1
|
Sun B, Li Q, Zheng M, Su G, Lin S, Wu M, Li C, Wang Q, Tao Y, Dai L, Qin Y, Meng B. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114908. [PMID: 32540566 DOI: 10.1016/j.envpol.2020.114908] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.
Collapse
Affiliation(s)
- Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shijing Lin
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuming Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Qin
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Hışır A, Köse GG, Atmaca GY, Erdoğmuş A, Karaoğlan GK. Novel carboxylic acid terminated silicon(IV) and zinc(II) phthalocyanine photosensitizers: Synthesis, photophysical and photochemical studies. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to improve the efficacy of photochemical properties for photodynamic therapy (PDT) applications, carboxylic acid groups axially conjugated with silicon(IV) and at the peripheral position with zinc(II) phthalocyanine skeletons for new photosensitizers to investigate the influence of the COOH group positions on the photophysicochemical performance are described in this study. Silicon (IV) (3 and 5) and zinc (II) (7) phthalocyanines were characterized by UV-vis, FTIR, 1H-NMR, MALDI-TOF MS and elemental analysis spectral data. Furthermore, the photophysical (fluorescence quantum yields and fluorescence quenching studies), photochemical (photodegradation and singlet oxygen generation) and aggregation properties of the newly synthesized phthalocyanines were investigated in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solutions. The results were compared with that of zinc and silicon phthalocyanines. Singlet oxygen quantum yields ranged from 0.23 to 0.63 via Type II mechanism under the experimental conditions studied. The fluorescence of the phthalocyanine complexes (3, 5 and 7) is effectively quenched by 1,4-benzoquinone (BQ) in DMSO, DMF and THF.
Collapse
Affiliation(s)
- Arif Hışır
- Department of Chemistry, Yıldız Technical University, 34210, Esenler, Istanbul, Turkey
| | - Gülşah Gümrükcü Köse
- Department of Chemistry, Yıldız Technical University, 34210, Esenler, Istanbul, Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yıldız Technical University, 34210, Esenler, Istanbul, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yıldız Technical University, 34210, Esenler, Istanbul, Turkey
| | | |
Collapse
|
3
|
Xia Y, Qiu D, Wang J. Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chem Rev 2017; 117:13810-13889. [PMID: 29091413 DOI: 10.1021/acs.chemrev.7b00382] [Citation(s) in RCA: 826] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions have been well-established as indispensable tools in modern organic synthesis. One of the major research goals in cross-coupling area is expanding the scope of the coupling partners. In the past decade, diazo compounds (or their precursors N-tosylhydrazones) have emerged as nucleophilic cross-coupling partners in C-C single bond or C═C double bond formations in transition-metal-catalyzed reactions. This type of coupling reaction involves the following general steps. First, the organometallic species is generated by various processes, including oxidative addition, transmetalation, cyclization, C-C bond cleavage, and C-H bond activation. Subsequently, the organometallic species reacts with the diazo substrate to generate metal carbene intermediate, which undergoes rapid migratory insertion to form a C-C bond. The new organometallic species generated from migratory insertion may undergo various transformations. This type of carbene-based coupling has proven to be general: various transition metals including Pd, Cu, Rh, Ni, Co, and Ir are effective catalysts; the scope of the reaction has also been extended to substrates other than diazo compounds; and various cascade processes have also been devised based on the carbene migratory insertion. This review will summarize the achievements made in this field since 2001.
Collapse
Affiliation(s)
- Ying Xia
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Di Qiu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| |
Collapse
|
4
|
Mahmiani Y, Sevim AM, Gül A. Photocatalytic degradation of persistent organic pollutants under visible irradiation by TiO2 catalysts sensitized with Zn(II) and Co(II) tetracarboxy-phthalocyanines. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s108842461650084x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photo-excitation under visible light has been an important step to acquire solar-driven TiO2 photocatalysts and dye sensitization has been used frequently to extend the optical response of TiO2 into the visible region. In the present work, new heterogeneous photocatalysts were prepared by anchoring carboxylic acid substituted Zn(II) and Co(II) phthalocyanines onto polycrystalline TiO2 surface and their photocatalytic activities were investigated. Due to covalent bonding of carboxy-terminated molecules onto TiO[Formula: see text]semiconductors, we synthesized symmetric 4-hydroxybenzoic acid-bearing metallophthalocyanines as dye sensitizer molecules. Heterogeneous composites having titanium dioxide and metallophthalocyanines anchored via CO–O–TiO2 bonds were characterized by using X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FT-IR), and ultraviolet-visible diffuse reflectance spectroscopy. The optimum loading value of the dyes on TiO2 were 0.98 [Formula: see text]mol/g TiO2 for CoPc and 0.86 [Formula: see text]mol/g TiO2 for ZnPc, nearly independent of the amount of TiO2 used. These newly obtained heterogeneous photocatalysts were employed in the photocatalytic degradation of 4-chlorophenol(4-CP), chlorobenzene(CB) and 1,2,4-trichlorobenzen(TCB) in aqueous media under visible irradiation. Gas chromatography-mass spectrometry (GC-MS) was used for quantitation. The new photocatalysts showed excellent activities with visible-region irradiation in the photocatalytic degradation of persistent organic pollutants (POPs) as compared to the control experiments used with untreated TiO2 and the difference was attributed to the cooperation of the two elements, namely TiO2 and MPc. Experiments show that in two hours nearly complete degradation of POPs were observed.
Collapse
Affiliation(s)
- Yaghub Mahmiani
- Technical University of Istanbul, Department of Chemistry, Maslak, Istanbul TR34469, Turkey
| | - Altuğ Mert Sevim
- Technical University of Istanbul, Department of Chemistry, Maslak, Istanbul TR34469, Turkey
| | - Ahmet Gül
- Technical University of Istanbul, Department of Chemistry, Maslak, Istanbul TR34469, Turkey
| |
Collapse
|
5
|
Mahmiani Y, Sevim AM, Gül A. Photocatalytic degradation of 4-chlorophenol under visible light by using TiO2 catalysts impregnated with Co(II) and Zn(II) phthalocyanine derivatives. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Nishida Y, Ueda M, Hayashi M, Takeda N, Miyata O. Dimethylzinc-Mediated Chlorolactamization of Homoallylic Amines with Chloroform. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Liu X, Li B, Gu Z. Palladium-Catalyzed Heck-type Domino Cyclization and Carboxylation to Synthesize Carboxylic Acids by Utilizing Chloroform as the Carbon Monoxide Source. J Org Chem 2015; 80:7547-54. [DOI: 10.1021/acs.joc.5b01126] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xianglei Liu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Bin Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| |
Collapse
|
8
|
Liu X, Gu Z. Pd-catalyzed Heck cyclization and in situ hydrocarboxylation or hydromethenylation via a hydrogen borrowing strategy. Org Chem Front 2015. [DOI: 10.1039/c5qo00091b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed Heck cyclization and in situ hydrocarboxylation reaction was developed using chloroform as a one-carbon elongation reagent.
Collapse
Affiliation(s)
- Xianglei Liu
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Zhenhua Gu
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
9
|
Sevim AM, Yenilmez HY, Aydemir M, Koca A, Bayır ZA. Synthesis, electrochemical and spectroelectrochemical properties of novel phthalocyanine complexes of manganese, titanium and indium. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.149] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Ragoussi ME, Torres T. Modern Synthetic Tools Toward the Preparation of Sophisticated Phthalocyanine-Based Photoactive Systems. Chem Asian J 2014; 9:2676-707. [DOI: 10.1002/asia.201402311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Indexed: 11/12/2022]
|
11
|
Swain D, Singh VK, Krishna NV, Giribabu L, Rao SV. Optical, electrochemical, third-order nonlinear optical, and excited state dynamics studies of thio-zinc phthalocyanine. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424614500035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Zinc phthalocyanine with S-aryl groups at α-positions have been synthesized and its optical, emission, electrochemical and third-order nonlinear optical properties were investigated. Both the Soret and Q-bands were red-shifted and obeyed Beer–Lambert's law. Electrochemical properties indicated that both oxidation and reduction processes were ring centered. Emission spectra were recorded in different solvents and the fluorescence yields obtained were in the range of 0.02 while time-resolved fluorescence data revealed lifetimes of typically few ns. Excited state dynamics in this novel thio-zinc phthalocyanine molecule has been investigated using femtosecond (fs) degenerate pump-probe spectroscopy. Nonlinear optical properties of this molecule have been examined using the Z-scan technique with picosecond (ps) and fs pulses. Both open and closed aperture Z-scan curves were recorded with ~2 ps/~150 fs laser pulses at a wavelength of 800 nm and nonlinear optical coefficients were extracted from both the studies. Degenerate pump-probe data performed at 600 nm suggested a single long lifetime of ~300 ps, possibly originating from the non-radiative decay of S1 state.
Collapse
Affiliation(s)
- Debasis Swain
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | - Varun K. Singh
- Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Narra V. Krishna
- Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - L. Giribabu
- Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - S. Venugopal Rao
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
12
|
Ragoussi ME, Yum JH, Chandiran AK, Ince M, de la Torre G, Grätzel M, Nazeeruddin MK, Torres T. Sterically hindered phthalocyanines for dye-sensitized solar cells: influence of the distance between the aromatic core and the anchoring group. Chemphyschem 2014; 15:1033-6. [PMID: 24590767 DOI: 10.1002/cphc.201301118] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Indexed: 11/08/2022]
Abstract
A new phthalocyanine (Pc) bearing bulky peripheral substituents and a carboxylic anchoring group directly attached to the macrocycle has been prepared and used as a sensitizer in DSSCs, reaching 5.57% power conversion efficiency. In addition, an enhanced performance for the TT40 dye, previously reported by us, was achieved in optimized devices, obtaining a new record efficiency with Pc-sensitized cells.
Collapse
Affiliation(s)
- Maria-Eleni Ragoussi
- Universidad Autónoma de Madrid, Departamento de Química Orgánica, Cantoblanco, 28049 Madrid (Spain)
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Synthesis and photophysical properties of novel (trifluoromethyl)phenylethynyl-substituted metallophthalocyanines. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|