1
|
Kozma E, Bojtár M, Kele P. Bioorthogonally Assisted Phototherapy: Recent Advances and Prospects. Angew Chem Int Ed Engl 2023; 62:e202303198. [PMID: 37161824 DOI: 10.1002/anie.202303198] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023]
Abstract
Photoresponsive materials offer excellent spatiotemporal control over biological processes and the emerging phototherapeutic methods are expected to have significant effects on targeted cancer therapies. Recent examples show that combination of photoactivatable approaches with bioorthogonal chemistry enhances the precision of targeted phototherapies and profound implications are foreseen particularly in the treatment of disperse/diffuse tumors. The extra level of on-target selectivity and improved spatial/temporal control considerably intensified related bioorthogonally assisted phototherapy research. The anticipated growth of further developments in the field justifies the timeliness of a brief summary of the state of the art.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| |
Collapse
|
2
|
Abstract
Genetic code expansion is one of the most powerful technologies in protein engineering. In addition to the 20 canonical amino acids, the expanded genetic code is supplemented by unnatural amino acids, which have artificial side chains that can be introduced into target proteins in vitro and in vivo. A wide range of chemical groups have been incorporated co-translationally into proteins in single cells and multicellular organisms by using genetic code expansion. Incorporated unnatural amino acids have been used for novel structure-function relationship studies, bioorthogonal labelling of proteins in cellulo for microscopy and in vivo for tissue-specific proteomics, the introduction of post-translational modifications and optical control of protein function, to name a few examples. In this Minireview, the development of genetic code expansion technology is briefly introduced, then its applications in neurobiology are discussed, with a focus on studies using mammalian cells and mice as model organisms.
Collapse
Affiliation(s)
- Ivana Nikić‐Spiegel
- Werner Reichardt Centre for Integrative NeuroscienceUniversity of TübingenOtfried-Müller-Strasse 2572076TübingenGermany
| |
Collapse
|
3
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
4
|
Ganz D, Harijan D, Wagenknecht HA. Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry. RSC Chem Biol 2020; 1:86-97. [PMID: 34458750 PMCID: PMC8341813 DOI: 10.1039/d0cb00047g] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Labelling of nucleic acids as biologically important cellular components is a crucial prerequisite for the visualization and understanding of biological processes. Efficient bioorthogonal chemistry and in particular cycloadditions fullfill the requirements for cellular applications. The broadly applied Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC), however, is limited to labellings in vitro and in fixed cells due to the cytotoxicity of copper salts. Currently, there are three types of copper-free cycloadditions used for nucleic acid labelling in the cellular environment: (i) the ring-strain promoted azide-alkyne cycloaddition (SPAAC), (ii) the "photoclick" 1,3-dipolar cycloadditions, and (iii) the Diels-Alder reactions with inverse electron demand (iEDDA). We review only those building blocks for chemical synthesis on solid phase of DNA and RNA and for enzymatic DNA and RNA preparation, which were applied for labelling of DNA and RNA in situ or in vivo, i.e. in the cellular environment, in fixed or in living cells, by the use of bioorthogonal cycloaddition chemistry. Additionally, we review the current status of orthogonal dual and triple labelling of DNA and RNA in vitro to demonstrate their potential for future applications in situ or in vivo.
Collapse
Affiliation(s)
- Dorothée Ganz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Dennis Harijan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
5
|
Singh M, Vaishali, Paul AK, Singh V. Isatin as a 2-aminobenzaldehyde surrogate: transition metal-free efficient synthesis of 2-(2'-aminophenyl)benzothiazole derivatives. Org Biomol Chem 2020; 18:4459-4469. [PMID: 32490470 DOI: 10.1039/d0ob00888e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition metal-free, convenient, and efficient practical approach has been devised for the synthesis of substituted 2-(2'-aminophenyl)benzothiazoles via a sulfur insertion strategy using isatin derivatives as 2-aminobenzaldehyde surrogates. KI assisted one-pot operation of isatin, arylamines and elemental sulfur resulted in the formation of a C-N and two C-S bonds and cascade cleavage of the isatin ring resulting in the formation of 2-(2'-aminophenyl)benzothiazoles. The significant features of this strategy are the readily available and inexpensive starting materials, broad substrate scope, sustainable reaction conditions and high yield of products. Importantly, the strategy was found to be appropriate for gram scale synthesis (>10 g) of 2-(2'-aminophenyl)benzothiazole derivatives. Moreover, the excellent photophysical properties (ΦF up to 60%) of 2-(2'-aminophenyl)benzothiazole derivatives provide huge scope in materials science.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India.
| | - Vaishali
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India.
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, 136119, Haryana, India
| | - Virender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India. and Department of Chemistry, Central University of Punjab, Bathinda, 151001, Punjab, India. virender.singh.cup.edu.in
| |
Collapse
|
6
|
Definitive Screening Design Optimization of Chemoenzymatic Process for (
R
)‐3‐(Carbamoylmethyl)‐5‐methylhexanoicacid: A Key Intermediate of Pregabalin. ChemistrySelect 2020. [DOI: 10.1002/slct.202000061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Németh E, Knorr G, Németh K, Kele P. A Bioorthogonally Applicable, Fluorogenic, Large Stokes-Shift Probe for Intracellular Super-Resolution Imaging of Proteins. Biomolecules 2020; 10:biom10030397. [PMID: 32143419 PMCID: PMC7175155 DOI: 10.3390/biom10030397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/02/2023] Open
Abstract
Herein, we present the synthesis and application of a fluorogenic, large Stokes-shift (>100 nm), bioorthogonally conjugatable, membrane-permeable tetrazine probe, which can be excited at common laser line 488 nm and detected at around 600 nm. The applied design enabled improved fluorogenicity in the orange/red emission range, thus efficient suppression of background and autofluorescence upon imaging biological samples. Moreover, unlike our previous advanced probes, it does not require the presence of special target platforms or microenvironments to achieve similar fluorogenicity and can be generally applied, e.g., on translationally bioorthogonalized proteins. Live-cell labeling schemes revealed that the fluorogenic probe is suitable for specific labeling of intracellular proteins, site-specifically modified with a cyclooctynylated, non-canonical amino acid, even under no-wash conditions. Furthermore, the probe was found to be applicable in stimulated emission depletion (STED) super-resolution microscopy imaging using a 660 nm depletion laser. Probably the most salient feature of this new probe is that the large Stokes-shift allows dual-color labeling schemes of cellular structures using distinct excitation and the same detection wavelengths for the combined probes, which circumvents chromatic aberration related problems.
Collapse
|
8
|
Gu L, Renault K, Romieu A, Richard JA, Srinivasan R. Synthesis and spectral properties of 6′-triazolyl-dihydroxanthene-hemicyanine fused near-infrared dyes. NEW J CHEM 2020. [DOI: 10.1039/d0nj01724h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper(i)-catalyzed azide alkyne cycloaddition (CuAAC) to explore the fluorogenic potential of near-infrared (NIR) dihydroxanthene (DHX) triazole dyes.
Collapse
Affiliation(s)
- Lingyue Gu
- School of Pharmaceutical Science and Technology (SPST)
- Tianjin University
- Tianjin
- P. R. China
| | - Kévin Renault
- ICMUB, UMR 6302, CNRS
- Univ. Bourgogne Franche-Comté 9
- Avenue Alain Savary
- 21000 Dijon
- France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS
- Univ. Bourgogne Franche-Comté 9
- Avenue Alain Savary
- 21000 Dijon
- France
| | - Jean-Alexandre Richard
- Functional Molecules and Polymers Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR)
- Neuros, #07-01 138665
- Singapore
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST)
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
9
|
Egyed A, Kormos A, Söveges B, Németh K, Kele P. Bioothogonally applicable, π-extended rhodamines for super-resolution microscopy imaging for intracellular proteins. Bioorg Med Chem 2020; 28:115218. [DOI: 10.1016/j.bmc.2019.115218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023]
|
10
|
Ditmangklo B, Taechalertpaisarn J, Siriwong K, Vilaivan T. Clickable styryl dyes for fluorescence labeling of pyrrolidinyl PNA probes for the detection of base mutations in DNA. Org Biomol Chem 2019; 17:9712-9725. [PMID: 31531484 DOI: 10.1039/c9ob01492f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent hybridization probes are important tools for rapid, specific and sensitive analysis of genetic mutations. In this work, we synthesized novel alkyne-modified styryl dyes for conjugation with pyrrolidinyl peptide nucleic acid (acpcPNA) by click chemistry for the development of hybridization responsive fluorescent PNA probes. The free styryl dyes generally exhibited weak fluorescence in aqueous media, and the fluorescence was significantly enhanced (up to 125-fold) upon binding with DNA duplexes. Selected styryl dyes that showed good responses with DNA were conjugated with PNA via sequential reductive alkylation-click chemistry. Although these probes showed little fluorescence change when hybridized to complementary DNA, significant fluorescence enhancements were observed in the presence of structural defects including mismatched, abasic and base-inserted DNA targets. The largest increase in fluorescence quantum yield (up to 14.5-fold) was achieved with DNA carrying base insertion. Although a number of probes were designed to give fluorescence response to complementary DNA targets, probes that are responsive to mutations such as single nucleotide polymorphism (SNP), base insertion/deletion and abasic site are less common. Therefore, styryl-dye-labeled acpcPNA is a unique probe that is responsive to structural defects in the duplexes that may be further applied for diagnostic purposes.
Collapse
Affiliation(s)
- Boonsong Ditmangklo
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Jaru Taechalertpaisarn
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand. and National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Khatcharin Siriwong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
11
|
Zych D, Slodek A, Zimny D, Golba S, Malarz K, Mrozek-Wilczkiewicz A. Influence of the substituent D/A at the 1,2,3-triazole ring on novel terpyridine derivatives: synthesis and properties. RSC Adv 2019; 9:16554-16564. [PMID: 35516389 PMCID: PMC9064414 DOI: 10.1039/c9ra02655j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/14/2019] [Indexed: 11/30/2022] Open
Abstract
In this study, we newly designed and developed a synthesis route based on the 1,3-dipolar cycloaddition of the derivatives of 4'-(1,2,3-triazol-4-yl)phenyl-2,2':6',2''-terpyridine with various (hetero)aryl substituents, differing in electronic character, on a triazol ring. The obtained compounds were comprehensively characterized by UV-Vis spectroscopy and electrochemical and thermal studies. Moreover, preliminary biological tests were conducted. The investigation allowed the selection of materials with the most promising properties with particular emphasis on the nature of the substituents. In addition, theoretical studies (DFT and TD-DFT) were performed to verify the comprehensive understanding of experimental results.
Collapse
Affiliation(s)
- Dawid Zych
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia Szkolna 9 40-007 Katowice Poland
| | - Aneta Slodek
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia Szkolna 9 40-007 Katowice Poland
| | - Dżastin Zimny
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia Szkolna 9 40-007 Katowice Poland
| | - Sylwia Golba
- Institute of Materials Science, University of Silesia 75 Pulku Piechoty 1A 41-500 Chorzów Poland
| | - Katarzyna Malarz
- A. Chełkowski Institute of Physics, Faculty of Mathematics, Physics and Chemistry, Silesian Center for Education and Interdisciplinary Research, University of Silesia 75 Pulku Piechoty 1A 41-500 Chorzów Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics, Faculty of Mathematics, Physics and Chemistry, Silesian Center for Education and Interdisciplinary Research, University of Silesia 75 Pulku Piechoty 1A 41-500 Chorzów Poland
| |
Collapse
|
12
|
Gopinath A, Manivannan N, Mandal S, Mathivanan N, Nasar AS. Substituent enhanced fluorescence properties of star α-cyanostilbenes and their application in bioimaging. J Mater Chem B 2019; 7:6010-6023. [DOI: 10.1039/c9tb01452g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper, we report the fluorescence properties of new star α-cyanostilbene molecules. Fungus cell imaging studies using one of the molecules allowed observing nuclear movement in the live mycelium.
Collapse
Affiliation(s)
- A. Gopinath
- Department of Polymer Science
- University of Madras
- Chennai-25
- India
| | - N. Manivannan
- Biocontrol and Microbial Metabolites Lab
- Centre for Advanced Studies in Botany
- University of Madras
- Chennai-600025
- India
| | - Sudip Mandal
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | - N. Mathivanan
- Biocontrol and Microbial Metabolites Lab
- Centre for Advanced Studies in Botany
- University of Madras
- Chennai-600025
- India
| | - A. Sultan Nasar
- Department of Polymer Science
- University of Madras
- Chennai-25
- India
| |
Collapse
|
13
|
Abstract
Fluorogenic probes efficiently reduce non-specific background signals, which often results in highly improved signal-to-noise ratios.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| | - Péter Kele
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| |
Collapse
|
14
|
Noda H, Asada Y, Shibasaki M, Kumagai N. A fluorogenic C4N4 probe for azide-based labelling. Org Biomol Chem 2019; 17:1813-1816. [DOI: 10.1039/c8ob02695e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new fluorogenic probe based on the recently identified 2,5-diaminopyrimidine (C4N4) fluorophore is introduced for azide-specific labelling.
Collapse
Affiliation(s)
- Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN)
- Tokyo 141-0021
- Japan
| | - Yasuko Asada
- Institute of Microbial Chemistry (BIKAKEN)
- Tokyo 141-0021
- Japan
| | | | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN)
- Tokyo 141-0021
- Japan
| |
Collapse
|
15
|
Kormos A, Koehler C, Fodor EA, Rutkai ZR, Martin ME, Mező G, Lemke EA, Kele P. Bistetrazine-Cyanines as Double-Clicking Fluorogenic Two-Point Binder or Crosslinker Probes. Chemistry 2018; 24:8841-8847. [PMID: 29676491 DOI: 10.1002/chem.201800910] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Fluorogenic probes can be used to minimize the background fluorescence of unreacted and nonspecifically adsorbed reagents. The preceding years have brought substantial developments in the design and synthesis of bioorthogonally applicable fluorogenic systems mainly based on the quenching effects of azide and tetrazine moieties. The modulation power exerted by these bioorthogonal motifs typically becomes less efficient on more conjugated systems; that is, on probes with redshifted emission wavelength. To reach efficient quenching, that is, fluorogenicity, even in the red range of the spectrum, we present the synthesis, fluorogenic, and conjugation characterization of bistetrazine-cyanine probes with emission maxima between 600 and 620 nm. The probes can bind to genetically altered proteins harboring an 11-amino acid peptide tag with two appending cyclooctyne motifs. Moreover, we also demonstrate the use of these bistetrazines as fluorogenic, covalent cross-linkers between monocyclooctynylated proteins.
Collapse
Affiliation(s)
- Attila Kormos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Christine Koehler
- Departments of Biology and Chemistry, Pharmacy and Geosciences, Johannes Gutenberg-University Mainz, Johannes-von-Mullerweg 6, 55128, Mainz, Germany.,Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Eszter A Fodor
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Zsófia R Rutkai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Madison E Martin
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Pázmány Péter sétány 1a, 1117, Budapest, Hungary
| | - Edward A Lemke
- Departments of Biology and Chemistry, Pharmacy and Geosciences, Johannes Gutenberg-University Mainz, Johannes-von-Mullerweg 6, 55128, Mainz, Germany.,Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Péter Kele
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| |
Collapse
|
16
|
Pünkösti Z, Kele P, Herner A. Synthesis of 7-Azido-3-Formylcoumarin - A Key Precursor in Bioorthogonally Applicable Fluorogenic Dye Synthesis. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zoltán Pünkösti
- Chemical Biology Research Group. Magyar tudósok krt. 2, Research Centre for Natural Sciences, Institute of Organic Chemistry; Hungarian Academy of Sciences; Budapest H-1117 Hungary
| | - Péter Kele
- Chemical Biology Research Group. Magyar tudósok krt. 2, Research Centre for Natural Sciences, Institute of Organic Chemistry; Hungarian Academy of Sciences; Budapest H-1117 Hungary
| | - András Herner
- Chemical Biology Research Group. Magyar tudósok krt. 2, Research Centre for Natural Sciences, Institute of Organic Chemistry; Hungarian Academy of Sciences; Budapest H-1117 Hungary
| |
Collapse
|
17
|
Kozma E, Estrada Girona G, Paci G, Lemke EA, Kele P. Bioorthogonal double-fluorogenic siliconrhodamine probes for intracellular super-resolution microscopy. Chem Commun (Camb) 2018; 53:6696-6699. [PMID: 28530747 DOI: 10.1039/c7cc02212c] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of double-fluorogenic siliconrhodamine probes were synthesized. These tetrazine-functionalized, membrane-permeable labels allowed site-specific bioorthogonal tagging of genetically manipulated intracellular proteins and subsequent imaging using super-resolution microscopy.
Collapse
Affiliation(s)
- E Kozma
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary.
| | - G Estrada Girona
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, D-69117, Germany
| | - G Paci
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, D-69117, Germany
| | - E A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, D-69117, Germany
| | - P Kele
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary.
| |
Collapse
|
18
|
Knorr G, Kozma E, Schaart JM, Németh K, Török G, Kele P. Bioorthogonally Applicable Fluorogenic Cyanine-Tetrazines for No-Wash Super-Resolution Imaging. Bioconjug Chem 2018; 29:1312-1318. [DOI: 10.1021/acs.bioconjchem.8b00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Siegl SJ, Vázquez A, Dzijak R, Dračínský M, Galeta J, Rampmaier R, Klepetářová B, Vrabel M. Design and Synthesis of Aza-Bicyclononene Dienophiles for Rapid Fluorogenic Ligations. Chemistry 2018; 24:2426-2432. [PMID: 29243853 DOI: 10.1002/chem.201705188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Fluorogenic bioorthogonal reactions enable visualization of biomolecules under native conditions with excellent signal-to-noise ratio. Here, we present the design and synthesis of conformationally-strained aziridine-fused trans-cyclooctene (aza-TCO) dienophiles, which lead to the formation of fluorescent products in tetrazine ligations without the need for attachment of an extra fluorophore moiety. The presented aza-TCOs adopt the highly strained "half-chair" conformation, which was predicted computationally and confirmed by NMR measurements and X-ray crystallography. Kinetic studies revealed that the aza-TCOs belong to the most reactive dienophiles known to date. The potential of the newly developed aza-TCO probes for bioimaging applications is demonstrated by protein labeling experiments, imaging of cellular glycoconjugates and peptidoglycan imaging of live bacteria.
Collapse
Affiliation(s)
- Sebastian J Siegl
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Arcadio Vázquez
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Juraj Galeta
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Robert Rampmaier
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
20
|
Arivazhagan C, Maity A, Bakthavachalam K, Jana A, Panigrahi SK, Suresh E, Das A, Ghosh S. Phenothiazinyl Boranes: A New Class of AIE Luminogens with Mega Stokes Shift, Mechanochromism, and Mechanoluminescence. Chemistry 2017; 23:7046-7051. [DOI: 10.1002/chem.201700187] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 11/07/2022]
Affiliation(s)
- C. Arivazhagan
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Arunava Maity
- CSIR-Central Salt and Marine Chemicals Research Institute; Bhavnagar 364 002 India
| | - K. Bakthavachalam
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Arijit Jana
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Suraj Kumar Panigrahi
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Eringathodi Suresh
- CSIR-Central Salt and Marine Chemicals Research Institute; Bhavnagar 364 002 India
| | - Amitava Das
- CSIR-Central Salt and Marine Chemicals Research Institute; Bhavnagar 364 002 India
| | - Sundargopal Ghosh
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| |
Collapse
|
21
|
Demeter O, Kormos A, Koehler C, Mező G, Németh K, Kozma E, Takács LB, Lemke EA, Kele P. Bisazide Cyanine Dyes as Fluorogenic Probes for Bis-Cyclooctynylated Peptide Tags and as Fluorogenic Cross-Linkers of Cyclooctynylated Proteins. Bioconjug Chem 2017; 28:1552-1559. [PMID: 28441009 DOI: 10.1021/acs.bioconjchem.7b00178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we present the synthesis and fluorogenic characterization of a series of double-quenched bisazide cyanine probes with emission maxima between 565 and 580 nm that can participate in covalent, two-point binding bioorthogonal tagging schemes in combination with bis-cyclooctynylated peptides. Compared to other fluorogenic cyanines, these double-quenched systems showed remarkable fluorescence intensity increase upon formation of cyclic dye-peptide conjugates. Furthermore, we also demonstrated that these bisazides are useful fluorogenic cross-linking platforms that are able to form a covalent linkage between monocyclooctynylated proteins.
Collapse
Affiliation(s)
- Orsolya Demeter
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Attila Kormos
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Christine Koehler
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory , Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences , Pázmány Péter sétány 1a, H-1117, Budapest, Hungary
| | - Krisztina Németh
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Eszter Kozma
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Levente B Takács
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory , Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | - Péter Kele
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| |
Collapse
|
22
|
Kipper K, Lundius EG, Ćurić V, Nikić I, Wiessler M, Lemke EA, Elf J. Application of Noncanonical Amino Acids for Protein Labeling in a Genomically Recoded Escherichia coli. ACS Synth Biol 2017; 6:233-255. [PMID: 27775882 DOI: 10.1021/acssynbio.6b00138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small synthetic fluorophores are in many ways superior to fluorescent proteins as labels for imaging. A major challenge is to use them for a protein-specific labeling in living cells. Here, we report on our use of noncanonical amino acids that are genetically encoded via the pyrrolysyl-tRNA/pyrrolysyl-RNA synthetase pair at artificially introduced TAG codons in a recoded E. coli strain. The strain is lacking endogenous TAG codons and the TAG-specific release factor RF1. The amino acids contain bioorthogonal groups that can be clicked to externally supplied dyes, thus enabling protein-specific labeling in live cells. We find that the noncanonical amino acid incorporation into the target protein is robust for diverse amino acids and that the usefulness of the recoded E. coli strain mainly derives from the absence of release factor RF1. However, the membrane permeable dyes display high nonspecific binding in intracellular environment and the electroporation of hydrophilic nonmembrane permeable dyes severely impairs growth of the recoded strain. In contrast, proteins exposed on the outer membrane of E. coli can be labeled with hydrophilic dyes with a high specificity as demonstrated by labeling of the osmoporin OmpC. Here, labeling can be made sufficiently specific to enable single molecule studies as exemplified by OmpC single particle tracking.
Collapse
Affiliation(s)
- Kalle Kipper
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ebba G. Lundius
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Vladimir Ćurić
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ivana Nikić
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Manfred Wiessler
- Biological
Chemistry, Deutsche Krebsforschungszentrum, Heidelberg, 69120, Germany
| | - Edward A. Lemke
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Johan Elf
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| |
Collapse
|
23
|
Shie JJ, Liu YC, Hsiao JC, Fang JM, Wong CH. A cell-permeable and triazole-forming fluorescent probe for glycoconjugate imaging in live cells. Chem Commun (Camb) 2017; 53:1490-1493. [DOI: 10.1039/c6cc08805h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A new fluorescence-forming probe, coumOCT, designed by fusing cyclooctyne with a coumarin fluorophore was successfully used for the imaging of azido-glycoconjugates in living HeLa cells.
Collapse
Affiliation(s)
| | - Ying-Chih Liu
- Genomics Research Center
- Academia Sinica
- Nankang
- Taiwan
| | | | - Jim-Min Fang
- Genomics Research Center
- Academia Sinica
- Nankang
- Taiwan
- Department of Chemistry
| | - Chi-Huey Wong
- Genomics Research Center
- Academia Sinica
- Nankang
- Taiwan
- Department of Chemistry
| |
Collapse
|
24
|
Safir Filho M, Fiorucci S, Martin AR, Benhida R. Design, synthesis and photophysical studies of styryl-based push–pull fluorophores with remarkable solvatofluorochromism. NEW J CHEM 2017. [DOI: 10.1039/c7nj03142d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A library of 20 styryl-based push–pull dyes derived from 6-amino substituted benzothiazoles were prepared by an efficient and practical synthetic route from low-cost starting materials.
Collapse
Affiliation(s)
- Mauro Safir Filho
- Université Côte d'Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- 06108 Nice
- France
| | - Sebastien Fiorucci
- Université Côte d'Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- 06108 Nice
- France
| | - Anthony R. Martin
- Université Côte d'Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- 06108 Nice
- France
| | - Rachid Benhida
- Université Côte d'Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- 06108 Nice
- France
| |
Collapse
|
25
|
Knorr G, Kozma E, Herner A, Lemke EA, Kele P. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes. Chemistry 2016; 22:8972-9. [PMID: 27218228 DOI: 10.1002/chem.201600590] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 11/09/2022]
Abstract
The synthesis of a set of tetrazine-bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through-bond energy-transfer-based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse-electron-demand Diels-Alder reaction with proteins modified genetically with strained trans-cyclooctenes.
Collapse
Affiliation(s)
- Gergely Knorr
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Eszter Kozma
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - András Herner
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Péter Kele
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary.
| |
Collapse
|
26
|
Komatsu T, Virdee S. ICBS and ECBS Chemical Biology Meeting 2015 - Let Them Come to Berlin! ACS Chem Biol 2016; 11:1159-66. [PMID: 27198933 DOI: 10.1021/acschembio.6b00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Toru Komatsu
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- JST PRESTO, Tokyo, Japan
| | - Satpal Virdee
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
27
|
Demeter O, Fodor EA, Kállay M, Mező G, Németh K, Szabó PT, Kele P. A Double-Clicking Bis-Azide Fluorogenic Dye for Bioorthogonal Self-Labeling Peptide Tags. Chemistry 2016; 22:6382-8. [DOI: 10.1002/chem.201504939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Orsolya Demeter
- Chemical Biology Research Group; Institute of Organic Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Eszter A. Fodor
- Chemical Biology Research Group; Institute of Organic Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Mihály Kállay
- MTA-BME “Lendület” Quantum Chemistry Research Group; Department of Physical Chemistry and Materials Science; Budapest University of Technology and Economics; P.O. Box 91 1521 Budapest Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry; Hungarian Academy of Sciences; Pázmány Péter sétány 1 a 1117 Budapest Hungary
| | - Krisztina Németh
- Chemical Biology Research Group; Institute of Organic Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Pál T. Szabó
- MS Metabolomics Research Group; Institute of Organic Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 1117 Budapest Hungary)
| | - Péter Kele
- Chemical Biology Research Group; Institute of Organic Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 1117 Budapest Hungary
| |
Collapse
|
28
|
Eördögh Á, Steinmeyer J, Peewasan K, Schepers U, Wagenknecht HA, Kele P. Polarity Sensitive Bioorthogonally Applicable Far-Red Emitting Labels for Postsynthetic Nucleic Acid Labeling by Copper-Catalyzed and Copper-Free Cycloaddition. Bioconjug Chem 2016; 27:457-64. [DOI: 10.1021/acs.bioconjchem.5b00557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ádám Eördögh
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre
for Natural Sciences, Hungarian Academy of Sciences. Magyar tudósok
krt. 2, H-1117, Budapest, Hungary
| | - Jeannine Steinmeyer
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Krisana Peewasan
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), H.-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hans-Achim Wagenknecht
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Péter Kele
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre
for Natural Sciences, Hungarian Academy of Sciences. Magyar tudósok
krt. 2, H-1117, Budapest, Hungary
| |
Collapse
|
29
|
Söveges B, Imre T, Szende T, Póti ÁL, Cserép GB, Hegedűs T, Kele P, Németh K. A systematic study of protein labeling by fluorogenic probes using cysteine targeting vinyl sulfone-cyclooctyne tags. Org Biomol Chem 2016; 14:6071-8. [DOI: 10.1039/c6ob00810k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein labeling by cycloocytynylated vinyl sulfone linkers is fast and thiol-selective, and subsequent click reaction with fluorogenic azides generates intensive fluorescence.
Collapse
Affiliation(s)
- B. Söveges
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - T. Imre
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- MS Metabolomics Research Group
- Hungary
| | - T. Szende
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - Á. L. Póti
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Enzymology
- Protein Research Group
- Hungary
| | - G. B. Cserép
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - T. Hegedűs
- MTA-SE Molecular Biophysics Research Group
- Department of Biophysics and Radiation Biology
- Semmelweis University
- Tuzolto u. 37-47
- H-1094 Budapest
| | - P. Kele
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - K. Németh
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| |
Collapse
|
30
|
Lee LCC, Lau JCW, Liu HW, Lo KKW. Conferring Phosphorogenic Properties on Iridium(III)-Based Bioorthogonal Probes through Modification with a Nitrone Unit. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong P.R. China
| | - Jonathan Chun-Wai Lau
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong P.R. China
| | - Hua-Wei Liu
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong P.R. China
- State Key Laboratory of Millimeter Waves; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong (P.R. China
| |
Collapse
|
31
|
Lee LCC, Lau JCW, Liu HW, Lo KKW. Conferring Phosphorogenic Properties on Iridium(III)-Based Bioorthogonal Probes through Modification with a Nitrone Unit. Angew Chem Int Ed Engl 2015; 55:1046-9. [DOI: 10.1002/anie.201509396] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong P.R. China
| | - Jonathan Chun-Wai Lau
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong P.R. China
| | - Hua-Wei Liu
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong P.R. China
- State Key Laboratory of Millimeter Waves; City University of Hong Kong; Tat Chee Avenue, Kowloon Hong Kong (P.R. China
| |
Collapse
|
32
|
Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond. Curr Opin Chem Biol 2015; 28:164-73. [DOI: 10.1016/j.cbpa.2015.07.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022]
|
33
|
Cserép GB, Herner A, Kele P. Bioorthogonal fluorescent labels: a review on combined forces. Methods Appl Fluoresc 2015; 3:042001. [DOI: 10.1088/2050-6120/3/4/042001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Nikić I, Kang JH, Girona GE, Aramburu IV, Lemke EA. Labeling proteins on live mammalian cells using click chemistry. Nat Protoc 2015; 10:780-91. [DOI: 10.1038/nprot.2015.045] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Abstract
Bioorthogonal chemistry has enabled the selective labeling and detection of biomolecules in living systems. Bioorthogonal smart probes, which become fluorescent or deliver imaging or therapeutic agents upon reaction, allow for the visualization of biomolecules or targeted delivery even in the presence of excess unreacted probe. This review discusses the strategies used in the development of bioorthogonal smart probes and highlights the potential of these probes to further our understanding of biology.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Abstract
We have come a long way in the 55 years since Edmond Fischer and the late Edwin Krebs discovered that the activity of glycogen phosphorylase is regulated by reversible protein phosphorylation. Many of the fundamental molecular mechanisms that operate in biological signaling have since been characterized and the vast web of interconnected pathways that make up the cellular signaling network has been mapped in considerable detail. Nonetheless, it is important to consider how fast this field is still moving and the issues at the current boundaries of our understanding. One must also appreciate what experimental strategies have allowed us to attain our present level of knowledge. We summarize here some key issues (both conceptual and methodological), raise unresolved questions, discuss potential pitfalls, and highlight areas in which our understanding is still rudimentary. We hope these wide-ranging ruminations will be useful to investigators who carry studies of signal transduction forward during the rest of the 21st century.
Collapse
|
37
|
Cserép GB, Baranyai Z, Komáromy D, Horváti K, Bősze S, Kele P. Fluorogenic tagging of peptides via Cys residues using thiol-specific vinyl sulfone affinity tags. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Shie JJ, Liu YC, Lee YM, Lim C, Fang JM, Wong CH. An Azido-BODIPY Probe for Glycosylation: Initiation of Strong Fluorescence upon Triazole Formation. J Am Chem Soc 2014; 136:9953-61. [DOI: 10.1021/ja5010174] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiun-Jie Shie
- The
Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Chih Liu
- The
Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ming Lee
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jim-Min Fang
- The
Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Huey Wong
- The
Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
39
|
Herner A, Estrada Girona G, Nikić I, Kállay M, Lemke EA, Kele P. New generation of bioorthogonally applicable fluorogenic dyes with visible excitations and large Stokes shifts. Bioconjug Chem 2014; 25:1370-4. [PMID: 24932756 DOI: 10.1021/bc500235p] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthesis of a set of new, azide bearing, biorthogonally applicable fluorogenic dyes with large Stokes shifts is presented herein. To assess the fluorogenic performance of these new dyes we have labeled a genetically modulated, cyclooctyne-bearing protein in lysate medium. Studies showed that the labels produce specific signal with minimal background fluorescence. We also provide theoretical insights into the design of such fluorogenic labels.
Collapse
Affiliation(s)
- András Herner
- "Lendület" Chemical Biology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
40
|
Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes. Proc Natl Acad Sci U S A 2014; 111:5456-61. [PMID: 24706769 DOI: 10.1073/pnas.1322727111] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fluorescent probes designed for activation by bioorthogonal chemistry have enabled the visualization of biomolecules in living systems. Such activatable probes with near-infrared (NIR) emission would be ideal for in vivo imaging but have proven difficult to engineer. We present the development of NIR fluorogenic azide probes based on the Si-rhodamine scaffold that undergo a fluorescence enhancement of up to 48-fold upon reaction with terminal or strained alkynes. We used the probes for mammalian cell surface imaging and, in conjunction with a new class of cyclooctyne D-amino acids, for visualization of bacterial peptidoglycan without the need to wash away unreacted probe.
Collapse
|
41
|
Patterson DM, Nazarova LA, Prescher JA. Finding the right (bioorthogonal) chemistry. ACS Chem Biol 2014; 9:592-605. [PMID: 24437719 DOI: 10.1021/cb400828a] [Citation(s) in RCA: 534] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistries can be used to tag diverse classes of biomolecules in cells and other complex environments. With over 20 unique transformations now available, though, selecting an appropriate reaction for a given experiment is challenging. In this article, we compare and contrast the most common classes of bioorthogonal chemistries and provide a framework for matching the reactions with downstream applications. We also discuss ongoing efforts to identify novel biocompatible reactions and methods to control their reactivity. The continued expansion of the bioorthogonal toolkit will provide new insights into biomolecule networks and functions and thus refine our understanding of living systems.
Collapse
Affiliation(s)
- David M. Patterson
- Departments of †Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Lidia A. Nazarova
- Departments of †Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Jennifer A. Prescher
- Departments of †Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
42
|
Abstract
The use of covalent chemistry to track biomolecules in their native environment-a focus of bioorthogonal chemistry-has received considerable interest recently among chemical biologists and organic chemists alike. To facilitate wider adoption of bioorthogonal chemistry in biomedical research, a central effort in the last few years has been focused on the optimization of a few known bioorthogonal reactions, particularly with respect to reaction kinetics improvement, novel genetic encoding systems, and fluorogenic reactions for bioimaging. During these optimizations, three strategies have emerged, including the use of ring strain for substrate activation in the cycloaddition reactions, the discovery of new ligands and privileged substrates for accelerated metal-catalysed reactions, and the design of substrates with pre-fluorophore structures for rapid "turn-on" fluorescence after selective bioorthogonal reactions. In addition, new bioorthogonal reactions based on either modified or completely unprecedented reactant pairs have been reported. Finally, increasing attention has been directed toward the development of mutually exclusive bioorthogonal reactions and their applications in multiple labeling of a biomolecule in cell culture. In this feature article, we wish to present the recent progress in bioorthogonal reactions through the selected examples that highlight the above-mentioned strategies. Considering increasing sophistication in bioorthogonal chemistry development, we strive to project several exciting opportunities where bioorthogonal chemistry can make a unique contribution to biology in the near future.
Collapse
Affiliation(s)
- Carlo P Ramil
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA.
| | | |
Collapse
|
43
|
Cserép GB, Herner A, Wolfbeis OS, Kele P. Tyrosine specific sequential labeling of proteins. Bioorg Med Chem Lett 2013; 23:5776-8. [DOI: 10.1016/j.bmcl.2013.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 01/23/2023]
|
44
|
Recent advances in target characterization and identification by photoaffinity probes. Molecules 2013; 18:10425-51. [PMID: 23994969 PMCID: PMC6270116 DOI: 10.3390/molecules180910425] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 11/17/2022] Open
Abstract
Target identification of biologically active molecules such as natural products, synthetic small molecules, peptides, and oligonucleotides mainly relies on affinity chromatography, activity-based probes, or photoaffinity labeling (PAL). Amongst them, activity-based probes and PAL have offered great advantages in target identification technology due to their ability to form covalent bonds with the corresponding targets. Activity-based probe technology mainly relies on the chemical reactivity of the target proteins, thereby limiting the majority of the biological targets to enzymes or proteins which display reactive residues at the probe-binding site. In general, the probes should bear a reactive moiety such as an epoxide, a Michael acceptor, or a reactive alkyl halide in their structures. On the other hand, photoaffinity probes (PAPs) are composed of a target-specific ligand and a photoactivatable functional group. When bound to the corresponding target proteins and activated with wavelength-specific light, PAPs generate highly reactive chemical species that covalently cross-link proximal amino acid residues. This process is better known as PAL and is widely employed to identify cellular targets of biologically active molecules. This review highlights recent advances in target identification by PAL, with a focus on the structure and chemistry of the photoaffinity probes developed in the recent decade, coupled to the target proteins identified using these probes.
Collapse
|