1
|
Van Tran V, Wi E, Shin SY, Lee D, Kim YA, Ma BC, Chang M. Microgels based on 0D-3D carbon materials: Synthetic techniques, properties, applications, and challenges. CHEMOSPHERE 2022; 307:135981. [PMID: 35964721 DOI: 10.1016/j.chemosphere.2022.135981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Microgels are three-dimensional (3D) colloidal hydrogel particles with outstanding features such as biocompatibility, good mechanical properties, tunable sizes from submicrometer to tens of nanometers, and large surface areas. Because of these unique qualities, microgels have been widely used in various applications. Carbon-based materials (CMs) with various dimensions (0-3D) have recently been investigated as promising candidates for the design and fabrication of microgels because of their large surface area, excellent conductivity, unique chemical stability, and low cost. Here, we provide a critical review of the specific characteristics of CMs that are being incorporated into microgels, as well as the state-of-the art applications of CM-microgels in pollutant adsorption and photodegradation, H2 evoluation, CO2 capture, soil conditioners, water retention, drug delivery, cell encapsulation, and tissue engineering. Advanced preparation techniques for CM-microgel systems are also summarized and discussed. Finally, challenges related to the low colloidal stability of CM-microgels and development strategies are examined. This review shows that CM-microgels have the potential to be widely used in various practical applications.
Collapse
Affiliation(s)
- Vinh Van Tran
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Eunsol Wi
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Seo Young Shin
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Daeho Lee
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Yoong Ahm Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Byung Chol Ma
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
2
|
Tuncaboylu DC, Wischke C. Opportunities and Challenges of Switchable Materials for Pharmaceutical Use. Pharmaceutics 2022; 14:2331. [PMID: 36365149 PMCID: PMC9696173 DOI: 10.3390/pharmaceutics14112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/27/2024] Open
Abstract
Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.
Collapse
|
3
|
Gray DM, Town AR, Niezabitowska E, Rannard SP, McDonald TO. Dual-responsive degradable core-shell nanogels with tuneable aggregation behaviour. RSC Adv 2022; 12:2196-2206. [PMID: 35425260 PMCID: PMC8979186 DOI: 10.1039/d1ra07093b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/30/2021] [Indexed: 01/20/2023] Open
Abstract
We report the synthesis of core–shell nanogels by sequential addition of thermoresponsive monomers; N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM). The aggregation behaviour of aqueous dispersions of these particles in the presence of salt can be tuned by varying the monomer ratio. The inclusion of degradable cross-linker bis(acryloyl)cystamine (BAC) allows the nanogels to degrade in the presence of reducing agent, with nanogels composed of a copolymer of the two monomers not showing the same high levels of degradation as the comparable core–shell particles. These levels of degradation were also seen with physiologically relevant reducing agent concentration at pH 7. Therefore, it is hoped that the aggregation of these nanogels will have applications in nanomedicine and beyond. Core–shell nanogels with a poly(N-isopropylmethacrylamide) core and poly(N-isopropylacrylamide) shell display tuneable thermoresponsive behaviour and high degradability.![]()
Collapse
Affiliation(s)
- Dominic M Gray
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
| | - Adam R Town
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
| | | | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK .,Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
| |
Collapse
|
4
|
Ma Q, Bian L, Zhao X, Tian X, Yin H, Wang Y, Shi A, Wu J. Novel glucose-responsive nanoparticles based on p-hydroxyphenethyl anisate and 3-acrylamidophenylboronic acid reduce blood glucose and ameliorate diabetic nephropathy. Mater Today Bio 2021; 13:100181. [PMID: 34927045 PMCID: PMC8649392 DOI: 10.1016/j.mtbio.2021.100181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
An insulin delivery system that self-regulates blood sugar levels, mimicking the human pancreas, can improve hyperglycaemia. At present, a glucose-responsive insulin delivery system combining AAPBA with long-acting slow release biomaterials has been developed. However, the safety of sustained-release materials and the challenges of preventing diabetic complications remain. In this study, we developed a novel polymer slow release material using a plant extract—p-hydroxyphenylethyl anisate (HPA). After block copolymerisation with AAPBA, the prepared nanoparticles had good pH sensitivity, glucose sensitivity, insulin loading rate and stability under physiological conditions and had high biocompatibility. The analysis of streptozotocin-induced diabetic nephropathy (DN) mouse model showed that the insulin-loaded injection of nanoparticles stably regulated the blood glucose levels of DN mice within 48 h. Importantly, with the degradation of the slow release material HPA in vivo, the renal function improved, the inflammatory response reduced, and antioxidation levels in DN mice improved. This new type of nanoparticles provides a new idea for hypoglycaemic nano-drug delivery system and may have potential in the prevention and treatment of diabetic complications. We established a new glucose-responsive intelligent system with HPA. p(AAPBA-b-HPA) shows good pH and glucose sensitivity. p(AAPBA-b-HPA) nanoparticles can slowly release HPA and insulin. This system can be used to regulate blood glucose. p(AAPBA-b-HPA) nanoparticles can aid in diabetic nephropathy prevention and treatment.
Collapse
Affiliation(s)
- Qiong Ma
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Ligong Bian
- Department of Medical Biology, College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Xi Zhao
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Xuexia Tian
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Hang Yin
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Yutian Wang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
5
|
Yan Y, Wu Q, Ren P, Liu Q, Zhang N, Ji Y, Liu J. Zinc ions coordinated carboxymethyl chitosan-hyaluronic acid microgel for pulmonary drug delivery. Int J Biol Macromol 2021; 193:1043-1049. [PMID: 34800517 DOI: 10.1016/j.ijbiomac.2021.11.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Microgel affords a porous and swollen microstructure for the establishment of pulmonary delivery system with sustained released properties. Here, we report a microgel (with the diameter around 4 μm) prepared with a precipitation method, synthesized by coordinating Zn2+ to the Schiff base cross-linked carboxymethyl chitosan and glycol split hyaluronate. The microgel has shown well swollen and pH sensitive behaviors, high safety and biocompatibility in vitro. Besides, the biomaterial could escape from macrophage phagocytosis, a key factor contribute to quick drug clearance in the lung after co-incubated with RAW 264.7 cells. In consist with this, the bovine serum albumin loaded in the microgel showed sustained release behavior in 24 h in vitro; meanwhile, the drug had a retention time up to 36 h in the lung and followed by clearance in ICR mice through pulmonary administration. Thus, our microgel platform provides a promising candidate for pulmonary drug delivery systems with controlled release rate.
Collapse
Affiliation(s)
- Yishu Yan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Qingqing Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Panpan Ren
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiuyi Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yang Ji
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, CA 92093, United States
| | - Jingxian Liu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, People's Republic of China
| |
Collapse
|
6
|
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Łukasz Banach
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - John S. Fossey
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| |
Collapse
|
7
|
Zhao X, Shi A, Ma Q, Yan X, Bian L, Zhang P, Wu J. Nanoparticles prepared from pterostilbene reduce blood glucose and improve diabetes complications. J Nanobiotechnology 2021; 19:191. [PMID: 34176494 PMCID: PMC8237509 DOI: 10.1186/s12951-021-00928-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/05/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Diabetes complications are the leading cause of mortality in diabetic patients. The common complications are decline in antioxidant capacity and the onset of micro-inflammation syndrome. At present, glucose-responsive nanoparticles are widely used, as they can release insulin-loaded ultrafine particles intelligently and effectively reduce blood sugar. However, the toxicology of this method has not been fully elucidated. The plant extracts of pterostilbene (PTE) have a wide range of biological applications, such as antioxidation and inflammatory response improvement. Therefore, we have proposed new ideas for the cross application of plant extracts and biomaterials, especially as part of a hypoglycaemic nano-drug delivery system. RESULTS Based on the PTE, we successfully synthesised poly(3-acrylamidophenyl boric acid-b-pterostilbene) (p[AAPBA-b-PTE]) nanoparticles (NPs). The NPs were round in shape and ranged between 150 and 250 nm in size. The NPs possessed good pH and glucose sensitivity. The entrapment efficiency (EE) of insulin-loaded NPs was approximately 56%, and the drug loading (LC) capacity was approximately 13%. The highest release of insulin was 70%, and the highest release of PTE was 85%. Meanwhile, the insulin could undergo self-regulation according to changes in the glucose concentration, thus achieving an effective, sustained release. Both in vivo and in vitro experiments showed that the NPs were safe and nontoxic. Under normal physiological conditions, NPs were completely degraded within 40 days. Fourteen days after mice were injected with p(AAPBA-b-PTE) NPs, there were no obvious abnormalities in the heart, liver, spleen, lung, or kidney. Moreover, NPs effectively reduced blood glucose, improved antioxidant capacity and reversed micro-inflammation in mice. CONCLUSIONS p(AAPBA-b-PTE) NPs were successfully prepared using PTE as raw material and effectively reduced blood glucose, improved antioxidant capacity and reduced the inflammatory response. This novel preparation can enable new combinations of plant extracts and biomaterials to adiministered through NPs or other dosage forms in order to regulate and treat diseases.
Collapse
Affiliation(s)
- Xi Zhao
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, P.R. China
| | - Anhua Shi
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, P.R. China
| | - Qiong Ma
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, P.R. China
| | - Xueyan Yan
- College of Clinical Medical, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Ligong Bian
- College of Basic Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Tuina for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Junzi Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, P.R. China.
| |
Collapse
|
8
|
Li H, He J, Zhang M, Liu J, Ni P. Glucose-Sensitive Polyphosphoester Diblock Copolymer for an Insulin Delivery System. ACS Biomater Sci Eng 2020; 6:1553-1564. [DOI: 10.1021/acsbiomaterials.9b01817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongping Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
9
|
Mackiewicz M, Romanski J, Krug P, Mazur M, Stojek Z, Karbarz M. Tunable environmental sensitivity and degradability of nanogels based on derivatives of cystine and poly(ethylene glycols) of various length for biocompatible drug carrier. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Town A, Niezabitowska E, Kavanagh J, Barrow M, Kearns VR, García-Tuñón E, McDonald TO. Understanding the Phase and Morphological Behavior of Dispersions of Synergistic Dual-Stimuli-Responsive Poly( N-isopropylacrylamide) Nanogels. J Phys Chem B 2019; 123:6303-6313. [PMID: 31251624 PMCID: PMC7007235 DOI: 10.1021/acs.jpcb.9b04051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/21/2019] [Indexed: 12/14/2022]
Abstract
This work represents a detailed investigation into the phase and morphological behavior of synergistic dual-stimuli-responsive poly(N-isopropylacrylamide) nanogels, a material that is of considerable interest as a matrix for in situ forming implants. Nanogels were synthesized with four different diameters (65, 160, 310, and 450 nm) as monodispersed particles. These different samples were then prepared and characterized as both dilute (0.1 wt %) and concentrated dispersions (2-22 wt %). In the dilute form, all of the nanogels had the same response to the triggers of the physiological temperature and ionic strength. In water, the nanogels would deswell when heated above 32 °C, while they would aggregate if heated above this temperature at the physiological ionic strength. In the concentrated form, the nanogels exhibited a wide range of morphological changes, with liquid, swollen gel, shrunken gel, and aggregate structures all possible. The occurrence of these structures was dependent on many factors such as the temperature, ionic strength of the solvent, size and ζ-potential of the nanogel, and dispersion concentration. We explored these factors in detail with techniques such as visual studies, rheology, effective volume fraction, and shape factor measurement. The different-sized nanogels displayed differing phase and morphological behavior, but generally higher concentrations of the nanogels (>7 wt %) yielded gels in water with the transitions depending on the temperature. The smallest nanogel (65 nm diameter) exhibited the most unique behavior; it did not form a swollen gel at any concentration tested. Shape factor measurement for the nanogel samples showed that two of the larger three samples (160 and 310 nm) had core-shell structures with denser core cross-linking, while the smallest nanogel sample displayed a homogeneous cross-linked structure. We hypothesize that the smallest nanogels are able to undergo more extensive interpenetration compared to the larger nanogels, which meant that the smallest nanogel was not able to form a swollen gel. In the presence of salt at 12 wt %, all of the nanogels formed aggregates when heated above 35 °C due to the screening of the electrostatic stabilization by the salt. This work revealed unique behavior of the smallest nanogel with a homogeneous cross-linked structure; its phase and morphological behavior were unlike a particle dispersion, rather these were more similar to those of a branched polymer solution. In total, these findings can be used to provide information about the design of poly(N-isopropylacrylamide) nanogel dispersions for different applications where highly specific spatiotemporal control of morphology is required, for example, in the formation of in situ forming implants or for pore blocking behavior.
Collapse
Affiliation(s)
- Adam Town
- Department
of Chemistry & Materials Innovation Factory and School of Engineering
& Materials Innovation Factory, University
of Liverpool, Oxford Street, Liverpool L69 7ZD, U.K.
| | - Edyta Niezabitowska
- Department
of Chemistry & Materials Innovation Factory and School of Engineering
& Materials Innovation Factory, University
of Liverpool, Oxford Street, Liverpool L69 7ZD, U.K.
| | - Janine Kavanagh
- Department
of Earth, Ocean and Ecological Sciences, University of Liverpool, Jane Herdman Laboratories, Liverpool L69 3GP, U.K.
| | - Michael Barrow
- Anton
Paar (UK) Ltd., Unit F, The Courtyard, St. Albans AL4 0LA, U.K.
| | - Victoria R. Kearns
- Department
of Eye and Vision Science, University of
Liverpool, Liverpool L7 8TX, U.K.
| | - Esther García-Tuñón
- Department
of Chemistry & Materials Innovation Factory and School of Engineering
& Materials Innovation Factory, University
of Liverpool, Oxford Street, Liverpool L69 7ZD, U.K.
| | - Tom O. McDonald
- Department
of Chemistry & Materials Innovation Factory and School of Engineering
& Materials Innovation Factory, University
of Liverpool, Oxford Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
11
|
Wen N, Lü S, Xu X, Ning P, Wang Z, Zhang Z, Gao C, Liu Y, Liu M. A polysaccharide-based micelle-hydrogel synergistic therapy system for diabetes and vascular diabetes complications treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:94-103. [DOI: 10.1016/j.msec.2019.02.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/22/2022]
|
12
|
Taokaew S, Ofuchi M, Kobayashi T. Size Distribution and Characteristics of Chitin Microgels Prepared via Emulsified Reverse-Micelles. MATERIALS 2019; 12:ma12071160. [PMID: 30974746 PMCID: PMC6480158 DOI: 10.3390/ma12071160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023]
Abstract
Chitin was extracted from local snow crab shell waste and used as a raw material in the fabrication of porous spherical microgels. The chitin microgels were obtained using a batch process of emulsification and, afterward, gelation. The effects of chitin concentrations, oil and water phase ratios (O:W), surfactants, and gelation on the size distribution and morphology of the microgels were investigated. The extracted chitin possessed α-chitin with a degree of acetylation of ~60% and crystallinity of 70%, as confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Powder Diffraction (XRD). In the reverse-micellar emulsification, different chitin concentrations in NaOH solution were used as aqueous phases, and n-hexane media containing Span 80-based surfactants were used as dispersion phases. Various HCl solutions were used as gelling agents. Microgels with sizes ranging from ~5-200 μm were obtained relying on these studied parameters. Under the condition of 3% w/w chitin solution using O:W of 15:1 at 5% w/w of Span 80 (hydrophilic-lipophilic balance; HLB of 4.3), the gelation in the emulsified reverse micelles was better controlled and capable of forming spherical microgel particles with a size of 7.1 ± 0.3 μm, when 800 μL of 1 M HCl was added. The prepared chitin microgel exhibited macro-pore morphology and swelling behavior sensitive to the acidic pH.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Technology, School of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Mitsumasa Ofuchi
- Department of Materials Science and Technology, School of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Takaomi Kobayashi
- Department of Materials Science and Technology, School of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
13
|
Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019; 266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
14
|
Newsom JP, Payne KA, Krebs MD. Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomater 2019; 88:32-41. [PMID: 30769137 PMCID: PMC6441611 DOI: 10.1016/j.actbio.2019.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Biopolymer microgels are emerging as a versatile tool for aiding in the regeneration of damaged tissues due to their biocompatible nature, tunable microporous structure, ability to encapsulate bioactive factors, and tailorable properties such as stiffness and composition. These properties of microgels, along with their injectability, have allowed for their utilization in a multitude of different tissue engineering applications. Controlled release of growth factors, antibodies, and other bioactive factors from microgels have demonstrated their capabilities as transporters for essential bioactive molecules necessary for guiding tissue reconstruction. Additionally, recent in vitro studies of cellular interaction and proliferation within microgel structures have laid the initial groundwork for regenerative tissue engineering using these materials. Microgels have even been crosslinked together in various ways or 3D printed to form three-dimensional scaffolds to support cell growth. In vivo studies of microgels have pioneered the clinical relevance of these novel and innovative materials for regenerative tissue engineering. This review will cover recent developments and research of microgels as they pertain to bioactive factor release, cellular interaction and proliferation in vitro, and tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: This review is focused on state-of-the-art microgel technology and innovations within the tissue engineering field, focusing on the use of microgels in bioactive factor delivery and as cell-interactive scaffolds, both in vitro and in vivo. Microgels are hydrogel microparticles that can be tuned based on the biopolymer from which they are derived, the crosslinking chemistry used, and the fabrication method. The emergence of microgels for tissue regeneration applications in recent years illuminates their versatility and applicability in clinical settings.
Collapse
Affiliation(s)
- Jake P Newsom
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States
| | - Karin A Payne
- Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melissa D Krebs
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States.
| |
Collapse
|
15
|
Recent Advances in Phenylboronic Acid-Based Gels with Potential for Self-Regulated Drug Delivery. Molecules 2019; 24:molecules24061089. [PMID: 30893913 PMCID: PMC6470492 DOI: 10.3390/molecules24061089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/02/2022] Open
Abstract
Glucose-sensitive drug platforms are highly attractive in the field of self-regulated drug delivery. Drug carriers based on boronic acid (BA), especially phenylboronic acid (PBA), have been designed for glucose-sensitive self-regulated insulin delivery. The PBA-functionalized gels have attracted more interest in recent years. The cross-linked three-dimensional (3D) structure endows the glucose-sensitive gels with great physicochemical properties. The PBA-based platforms with cross-linked structures have found promising applications in self-regulated drug delivery systems. This article summarizes some recent attempts at the developments of PBA-mediated glucose-sensitive gels for self-regulated drug delivery. The PBA-based glucose-sensitive gels, including hydrogels, microgels, and nanogels, are expected to significantly promote the development of smart self-regulated drug delivery systems for diabetes therapy.
Collapse
|
16
|
Yao H, Li X, Shi X, Qiu G, Lu X. Synthesis and self-assembly of multiple-responsive magnetic nanogels. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Haiyang Yao
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| | - Xueting Li
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| | - Gao Qiu
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| | - Xihua Lu
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
- Anhui Microdelivery Smart Microcapsule Sci. & Tech. Co., Ltd.; 1188 Xihu First Road Tongling Anhui 244000 China
| |
Collapse
|
17
|
Agrawal G, Agrawal R. Functional Microgels: Recent Advances in Their Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801724. [PMID: 30035853 DOI: 10.1002/smll.201801724] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Here, a spotlight is shown on aqueous microgel particles which exhibit a great potential for various biomedical applications such as drug delivery, cell imaging, and tissue engineering. Herein, different synthetic methods to develop microgels with desirable functionality and properties along with degradable strategies to ensure their renal clearance are briefly presented. A special focus is given on the ability of microgels to respond to various stimuli such as temperature, pH, redox potential, magnetic field, light, etc., which helps not only to adjust their physical and chemical properties, and degradability on demand, but also the release of encapsulated bioactive molecules and thus making them suitable for drug delivery. Furthermore, recent developments in using the functional microgels for cell imaging and tissue regeneration are reviewed. The results reviewed here encourage the development of a new class of microgels which are able to intelligently perform in a complex biological environment. Finally, various challenges and possibilities are discussed in order to achieve their successful clinical use in future.
Collapse
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur, 247001, Uttar Pradesh, India
| | - Rahul Agrawal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1500, USA
| |
Collapse
|
18
|
Motlaq VF, Knudsen KD, Nyström B. Effect of PEGylation on the stability of thermoresponsive nanogels. J Colloid Interface Sci 2018; 524:245-255. [DOI: 10.1016/j.jcis.2018.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 01/04/2023]
|
19
|
A review on pH and temperature responsive gels and other less explored drug delivery systems. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Gu S, Yang L, Li S, Yang J, Zhang B, Yang J. Thermo- and glucose-sensitive microgels with improved salt tolerance for controlled insulin release in a physiological environment. POLYM INT 2018. [DOI: 10.1002/pi.5634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shiling Gu
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Liu Yang
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Shirui Li
- Department of Endocrinology; China-Japan Friendship Hospital; Beijing China
| | - Junjiao Yang
- College of Science; Beijing University of Chemical Technology; Beijing China
| | - Bo Zhang
- Department of Endocrinology; China-Japan Friendship Hospital; Beijing China
| | - Jing Yang
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| |
Collapse
|
21
|
Preparation of multi-responsive amphiphilic particles by one-step soapless emulsion polymerization. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0608-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur 247 001, Uttar Pradesh, India
| | - Sangram K. Samal
- Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
23
|
Elshaarani T, Yu H, Wang L, Zain-ul-Abdin ZUA, Ullah RS, Haroon M, Khan RU, Fahad S, Khan A, Nazir A, Usman M, Naveed KUR. Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. J Mater Chem B 2018; 6:3831-3854. [DOI: 10.1039/c7tb03332j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In past few years, phenylboronic acids (PBAs) have attracted researcher's attention due to their unique responsiveness towards diol-containing molecules such as glucose.
Collapse
|
24
|
Sharifzadeh G, Hosseinkhani H. Biomolecule-Responsive Hydrogels in Medicine. Adv Healthc Mater 2017; 6. [PMID: 29057617 DOI: 10.1002/adhm.201700801] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/17/2017] [Indexed: 12/19/2022]
Abstract
Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance.
Collapse
Affiliation(s)
- Ghorbanali Sharifzadeh
- Department of Polymer Engineering; Faculty of Chemical Engineering; Universiti Teknologi Malaysia; 81310 Johor Malaysia
| | | |
Collapse
|
25
|
Lu B, Tarn MD, Pamme N, Georgiou TK. Fabrication of tailorable pH responsive cationic amphiphilic microgels on a microfluidic device for drug release. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingyuan Lu
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX United Kingdom
| | - Mark D. Tarn
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX United Kingdom
| | - Nicole Pamme
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX United Kingdom
| | - Theoni K. Georgiou
- Department of Materials; Imperial College London, Royal School of Mines, Exhibition Road; London SW7 2AZ United Kingdom
| |
Collapse
|
26
|
Yang J, Cao Z. Glucose-responsive insulin release: Analysis of mechanisms, formulations, and evaluation criteria. J Control Release 2017; 263:231-239. [PMID: 28159517 PMCID: PMC5630063 DOI: 10.1016/j.jconrel.2017.01.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/18/2017] [Accepted: 01/29/2017] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus has become one of the biggest medical challenges affecting millions of people globally. Alternative treatments for diabetes are currently being intensively investigated to improve the treatment efficacy and life qualities for diabetic patients. Glucose-responsive insulin release (GRIR) systems have exhibited tremendous potential to improve the normal glycemic control and to reduce the incidence of hyperglycemia and hypoglycemia, which further reduces potential complications in diabetic patients. In a given GRIR drug formulation, accuracy, response time, and reversibility of the GRIR functions are three key features enabling potential seamless control of blood glucose level. Nevertheless, there is significant challenge preventing current GRIR formulations from achieving them. This review article analyzes the most updated literature and provides insights on the impact of GRIR mechanisms, and formulations on these key features, and the relevant in vitro and in vivo evaluation methods to test these functions.
Collapse
Affiliation(s)
- Jianhai Yang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, United States; Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
27
|
Mackiewicz M, Stojek Z, Karbarz M. Unusual swelling behavior of core-shell microgels built from polymers exhibiting lower critical solubility temperature. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Wang Y, Wang L, Yan M, Dong S, Hao J. Near-Infrared-Light-Responsive Magnetic DNA Microgels for Photon- and Magneto-Manipulated Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28185-28194. [PMID: 28766338 DOI: 10.1021/acsami.7b05502] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Functional DNA molecules have been introduced into polymer-based nanocarrier systems to incorporate chemotherapy drugs for cancer therapy. Here is the first report of dual-responsive microgels composed of a core of Au nanorods and a shell of magnetic ionic liquid and DNA moieties in the cross-linking network simultaneously, as effective drug delivery vectors. TEM images indicated a magnetic polymer shell has an analogous "doughnut" shape which loosely surround the AuNRs core. When irradiated with a near-infrared-light (near-IR) laser, Au nanorods are the motors which convert the light to heat, leading to the release of the encapsulated payloads with high controllability. DNA acts not only as a cross-linker agent, but also as a gatekeeper to regulate the release of drugs. The internalization study and MTT assay confirm that these core-shell DNA microgels are excellent candidates which can enhance the cytotoxicity of cancer cells controlled by near-IR laser and shield the high toxicity of chemotherapeutic agents to improve the killing efficacy of chemotherapeutic agents efficiently in due course.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, People's Republic of China
| | - Ling Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, People's Republic of China
| | - Miaomiao Yan
- Department of Pharmacy, Binzhou Medical College , Yantai 264003, People's Republic of China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, People's Republic of China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, People's Republic of China
| |
Collapse
|
29
|
Mackiewicz M, Romanski J, Drozd E, Gruber-Bzura B, Fiedor P, Stojek Z, Karbarz M. Nanohydrogel with N,N′ -bis(acryloyl)cystine crosslinker for high drug loading. Int J Pharm 2017; 523:336-342. [DOI: 10.1016/j.ijpharm.2017.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 02/03/2023]
|
30
|
Cui R, Zhang Z, Nie J, Du B. Tuning the morphology, network structure, and degradation of thermo-sensitive microgels by controlled addition of degradable cross-linker. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4056-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Li J, Yang L, Fan X, Zhang J, Wang F, Wang Z. Temperature and glucose dual-responsive carriers bearing poly(N-isopropylacrylamide) and phenylboronic acid for insulin-controlled release: A review. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1263954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jiaxing Li
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, China
| | - Lei Yang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, China
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang, China,
| | - Jing Zhang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, China
| | - Fei Wang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, China
| | - Zhanyong Wang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, China
| |
Collapse
|
32
|
Foster GA, Headen DM, González-García C, Salmerón-Sánchez M, Shirwan H, García AJ. Protease-degradable microgels for protein delivery for vascularization. Biomaterials 2017; 113:170-175. [PMID: 27816000 PMCID: PMC5121008 DOI: 10.1016/j.biomaterials.2016.10.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022]
Abstract
Degradable hydrogels to deliver bioactive proteins represent an emerging platform for promoting tissue repair and vascularization in various applications. However, implanting these biomaterials requires invasive surgery, which is associated with complications such as inflammation, scarring, and infection. To address these shortcomings, we applied microfluidics-based polymerization to engineer injectable poly(ethylene glycol) microgels of defined size and crosslinked with a protease degradable peptide to allow for triggered release of proteins. The release rate of proteins covalently tethered within the microgel network was tuned by modifying the ratio of degradable to non-degradable crosslinkers, and the released proteins retained full bioactivity. Microgels injected into the dorsum of mice were maintained in the subcutaneous space and degraded within 2 weeks in response to local proteases. Furthermore, controlled release of VEGF from degradable microgels promoted increased vascularization compared to empty microgels or bolus injection of VEGF. Collectively, this study motivates the use of microgels as a viable method for controlled protein delivery in regenerative medicine applications.
Collapse
Affiliation(s)
- Greg A Foster
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Devon M Headen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cristina González-García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Engineering, Division of Biomedical Engineering, University of Glasgow, Glasgow, Scotland, UK
| | - Manuel Salmerón-Sánchez
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Engineering, Division of Biomedical Engineering, University of Glasgow, Glasgow, Scotland, UK
| | - Haval Shirwan
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
33
|
Cao ZQ, Wang GJ. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels. CHEM REC 2016; 16:1398-435. [DOI: 10.1002/tcr.201500281] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Zi-Quan Cao
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P. R. China
| | - Guo-Jie Wang
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P. R. China
| |
Collapse
|
34
|
Wang Y, Yan M, Xu L, Zhao W, Wang X, Dong S, Hao J. Aptamer-functionalized DNA microgels: a strategy towards selective anticancer therapeutic systems. J Mater Chem B 2016; 4:5446-5454. [DOI: 10.1039/c6tb01224h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DNA microgels of oligonucleotides and polymers were constructed via a combination of DNA complementarity and photo-initiated free radical polymerization.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Miaomiao Yan
- Department of Pharmacy
- Binzhou Medical College
- Yantai 264003
- P. R. China
| | - Lu Xu
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Wenrong Zhao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Xiaolin Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| |
Collapse
|
35
|
Zhang B, Long J, Xie Q, Tian Y, Xu X, Jin Z. Rheological characterization of pH-responsive carboxymethyl starch/β-cyclodextrin microgels. STARCH-STARKE 2015. [DOI: 10.1002/star.201500167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bao Zhang
- The State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi P.R. China
- School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Qiutao Xie
- Hunan Agricultural Product Processing Institute; Hunan Academy of Agricultural Sciences; Changsha P.R. China
| | - Yaoqi Tian
- The State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Xueming Xu
- School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Zhengyu Jin
- School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| |
Collapse
|
36
|
Sivakumaran D, Mueller E, Hoare T. Temperature-Induced Assembly of Monodisperse, Covalently Cross-Linked, and Degradable Poly(N-isopropylacrylamide) Microgels Based on Oligomeric Precursors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5767-5778. [PMID: 25977976 DOI: 10.1021/acs.langmuir.5b01421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A simple, rapid, solvent-free, and scalable thermally driven self-assembly approach is described to produce monodisperse, covalently cross-linked, and degradable poly(N-isopropylacrylamide) (PNIPAM) microgels based on mixing hydrazide (PNIPAM-Hzd) and aldehyde (PNIPAM-Ald) functionalized PNIPAM precursors. Preheating of a seed PNIPAM-Hzd solution above its phase transition temperature produces nanoaggregates that are subsequently stabilized and cross-linked by the addition of PNIPAM-Ald. The ratio of PNIPAM-Hzd:PNIPAM-Ald used to prepare the microgels, the time between PNIPAM-Ald addition and cooling, the temperature to which the PNIPAM-Hzd polymer solution is preheated, and the concentration of PNIPAM-Hzd in the initial seed solution can all be used to control the size of the resulting microgels. The microgels exhibit similar thermal phase transition behavior to conventional precipitation-based microgels but are fully degradable into oligomeric precursor polymers. The microgels can also be lyophilized and redispersed without any change in colloidal stability or particle size and exhibit no significant cytotoxicity in vitro. We anticipate that microgels fabricated using this approach may facilitate translation of the attractive properties of such microgels in vivo without the concerns regarding microgel clearance that exist with other PNIPAM-based microgels.
Collapse
Affiliation(s)
- Daryl Sivakumaran
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
| | - Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
| |
Collapse
|
37
|
Zhou X, Nie J, Wang Q, Du B. Thermosensitive Ionic Microgels with pH Tunable Degradation via in Situ Quaternization Cross-Linking. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00482] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xianjing Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, and ‡Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, and ‡Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, and ‡Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, and ‡Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
38
|
Multilayered Thin Films from Boronic Acid-Functional Poly(amido amine)s. Pharm Res 2015; 32:3066-86. [PMID: 25851410 PMCID: PMC4526598 DOI: 10.1007/s11095-015-1688-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/23/2015] [Indexed: 01/24/2023]
Abstract
PURPOSE To investigate the properties of phenylboronic acid-functional poly(amido amine) polymers (BA-PAA) in forming multilayered thin films with poly(vinyl alcohol) (PVA) and chondroitin sulfate (ChS), and to evaluate their compatibility with COS-7 cells. METHODS Copolymers of phenylboronic acid-functional poly(amido amine)s, differing in the content of primary amine (DAB-BA-PAA) or alcohol (ABOL-BA-PAA) side groups, were synthesized and applied in the formation of multilayers with PVA and ChS. Biocompatibility of the resulting films was evaluated through cell culture experiments with COS-7 cells grown on the films. RESULTS PVA-based multilayers were thin, reaching ~100 nm at 10 bilayers, whereas ChS-based multilayers were thick, reaching ~600 nm at the same number of bilayers. All of the multilayers are stable under physiological conditions in vitro and are responsive to reducing agents, owing to the presence of disulfide bonds in the polymers. PVA-based films were demonstrated to be responsive to glucose at physiological pH at the investigated glucose concentrations (10-100 mM). The multilayered films displayed biocompatibility in cell culture experiments, promoting attachment and proliferation of COS-7 cells. CONCLUSIONS Responsive thin films based on boronic acid functional poly(amido amine)s are promising biocompatible materials for biomedical applications, such as drug releasing surfaces on stents or implants. Graphical Abstract Layer-by-Layer Assembly.
Collapse
|
39
|
Lou S, Gao S, Wang W, Zhang M, Zhang J, Wang C, Li C, Kong D, Zhao Q. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery. NANOSCALE 2015; 7:3137-3146. [PMID: 25613320 DOI: 10.1039/c4nr06714b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-D-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.
Collapse
Affiliation(s)
- Shaofeng Lou
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science, Tianjin 300192, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chang Y, Li Y, Yu S, Mao J, Liu C, Li Q, Yuan C, He N, Luo W, Dai L. Fluorescent polymeric assemblies as stimuli-responsive vehicles for drug controlled release and cell/tissue imaging. NANOTECHNOLOGY 2015; 26:025103. [PMID: 25526236 DOI: 10.1088/0957-4484/26/2/025103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polymer assemblies with good biocompatibility, stimuli-responsive properties and clinical imaging capability are desirable carriers for future biomedical applications. Herein, we report on the synthesis of a novel anthracenecarboxaldehyde-decorated poly(N-(4-aminophenyl) methacryl amide-oligoethyleneglycolmonomethylether methacrylate) (P(MAAPAC-MAAP-MAPEG)) copolymer, comprising fluorescent chromophore and acid-labile moiety. This copolymer can assemble into micelles in aqueous solution and shows a spherical shape with well-defined particle size and narrow particle size distribution. The pH-responsive property of the micelles has been evaluated by the change of particle size and the controlled release of guest molecules. The intrinsic fluorescence property endows the micelles with excellent cell/tissue imaging capability. Cell viability evaluation with human hepatocellular carcinoma BEL-7402 cells demonstrates that the micelles are nontoxic. The cellular uptake of the micelles indicates a time-dependent behavior. The H22-tumor bearing mice treated with the micelles clearly exhibits the tumor accumulation. These multi-functional nanocarriers may be of great interest in the application of drug delivery.
Collapse
Affiliation(s)
- Ying Chang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China. Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Qiu M, Zhao XZ, Liu DP, He CJ. pH sensitive amphiphilic conetworks based on end-group cross-linking of polydimethylsiloxane pentablock copolymer and polymethylhydrosiloxane. RSC Adv 2015. [DOI: 10.1039/c4ra13866j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of pH-responsive amphiphilic conetworks were synthesized through cross-linking of well-defined amphiphilic pentablock copolymers via atom transfer radical polymerization.
Collapse
Affiliation(s)
- Ming Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Xin-Zheng Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Da-Peng Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Chun-Ju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| |
Collapse
|
42
|
Mackiewicz M, Kaniewska K, Romanski J, Augustin E, Stojek Z, Karbarz M. Stable and degradable microgels linked with cystine for storing and environmentally triggered release of drugs. J Mater Chem B 2015; 3:7262-7270. [DOI: 10.1039/c5tb00907c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microgels crosslinked with a cysteine derivative, which has ability to control gel degradation and trigger drug release.
Collapse
Affiliation(s)
| | | | - Jan Romanski
- Faculty of Chemistry
- University of Warsaw
- PL 02-093 Warsaw
- Poland
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| | - Zbigniew Stojek
- Faculty of Chemistry
- University of Warsaw
- PL 02-093 Warsaw
- Poland
| | - Marcin Karbarz
- Faculty of Chemistry
- University of Warsaw
- PL 02-093 Warsaw
- Poland
| |
Collapse
|
43
|
Cao Z, Wu H, Dong J, Wang G. Quadruple-Stimuli-Sensitive Polymeric Nanocarriers for Controlled Release under Combined Stimulation. Macromolecules 2014. [DOI: 10.1021/ma502003v] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ziquan Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Dong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
44
|
Man Y, Peng G, Wang J, Lv X, Deng Y. Microfluidic chip with thermoresponsive boronate affinity for the capture-release ofcis-diol biomolecules. J Sep Sci 2014; 38:339-45. [DOI: 10.1002/jssc.201400725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/05/2014] [Accepted: 10/27/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Yan Man
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - Guang Peng
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - Jianshe Wang
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - Xuefei Lv
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - Yulin Deng
- School of Life Science; Beijing Institute of Technology; Beijing China
| |
Collapse
|
45
|
Zhang H, Duan W, Lu M, Zhao X, Shklyaev S, Liu L, Huang TJ, Sen A. Self-powered glucose-responsive micropumps. ACS NANO 2014; 8:8537-42. [PMID: 25093759 DOI: 10.1021/nn503170c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A self-powered polymeric micropump based on boronate chemistry is described. The pump is triggered by the presence of glucose in ambient conditions and induces convective fluid flows, with pumping velocity proportional to the glucose concentration. The pumping is due to buoyancy convection that originates from reaction-associated heat flux, as verified from experiments and finite difference modeling. As predicted, the fluid flow increases with increasing height of the chamber. In addition, pumping velocity is enhanced on replacing glucose with mannitol because of the enhanced exothermicity associated with the reaction of the latter.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Chemistry and ‡Department of Engineering Science and Mechanics, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang X, Gao C, Lü S, Duan H, Jing N, Dong D, Shi C, Liu M. Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring. J Mater Chem B 2014; 2:5452-5460. [DOI: 10.1039/c4tb00905c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Ma R, Shi L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem 2014. [DOI: 10.1039/c3py01202f] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Huang Q, Liu T, Bao C, Lin Q, Ma M, Zhu L. Light and reductive dual stimuli-responsive PEI nanoparticles: “AND” logic response and controllable release. J Mater Chem B 2014; 2:3333-3339. [DOI: 10.1039/c4tb00087k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel photo and reduction dual-responsive PEI micelles were fabricated and applied for “AND” logic responsive drug release.
Collapse
Affiliation(s)
- Qi Huang
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Tao Liu
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Qiuning Lin
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Meixin Ma
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| |
Collapse
|