1
|
Jozeliūnaitė A, Rahmanudin A, Gražulis S, Baudat E, Sivula K, Fazzi D, Orentas E, Sforazzini G. Light-Responsive Oligothiophenes Incorporating Photochromic Torsional Switches. Chemistry 2022; 28:e202202698. [PMID: 36136376 PMCID: PMC9828566 DOI: 10.1002/chem.202202698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/12/2023]
Abstract
We present a quaterthiophene and sexithiophene that can reversibly change their effective π-conjugation length through photoexcitation. The reported compounds make use of light-responsive molecular actuators consisting of an azobenzene attached to a bithiophene unit by both direct and linker-assisted bonding. Upon exposure to 350 nm light, the azobenzene undergoes trans-to-cis isomerization, thus mechanically inducing the oligothiophene to assume a planar conformation (extended π-conjugation). Exposure to 254 nm wavelength promotes azobenzene cis-to-trans isomerization, forcing the thiophenic backbones to twist out of planarity (confined π-conjugation). Twisted conformations are also reached by cis-to-trans thermal relaxation at a rate that increases proportionally with the conjugation length of the oligothiophene moiety. The molecular conformations of quaterthiophene and sexithiophene were characterized by using steady-state UV-vis spectroscopy, X-ray crystallography and quantum-chemical modeling. Finally, we tested the proposed light-responsive oligothiophenes in field-effect transistors to probe the photo-induced tuning of their electronic properties.
Collapse
Affiliation(s)
- Augustina Jozeliūnaitė
- Laboratory of Macromolecular and Organic Materials, Institute of Material Science and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-0325, Vilnius, Lithuania
| | - Aiman Rahmanudin
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Saulius Gražulis
- Vilnius University, Institute of Biotechnology, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | - Emilie Baudat
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kevin Sivula
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Daniele Fazzi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi, 2, 40126, Bologna, Italy
| | - Edvinas Orentas
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-0325, Vilnius, Lithuania
| | - Giuseppe Sforazzini
- Laboratory of Macromolecular and Organic Materials, Institute of Material Science and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Present address: Department of Chemical and Geological Sciences, University degli Studi di Cagliari, SS 554, bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| |
Collapse
|
2
|
Pieczykolan M, Derr JB, Chrayteh A, Koszarna B, Clark JA, Vakuliuk O, Jacquemin D, Vullev VI, Gryko DT. The Synthesis and Photophysical Properties of Weakly Coupled Diketopyrrolopyrroles. Molecules 2021; 26:molecules26164744. [PMID: 34443329 PMCID: PMC8398321 DOI: 10.3390/molecules26164744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022] Open
Abstract
Three centrosymmetric diketopyrrolopyrroles possessing either two 2-(2′-methoxyphenyl)benzothiazole or two 2-(2′-methoxyphenyl)benzoxazolo-thiophene scaffolds were synthesized in a straightforward manner, and their photophysical properties were investigated. Their emission was significantly bathochromically shifted as compared with that of simple DPPs reaching 650 nm. Judging from theoretical calculations performed with time-dependent density functional theory, in all three cases the excited state was localized on the DPP core and there was no significant CT character. Consequently, emission was almost independent of solvents’ polarity. DPPs possessing 2,5-thiophene units vicinal to DPP core play a role in electronic transitions, resulting in bathochromically shifted absorption and emission. Interestingly, as judged from transient absorption dynamics, intersystem crossing was responsible for the deactivation of the excited states of DPPs possessing para linkers but not in the case of dye bearing meta linker.
Collapse
Affiliation(s)
- Michał Pieczykolan
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland; (M.P.); (B.K.); (O.V.)
| | - James B. Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | - Amara Chrayteh
- CEISAM Laboratory—UMR 6230, University of Nantes, CNTS, 44035 Nantes, France;
| | - Beata Koszarna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland; (M.P.); (B.K.); (O.V.)
| | - John A. Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA;
| | - Olena Vakuliuk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland; (M.P.); (B.K.); (O.V.)
| | - Denis Jacquemin
- CEISAM Laboratory—UMR 6230, University of Nantes, CNTS, 44035 Nantes, France;
- Correspondence: (D.J.); (V.I.V.); (D.T.G.)
| | - Valentine I. Vullev
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
- Department of Bioengineering, University of California, Riverside, CA 92521, USA;
- Correspondence: (D.J.); (V.I.V.); (D.T.G.)
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland; (M.P.); (B.K.); (O.V.)
- Correspondence: (D.J.); (V.I.V.); (D.T.G.)
| |
Collapse
|
3
|
Kato T, Strakova K, García-Calvo J, Sakai N, Matile S. Mechanosensitive Fluorescent Probes, Changing Color Like Lobsters during Cooking: Cascade Switching Variations. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Takehiro Kato
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - José García-Calvo
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Strakova K, Assies L, Goujon A, Piazzolla F, Humeniuk HV, Matile S. Dithienothiophenes at Work: Access to Mechanosensitive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond. Chem Rev 2019; 119:10977-11005. [DOI: 10.1021/acs.chemrev.9b00279] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Indexed: 05/20/2023]
Abstract
The field of organic bioelectronics is advancing rapidly in the development of materials and devices to precisely monitor and control biological signals. Electronics and biology can interact on multiple levels: organs, complex tissues, cells, cell membranes, proteins, and even small molecules. Compared to traditional electronic materials such as metals and inorganic semiconductors, conjugated polymers (CPs) have several key advantages for biological interactions: tunable physiochemical properties, adjustable form factors, and mixed conductivity (ionic and electronic). Herein, the use of CPs in five biologically oriented research topics, electrophysiology, tissue engineering, drug release, biosensing, and molecular bioelectronics, is discussed. In electrophysiology, implantable devices with CP coating or CP-only electrodes are showing improvements in signal performance and tissue interfaces. CP-based scaffolds supply highly favorable static or even dynamic interfaces for tissue engineering. CPs also enable delivery of drugs through a variety of mechanisms and form factors. For biosensing, CPs offer new possibilities to incorporate biological sensing elements in a conducting matrix. Molecular bioelectronics is today used to incorporate (opto)electronic functions in living tissue. Under each topic, the limits of the utility of CPs are discussed and, overall, the major challenges toward implementation of CPs and their devices to real-world applications are highlighted.
Collapse
Affiliation(s)
- Erica Zeglio
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Alexandra L Rutz
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Thomas E Winkler
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Anna Herland
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|
6
|
Banasiewicz M, Stężycki R, Kumar GD, Krzeszewski M, Tasior M, Koszarna B, Janiga A, Vakuliuk O, Sadowski B, Gryko DT, Jacquemin D. Electronic Communication in Pyrrolo[3,2-b
]pyrroles Possessing Sterically Hindered Aromatic Substituents. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marzena Banasiewicz
- Institute of Physics; Polish Academy of Sciences; Al. Lotników 32/46, 02-668 Warsaw Poland
| | - Rafał Stężycki
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - G. Dinesh Kumar
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Mariusz Tasior
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Beata Koszarna
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Anita Janiga
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Olena Vakuliuk
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Bartłomiej Sadowski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Denis Jacquemin
- CEISAM, UMR CNRS 6230; Université de Nantes; 2, rue de la Houssinière 44322 Nantes, Cedex 3 France
| |
Collapse
|
7
|
Sadowski B, Rode MF, Gryko DT. Direct Arylation of Dipyrrolonaphthyridinediones Leads to Red-Emitting Dyes with Conformational Freedom. Chemistry 2017; 24:855-864. [DOI: 10.1002/chem.201702306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Michał F. Rode
- Institute of Physics; Polish Academy of Sciences; Aleja Lotnikow 32/46 02-668 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
8
|
Kielesiński Ł, Morawski O, Dobrzycki Ł, Sobolewski AL, Gryko DT. The Coumarin-Dimer Spring-The Struggle between Charge Transfer and Steric Interactions. Chemistry 2017; 23:9174-9184. [PMID: 28500858 DOI: 10.1002/chem.201701387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Łukasz Kielesiński
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
- Institute of Physics; Polish Academy of Sciences; Al. Lotników 32/46 02-668 Warsaw Poland
| | - Olaf Morawski
- Institute of Physics; Polish Academy of Sciences; Al. Lotników 32/46 02-668 Warsaw Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry; Warsaw University; Pasteura 1 00-273 Warsaw Poland
| | - Andrzej L. Sobolewski
- Institute of Physics; Polish Academy of Sciences; Al. Lotników 32/46 02-668 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
9
|
Purc A, Koszarna B, Iachina I, Friese DH, Tasior M, Sobczyk K, Pędziński T, Brewer J, Gryko DT. The impact of interplay between electronic and steric effects on the synthesis and the linear and non-linear optical properties of diketopyrrolopyrrole bearing benzofuran moieties. Org Chem Front 2017. [DOI: 10.1039/c6qo00869k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Benzofuran has been proven to be the versatile substituent for tuning the optics of diketopyrrolopyrroles.
Collapse
Affiliation(s)
- Anna Purc
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Beata Koszarna
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Irina Iachina
- Department of Biochemistry and Molecular Biology
- University of Southern Denmark
- Odense 200-701
- Denmark
| | - Daniel H. Friese
- Universitetet i Tromsø - Norges Arktiske Universitet
- Centre for Theoretical and Computational Chemistry
- Tromsø
- Norway
| | - Mariusz Tasior
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Krzysztof Sobczyk
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | | | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology
- University of Southern Denmark
- Odense 200-701
- Denmark
| | - Daniel T. Gryko
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
10
|
Zeglio E, Schmidt MM, Thelakkat M, Gabrielsson R, Solin N, Inganäs O. Conjugated Polyelectrolyte Blend as Photonic Probe of Biomembrane Organization. ChemistrySelect 2016. [DOI: 10.1002/slct.201600920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Erica Zeglio
- Department of Physics, Chemistry and Biology; Linköping University; SE-581 83 Linköping Sweden
| | - Martina M. Schmidt
- Chemistry I-Applied Functional Polymers; University of Bayreuth; Universitätsstrasse 30 95440 Bayreuth Germany
| | - Mukundan Thelakkat
- Chemistry I-Applied Functional Polymers; University of Bayreuth; Universitätsstrasse 30 95440 Bayreuth Germany
| | - Roger Gabrielsson
- Department of Science and Technology; Linköping University, Campus Norrköping; S-60174 Norrköping Sweden
| | - Niclas Solin
- Department of Physics, Chemistry and Biology; Linköping University; SE-581 83 Linköping Sweden
| | - Olle Inganäs
- Department of Physics, Chemistry and Biology; Linköping University; SE-581 83 Linköping Sweden
| |
Collapse
|
11
|
Verolet Q, Soleimanpour S, Fujisawa K, Dal Molin M, Sakai N, Matile S. Design and Synthesis of Mixed Oligomers with Thiophenes, Dithienothiophene S,S-Dioxides, Thieno[3,4]pyrazines and 2,1,3-Benzothiadiazoles: Flipper Screening for Mechanosensitive Systems. ChemistryOpen 2015; 4:264-7. [PMID: 26246986 PMCID: PMC4522174 DOI: 10.1002/open.201402139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 12/14/2022] Open
Abstract
Monomers with large surface area and high quantum yield, that is fluorescent flippers, have been engineered into twisted push–pull oligomers to create membrane probes with high mechanosensitivity and long fluorescence lifetime. Here, the synthesis and characterization of thieno[3,4]pyrazines and 2,1,3-benzothiadiazoles are described in comparison with the original dithienothiophene S,S-dioxides. Dithienothiophene S,S-dioxide flippers are confirmed as the best reported so far, and poor results with single flipper probes support that two flippers are needed for the probe to really “swim”, that is, for high mechanosensitivity.
Collapse
Affiliation(s)
- Quentin Verolet
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | - Saeideh Soleimanpour
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | - Kaori Fujisawa
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | - Marta Dal Molin
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| |
Collapse
|
12
|
Kostyuchenko AS, Averkov AM, Fisyuk AS. A Simple and Efficient Synthesis of Substituted 2,2′-Bithiophene and 2,2′:5′,2″-Terthiophene. Org Lett 2014; 16:1833-5. [PMID: 24624889 DOI: 10.1021/ol500356w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Anastasia S. Kostyuchenko
- Department
of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira
Ave., 55a, 644077 Omsk, Russia
- Laboratory
of New Organic Materials, Omsk State Technical University, Mira Ave.,
11, 644050 Omsk, Russia
| | - Alexey M. Averkov
- Department
of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira
Ave., 55a, 644077 Omsk, Russia
| | - Alexander S. Fisyuk
- Department
of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira
Ave., 55a, 644077 Omsk, Russia
- Laboratory
of New Organic Materials, Omsk State Technical University, Mira Ave.,
11, 644050 Omsk, Russia
| |
Collapse
|
13
|
Doval DA, Molin MD, Ward S, Fin A, Sakai N, Matile S. Planarizable push–pull oligothiophenes: in search of the perfect twist. Chem Sci 2014. [DOI: 10.1039/c4sc00939h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The “twistome” of push–pull oligothiophenes is covered comprehensively. Particular emphasis is on the development of conceptually innovative fluorescent membrane probes.
Collapse
Affiliation(s)
| | - Marta Dal Molin
- Department of Organic Chemistry
- University of Geneva
- Geneva, Switzerland
| | - Sandra Ward
- Department of Organic Chemistry
- University of Geneva
- Geneva, Switzerland
| | - Andrea Fin
- Department of Organic Chemistry
- University of Geneva
- Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry
- University of Geneva
- Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry
- University of Geneva
- Geneva, Switzerland
| |
Collapse
|
14
|
Klingstedt T, Shirani H, Åslund KOA, Cairns NJ, Sigurdson CJ, Goedert M, Nilsson* KPR. The structural basis for optimal performance of oligothiophene-based fluorescent amyloid ligands: conformational flexibility is essential for spectral assignment of a diversity of protein aggregates. Chemistry 2013; 19:10179-92. [PMID: 23780508 PMCID: PMC3884759 DOI: 10.1002/chem.201301463] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 12/18/2022]
Abstract
Protein misfolding diseases are characterized by deposition of protein aggregates, and optical ligands for molecular characterization of these disease-associated structures are important for understanding their potential role in the pathogenesis of the disease. Luminescent conjugated oligothiophenes (LCOs) have proven useful for optical identification of a broader subset of disease-associated protein aggregates than conventional ligands, such as thioflavin T and Congo red. Herein, the molecular requirements for achieving LCOs able to detect nonthioflavinophilic Aβ aggregates or non-congophilic prion aggregates, as well as spectrally discriminate Aβ and tau aggregates, were investigated. An anionic pentameric LCO was subjected to chemical engineering by: 1) replacing thiophene units with selenophene or phenylene moieties, or 2) alternating the anionic substituents along the thiophene backbone. In addition, two asymmetric tetrameric ligands were generated. Overall, the results from this study identified conformational freedom and extended conjugation of the conjugated backbone as crucial determinants for obtaining superior thiophene-based optical ligands for sensitive detection and spectral assignment of disease-associated protein aggregates.
Collapse
Affiliation(s)
- Therése Klingstedt
- Department of Chemistry, Linköping University581 83 Linköping (Sweden) E-mail:
| | - Hamid Shirani
- Department of Chemistry, Linköping University581 83 Linköping (Sweden) E-mail:
| | - K O Andreas Åslund
- Department of Chemistry, Linköping University581 83 Linköping (Sweden) E-mail:
| | - Nigel J Cairns
- Department of Neurology, Alzheimer–s Disease Research Center, Washington UniversitySt. Louis, Missouri 63110 (USA)
| | - Christina J Sigurdson
- Department of Pathology, University of CaliforniaSan Diego, La Jolla, California 92093-0612 (USA)
| | - Michel Goedert
- MRC Laboratory of Molecular BiologyHills Road, Cambridge CB2 0QH (UK)
| | - K Peter R Nilsson*
- Department of Chemistry, Linköping University581 83 Linköping (Sweden) E-mail:
| |
Collapse
|
15
|
Alonso Doval D, Matile S. Increasingly twisted push–pull oligothiophenes and their planarization in confined space. Org Biomol Chem 2013; 11:7467-71. [DOI: 10.1039/c3ob41706a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|