Caneva
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Piran R. Kidambi
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Marie-Blandine Martin
- Unité
Mixte de Physique CNRS/Thales, 91767 Palaiseau, France
- University
of Paris-Sud, 91405 Orsay, France
| | - Cyrile Deranlot
- Unité
Mixte de Physique CNRS/Thales, 91767 Palaiseau, France
- University
of Paris-Sud, 91405 Orsay, France
| | - Pierre Seneor
- Unité
Mixte de Physique CNRS/Thales, 91767 Palaiseau, France
- University
of Paris-Sud, 91405 Orsay, France
| | | | - François Ducastelle
- Laboratoire
d’Etude des Microstructures, ONERA-CNRS,
BP 72, 92322 Châtillon cedex, France
| | | | - Stephan Hofmann
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| |
Collapse
|
14
|
Shibuta Y, Arifin R, Shimamura K, Oguri T, Shimojo F, Yamaguchi S. Low reactivity of methane on copper surface during graphene synthesis via CVD process: Ab initio molecular dynamics simulation. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.06.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Wu P, Zhang W, Li Z, Yang J. Mechanisms of graphene growth on metal surfaces: theoretical perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2136-2150. [PMID: 24687872 DOI: 10.1002/smll.201303680] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Graphene is an important material with unique electronic properties. Aiming to obtain high quality samples at a large scale, graphene growth on metal surfaces has been widely studied. An important topic in these studies is the atomic scale growth mechanism, which is the precondition for a rational optimization of growth conditions. Theoretical studies have provided useful insights for understanding graphene growth mechanisms, which are reviewed in this article. On the mostly used Cu substrate, graphene growth is found to be more complicated than a simple adsorption-dehydrogenation-growth model. Growth on Ni surface is precipitation dominated. On surfaces with a large lattice mismatch to graphene, epitaxial geometry determin a robust nonlinear growth behavior. Further progresses in understanding graphene growth mechanisms is expected with intense theoretical studies using advanced simulation techniques, which will make a guided design of growth protocols practical.
Collapse
Affiliation(s)
- Ping Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | | | | | | |
Collapse
|
16
|
Elliott JA, Shibuta Y, Amara H, Bichara C, Neyts EC. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. NANOSCALE 2013; 5:6662-6676. [PMID: 23774798 DOI: 10.1039/c3nr01925j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation step may play a key role in the transformation from amorphous carbon to graphene on the metal surface. We conclude that achieving the conditions under which this complementary crystallisation process can occur may be a promising method to gain better control over the growth processes of both graphene from flat metal surfaces and CNTs from catalyst nanoparticles.
Collapse
Affiliation(s)
- James A Elliott
- Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
| | | | | | | | | |
Collapse
|