1
|
Zhu L, Shim J, Huang Y, Armstrong JN, Meng T, Ren S. Nacre-Inspired Hybrid Multilayer Insulation Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54467-54474. [PMID: 39344969 DOI: 10.1021/acsami.4c12012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Superinsulation aerogels are characterized by low tensile strength and brittleness due to their high porosity. To address these limitations, multiscale architectural design inspired by nacre can be employed. This materials design approach offers a promising strategy for enhancing the mechanical strength of aerogel thermal insulation. In this study, we present nacre-inspired multilayer cellulose-silica aerogel configurations. The cellulose "brick" network imparts structural strength to effectively redistribute energy, while the nanoporous "mortar" silica blocks heat transfer, maintaining insulation and fire retardance. The multilayer composites, with a layering configuration of five cellulose layers with four silica layers (5 + 4) and a cellulose layer thickness of 1.42 mm, exhibit a thermal conductivity of 31.3 mW/(m·K), a flexural modulus of 505 MPa, and an impact strength of 7.33 kJ/m2. The hydrophobic composite shows a water contact angle of 127°, enhanced soundproofing with a 27% noise reduction, and a carbon footprint of 0.49 kgCO2eq/kg. The multilayer cellulose-silica aerogel design provides a robust, eco-friendly thermal insulation solution for green building applications.
Collapse
Affiliation(s)
- Long Zhu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jongmin Shim
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jason N Armstrong
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Taotao Meng
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Wang Y, Li J, Li Q, Xu L, Ai Y, Liu W, Zhou Y, Zhang B, Guo N, Cao B, Qu J, Zhang Y. Effective amendment of cadmium in water and soil before and after aging of nitrogen-doped biochar: Preparation optimization, removal efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135356. [PMID: 39094312 DOI: 10.1016/j.jhazmat.2024.135356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Nitrogen-doped biochar (NBC) is a green material for remediating heavy metal pollution, but it undergoes aging under natural conditions, affecting its interaction with heavy metals. The preparation conditions of NBC were optimized using response surface methodology (RSM), and NBC was subjected to five different aging treatments to analyze the removal efficiency of Cd(II) and soil remediation capability before and after aging. The results indicated that NBC achieved optimal performance with a mass ratio of 5:2.43, an immersion time of 10.66 h, and a pyrolysis temperature of 900 °C. Aging diminished NBC's adsorption capacity for Cd(II) but did not change the main removal mechanism of monolayer chemical adsorption. Freeze-thaw cycles (FT), UV aging (L), and composite aging (U) treatments increased the proportion of bioavailable-Cd, and all aging treatments facilitated the conversion of potentially bioavailable-Cd to non-bioavailable-Cd. The application of NBC and five aged NBCs reduced the proportion of bioavailable-Cd in the soil through precipitation and complexation, increasing the proportion of non-bioavailable-Cd. Aging modifies the physicochemical properties of NBC, thus influencing soil characteristics and ultimately diminishing NBC's ability to passivate Cd in the soil. This study provides reference for the long-term application of biochar in heavy metal-contaminated environments.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiaona Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Liang Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Ai
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yutong Zhou
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Boyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Nan Guo
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
4
|
Dwivedi A, Gupta S. Carbon dioxide sequestration in mortars with excavated soil: Engineering performances and environmental benefits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170285. [PMID: 38278222 DOI: 10.1016/j.scitotenv.2024.170285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Globally, substantial volume of excavated soils is generated during construction and demolition activities, which can be utilized in the manufacturing stabilized earth-based construction materials. Furthermore, increasing amount of CO2 is being released into the environment from growing industrial operations that can sequestered in earth-based materials without compromising the engineering properties. This article attempts to explore the effect of CO2 sequestration through accelerated carbonation curing on engineering properties, micro-structure and phase composition of cement-lime stabilized soil mortars. Lateritic soil (clay content of 42 %) is used to replace 25 % and 50 % of natural sand by mass. The experimental findings demonstrate an increase in CO2 uptake by 15-23 % and 33-40 % due to addition of 25 % and 50 % soil respectively compared to control (0 % soil). Precipitation of meta-stable calcium carbonates majorly contributes to the total CO2 uptake, accounting for 62-69 % and 78-87 % of the carbonates formed in 25 % soil-mortars and 50 % soil mortars. These are substantially higher compared to 40-50 % in the case of control mixes. The mentioned finding is attributed to the formation of additional calcium-silicate-hydrate and calcium-aluminate-hydrate due to clay-lime reaction, that binds CO2 and precipitate meta-stable polymorphs of calcium carbonate. Addition of lime and carbon sequestration are found to substantially enhance 1-day strength of cement-soil and cement-lime-soil mortars by 31-36 %, although no prominent effect at 7-day and 28-day marks are observed. Furthermore, capillary water absorption at 28-day age is reduced by 18-31 % in lime-added cement-soil mortars compared to the ones without lime, that reduces moisture sensitivity of the mortars. Overall, the carbon sequestered mortars demonstrate satisfactory strength (20-37 MPa) and water absorption performance of the stabilized mortars for masonry applications, which will provide a promising means to manufacture low-carbon and more durable construction products.
Collapse
Affiliation(s)
- Ashutosh Dwivedi
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India
| | - Souradeep Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Nims C, Johnson JE. Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations. GEOBIOLOGY 2022; 20:743-763. [PMID: 36087062 PMCID: PMC9826415 DOI: 10.1111/gbi.12523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Marine chemical sedimentary deposits known as Banded Iron Formations (BIFs) archive Archean ocean chemistry and, potentially, signs of ancient microbial life. BIFs contain a diversity of iron- and silica-rich minerals in disequilibrium, and thus many interpretations of these phases suggest they formed secondarily during early diagenetic processes. One such hypothesis posits that the early diagenetic microbial respiration of primary iron(III) oxides in BIFs resulted in the formation of other iron phases, including the iron-rich silicates, carbonates, and magnetite common in BIF assemblages. Here, we simulated this proposed pathway in laboratory incubations combining a model dissimilatory iron-reducing (DIR) bacterium, Shewanella putrefaciens CN32, and the ferric oxyhydroxide mineral ferrihydrite under conditions mimicking the predicted Archean seawater geochemistry. We assessed the impact of dissolved silica, calcium, and magnesium on the bioreduced precipitates. After harvesting the solid products from these experiments, we analyzed the reduced mineral phases using Raman spectroscopy, electron microscopy, powder x-ray diffraction, and spectrophotometric techniques to identify mineral precipitates and track the bulk distributions of Fe(II) and Fe(III). These techniques detected a diverse range of calcium carbonate morphologies and polymorphism in incubations with calcium, as well as secondary ferric oxide phases like goethite in silica-free experiments. We also identified aggregates of curling, iron- and silica-rich amorphous precipitates in all incubations amended with silica. Although ferric oxides persist even in our electron acceptor-limited incubations, our observations indicate that microbial iron reduction of ferrihydrite is a viable pathway for the formation of early iron silicate phases. This finding allows us to draw parallels between our experimental proto-silicates and the recently characterized iron silicate nanoinclusions in BIF chert deposits, suggesting that early iron silicates could possibly be signatures of iron-reducing metabolisms on early Earth.
Collapse
Affiliation(s)
- Christine Nims
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Jena E. Johnson
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Schodder PI, Gindele MB, Ott A, Rückel M, Ettl R, Boyko V, Kellermeier M. Probing the effects of polymers on the early stages of calcium carbonate formation by stoichiometric co-titration. Phys Chem Chem Phys 2022; 24:9978-9989. [PMID: 35319032 DOI: 10.1039/d1cp05606a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potentiometric titrations are a powerful tool to study the early stages of the precipitation of minerals such as calcium carbonate and were used among others for the discovery and characterisation of key precursors like prenucleation clusters. Here we present a modified procedure for conducting such titration experiments, in which the reactants (i.e. calcium and (bi)carbonate ions) are added simultaneously in stoichiometric amounts, while both the amount of free calcium and the optical transmission of the solution are monitored online. Complementarily, the species occurring at distinct stages of the crystallisation process were studied using cryogenic transmission electron microscopy. This novel routine was applied to investigate CaCO3 nucleation in the absence and presence of polymeric additives with different chemical functionalities. The obtained results provide new insights into the critical steps underlying nucleation and subsequent ripening, such as the role of liquid mineral-rich phases and their transformation into solid particles. The studied polymers proved to interfere at multiple stages along the complex mineralisation pathway of calcium carbonate, with both the degree and mode of interaction depending on the chosen polymer chemistry. In this way, the methodology developed in this work allows the mechanisms of antiscalants - or crystallisation modifiers in general - to be elucidated at an advanced level of detail.
Collapse
Affiliation(s)
- Philipp I Schodder
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany. .,Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
| | - Maxim B Gindele
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany. .,Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, D-30167 Hannover, Germany
| | - Andreas Ott
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
| | - Markus Rückel
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
| | - Roland Ettl
- Care Chemicals, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Volodymyr Boyko
- Formulation Platform, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Matthias Kellermeier
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
| |
Collapse
|
7
|
|
8
|
Ragipani R, Bhattacharya S, Suresh AK. Towards efficient calcium extraction from steel slag and carbon dioxide utilisation via pressure-swing mineral carbonation. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00167g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Achievement of high calcium carbonate supersaturation without surface passivation is the way for efficient PCC production and CO2 utilisation using steel slag.
Collapse
Affiliation(s)
- Raghavendra Ragipani
- IITB-Monash Research Academy
- Indian Institute of Technology Bombay
- Mumbai
- India
- Department of Chemical Engineering
| | | | - Akkihebbal K. Suresh
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| |
Collapse
|
9
|
Elucidating the accelerated carbonation products of calcium silicates using multi-technique approach. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2017.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wang J, Lu Y, Wang X, Yang Y, Li C, Shi W. Synthesis of peanut-like calcium carbonate intermediates in silica system containing partially hydrolyzed polyacrylamide and heavy alkyl-benzene sulfonate. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Glaab F, Rieder J, Klein R, Choquesillo‐Lazarte D, Melero‐Garcia E, García‐Ruiz J, Kunz W, Kellermeier M. Precipitation and Crystallization Kinetics in Silica Gardens. Chemphyschem 2017; 18:338-345. [PMID: 28001337 PMCID: PMC5347931 DOI: 10.1002/cphc.201600748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/24/2016] [Indexed: 11/16/2022]
Abstract
Silica gardens are extraordinary plant-like structures resulting from the complex interplay of relatively simple inorganic components. Recent work has highlighted that macroscopic self-assembly is accompanied by the spontaneous formation of considerable chemical gradients, which induce a cascade of coupled dissolution, diffusion, and precipitation processes occurring over timescales as long as several days. In the present study, this dynamic behavior was investigated for silica gardens based on iron and cobalt chloride by means of two synchrotron-based techniques, which allow the determination of concentration profiles and time-resolved monitoring of diffraction patterns, thus giving direct insight into the progress of dissolution and crystallization phenomena in the system. On the basis of the collected data, a kinetic model is proposed to describe the relevant reactions on a fundamental physicochemical level. The results show that the choice of the metal cations (as well as their counterions) is crucial for the development of silica gardens in both the short and long term (i.e. during tube formation and upon subsequent slow equilibration), and provide important clues for understanding the properties of related structures in geochemical and industrial environments.
Collapse
Affiliation(s)
- Fabian Glaab
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Julian Rieder
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Regina Klein
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Duane Choquesillo‐Lazarte
- Laboratorio de Estudios CristalográficosIACT (CSIC-UGR)Av. de las Palmeras 418100Armilla (Granada)Spain
| | - Emilio Melero‐Garcia
- Laboratorio de Estudios CristalográficosIACT (CSIC-UGR)Av. de las Palmeras 418100Armilla (Granada)Spain
| | - Juan‐Manuel García‐Ruiz
- Laboratorio de Estudios CristalográficosIACT (CSIC-UGR)Av. de las Palmeras 418100Armilla (Granada)Spain
| | - Werner Kunz
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | | |
Collapse
|
12
|
Tritschler U, Van Driessche AES, Kempter A, Kellermeier M, Cölfen H. Selektive Kontrolle der Bildung von Calciumsulfat-Polymorphen bei Raumtemperatur. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Tritschler U, Van Driessche AES, Kempter A, Kellermeier M, Cölfen H. Controlling the selective formation of calcium sulfate polymorphs at room temperature. Angew Chem Int Ed Engl 2015; 54:4083-6. [PMID: 25650565 DOI: 10.1002/anie.201409651] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Indexed: 11/09/2022]
Abstract
Calcium sulfate is a naturally abundant and technologically important mineral with a broad scope of applications. However, controlling CaSO4 polymorphism and, with it, its final material properties still represents a major challenge, and to date there is no universal method for the selective production of the different hydrated and anhydrous forms under mild conditions. Herein we report the first successful synthesis of pure anhydrite from solution at room temperature. We precipitated calcium sulfate in alcoholic media at low water contents. Moreover, by adjusting the amount of water in the syntheses, we can switch between the distinct polymorphs and fine-tune the outcome of the reaction, yielding either any desired CaSO4 phase in pure state or binary mixtures with predefined compositions. This concept provides full control over phase selection in CaSO4 mineralization and may allow for the targeted fabrication of corresponding materials for use in various areas.
Collapse
Affiliation(s)
- Ulrich Tritschler
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | | | |
Collapse
|
14
|
Hansford GM, Turner SMR, Staab D, Vernon D. The suppression of fluorescence peaks in energy-dispersive X-ray diffraction. J Appl Crystallogr 2014. [DOI: 10.1107/s160057671401927x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
A novel method to separate diffraction and fluorescence peaks in energy-dispersive X-ray diffraction (EDXRD) is described. By tuning the excitation energy of an X-ray tube source to just below an elemental absorption edge, the corresponding fluorescence peaks of that element are completely suppressed in the resulting spectrum. SinceBremsstrahlungphotons are present in the source spectrum up to the excitation energy, any diffraction peaks that lie at similar energies to the suppressed fluorescence peaks are uncovered. This technique is an alternative to the more usual method in EDXRD of altering the scattering angle in order to shift the energies of the diffraction peaks. However, in the back-reflection EDXRD technique [Hansford (2011).J. Appl. Cryst.44, 514–525] changing the scattering angle would lose the unique property of insensitivity to sample morphology and is therefore an unattractive option. The use of fluorescence suppression to reveal diffraction peaks is demonstrated experimentally by suppressing the Ca Kfluorescence peaks in the back-reflection EDXRD spectra of several limestones and dolomites. Three substantial benefits are derived: uncovering of diffraction peak(s) that are otherwise obscured by fluorescence; suppression of the Ca Kescape peaks; and an increase in the signal-to-background ratio. The improvement in the quality of the EDXRD spectrum allows the identification of a secondary mineral in the samples, where present. The results for a pressed-powder pellet of the geological standard JDo-1 (dolomite) show the presence of crystallite preferred orientation in this prepared sample. Preferred orientation is absent in several unprepared limestone and dolomite rock specimens, illustrating an advantage of the observation of rocks in their natural state enabled by back-reflection EDXRD.
Collapse
|
15
|
Rieger J, Kellermeier M, Nicoleau L. Formation of nanoparticles and nanostructures--an industrial perspective on CaCO3 , cement, and polymers. Angew Chem Int Ed Engl 2014; 53:12380-96. [PMID: 25156760 DOI: 10.1002/anie.201402890] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 11/06/2022]
Abstract
Nanotechnology enables the design of materials with outstanding performance. A key element of nanotechnology is the ability to manipulate and control matter on the nanoscale to achieve a certain desired set of specific properties. Here, we discuss recent insight into the formation mechanisms of inorganic nanoparticles during precipitation reactions. We focus on calcium carbonate, and describe the various transient stages potentially occurring on the way from the dissolved constituent ions to finally stable macrocrystals-including solute ion clusters, dense liquid phases, amorphous intermediates, and nanoparticles. The role of polymers in nucleating, templating, stabilizing, and/or preventing these structures is outlined. As a specific example for applied nanotechnology, the properties of cement are shown to be determined by the formation and interlocking of calcium-silicate-hydrate nanoplatelets. The aggregation of these platelets into mesoscale architectures can be controlled with polymers.
Collapse
Affiliation(s)
- Jens Rieger
- Advanced Materials and Systems Research, BASF SE, GM/I-B1, 67056 Ludwigshafen (Germany).
| | | | | |
Collapse
|
16
|
Rieger J, Kellermeier M, Nicoleau L. Die Bildung von Nanopartikeln und Nanostrukturen - CaCO3, Zement und Polymere aus Sicht der Industrie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|