1
|
Kawamura Y, Ishida C, Miyata R, Miyata A, Hayashi S, Fujinami D, Ito S, Nakano S. Structural and functional analysis of hyper-thermostable ancestral L-amino acid oxidase that can convert Trp derivatives to D-forms by chemoenzymatic reaction. Commun Chem 2023; 6:200. [PMID: 37737277 PMCID: PMC10517122 DOI: 10.1038/s42004-023-01005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Production of D-amino acids (D-AAs) on a large-scale enables to provide precursors of peptide therapeutics. In this study, we designed a novel L-amino acid oxidase, HTAncLAAO2, by ancestral sequence reconstruction, exhibiting high thermostability and long-term stability. The crystal structure of HTAncLAAO2 was determined at 2.2 Å by X-ray crystallography, revealing that the enzyme has an octameric form like a "ninja-star" feature. Enzymatic property analysis demonstrated that HTAncLAAO2 exhibits three-order larger kcat/Km values towards four L-AAs (L-Phe, L-Leu, L-Met, and L-Ile) than that of L-Trp. Through screening the variants, we obtained the HTAncLAAO2(W220A) variant, which shows a > 6-fold increase in kcat value toward L-Trp compared to the original enzyme. This variant applies to synthesizing enantio-pure D-Trp derivatives from L- or rac-forms at a preparative scale. Given its excellent properties, HTAncLAAO2 would be a starting point for designing novel oxidases with high activity toward various amines and AAs.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Chiharu Ishida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryo Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Azusa Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
- PREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
2
|
de la Cueva-Alique I, de la Torre-Rubio E, Muñoz L, Calvo-Jareño A, Perez-Redondo A, Gude L, Cuenca T, Royo E. Stereoselective synthesis of oxime containing Pd(II) compounds: Highly effective, selective and stereo-regulated cytotoxicity against carcinogenic PC-3 cells. Dalton Trans 2022; 51:12812-12828. [DOI: 10.1039/d2dt01403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladium compounds [Pd{(1S,4R)-NOH^NH(R)}Cl2] (R = Ph 1a or Bn 1b), [Pd{(1S,4R)-NOH^NH(R)}{(1S,4R)-NO^NH(R)}][Cl] (R = Ph 2a or Bn 2b) and corresponding [Pd{(1R,4S)-NOH^NH(R)}Cl2] (R = Ph 1a’ or Bn 1b’) and...
Collapse
|
3
|
Liu A, Han J, Nakano A, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. Chirality 2021; 34:86-103. [PMID: 34713503 DOI: 10.1002/chir.23376] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.
Collapse
Affiliation(s)
- Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Nagaoka K, Nakano A, Han J, Sakamoto T, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. Comparative study of different chiral ligands for dynamic kinetic resolution of amino acids. Chirality 2021; 33:685-702. [PMID: 34402557 DOI: 10.1002/chir.23350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/05/2022]
Abstract
Dynamic kinetic resolution (DKR) of unprotected amino acids (AAs), via intermediate formation of Ni(II) complexes, is currently a leading methodology for preparation of natural and tailor-made AAs in enantiomerically pure form. In this work, we conduct a comparative case study of synthetic performance of four different ligands in DKR of six AAs representing aryl-, benzyl-, alkyl-, and long alkyl-type derivatives. The results of this study allow for rational selection of ligand/AA type to develop a practical procedure for preparation of target enantiomerically pure AAs.
Collapse
Affiliation(s)
- Keita Nagaoka
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | | | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5
|
Han J, Konno H, Sato T, Soloshonok VA, Izawa K. Tailor-made amino acids in the design of small-molecule blockbuster drugs. Eur J Med Chem 2021; 220:113448. [PMID: 33906050 DOI: 10.1016/j.ejmech.2021.113448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The role of amino acids (AAs) in modern health industry is well-appreciated. Residues of individual AAs, or their chemical modifications, such as diamines and amino alcohols, are frequently found in the structures of modern pharmaceuticals. The goal of this review article, is to emphasize that, currently, tailor-made AAs serve as key structural features in many most successful pharmaceuticals, so-called blockbuster drugs. In the present article, we profile 14 small-molecule drugs, underscoring the breadth of structural variety of AAs applications in numerous therapeutic areas. For each compound, we provide spectrum of biological activity, medicinal chemistry discovery, and synthetic approaches.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan.
| |
Collapse
|
6
|
Wang N, Xu J, Mei H, Moriwaki H, Izawa K, Soloshonok VA, Han J. Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Wosińska-Hrydczuk M, Skarżewski J. New Advances in the Synthetic Application of Enantiomeric 1-Phenylethylamine (α-PEA): Privileged Chiral Inducer and Auxiliary. Molecules 2020; 25:E4907. [PMID: 33114098 PMCID: PMC7660327 DOI: 10.3390/molecules25214907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
New developments in the synthesis, resolution, and synthetic applications of chiral 1-phenylethylamine (α-PEA) reported in the last decade have been reviewed. In particular, improvements in the synthesis of α-PEA and its derivatives and chiral resolution, as well as their applications in the resolution of other compounds, were discussed. α-PEA was used as a chiral auxiliary in the diastereoselective synthesis of medicinal substances and natural products. Chiral ligands with α-PEA moieties were applied in asymmetric reactions, and effective modular chiral organocatalysts were constructed with α-PEA fragments and used in important synthetic reactions.
Collapse
Affiliation(s)
| | - Jacek Skarżewski
- Chair of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|
8
|
Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry 2020; 26:11349-11390. [PMID: 32359086 DOI: 10.1002/chem.202000617] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Structural analysis of modern pharmaceutical practices allows for the identification of two rapidly growing trends: the introduction of tailor-made amino acids and the exploitation of fluorinated motifs. Curiously, the former represents one of the most ubiquitous classes of naturally occurring compounds, whereas the latter is the most xenobiotic and comprised virtually entirely of man-made derivatives. Herein, 39 selected compounds, featuring both of these traits in the same molecule, are profiled. The total synthesis, source of the corresponding amino acids and fluorinated residues, and medicinal chemistry aspects and biological properties of the molecules are discussed.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Daniel J Graham
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
9
|
Asymmetric Synthesis of Tailor-Made Amino Acids Using Chiral Ni(II) Complexes of Schiff Bases. An Update of the Recent Literature. Molecules 2020; 25:molecules25122739. [PMID: 32545684 PMCID: PMC7356839 DOI: 10.3390/molecules25122739] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/04/2022] Open
Abstract
Tailor-made amino acids are indispensable structural components of modern medicinal chemistry and drug design. Consequently, stereo-controlled preparation of amino acids is the area of high research activity. Over last decade, application of Ni(II) complexes of Schiff bases derived from glycine and chiral tridentate ligands has emerged as a leading methodology for the synthesis of various structural types of amino acids. This review article summarizes examples of asymmetric synthesis of tailor-made α-amino acids via the corresponding Ni(II) complexes, reported in the literature over the last four years. A general overview of this methodology is provided, with the emphasis given to practicality, scalability, cost-structure and recyclability of the chiral tridentate ligands.
Collapse
|
10
|
Oyama K, Han J, Moriwaki H, Soloshonok VA, Konno H. Synthesis of Ahod Moiety of Ralstonin A Using Amino Acid
Schiff
Base Ni(II)‐Complex Chemistry. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kie Oyama
- Graduate School of Science and EngineeringYamagata University Yonezawa Yamagata 992-8510 Japan
| | - Jianlin Han
- College of Chemical EngineeringNanjing Forestry University Nanjing 210037 P. R. China
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku Osaka 533-0024 Japan
| | - Vadim A. Soloshonok
- Department of Organic Chemistry IFaculty of ChemistryUniversity of the Basque Country UPV/EHU Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Alameda Urquijo 36-5 Plaza Bizkaia 48011 Bilbao Spain
| | - Hiroyuki Konno
- Graduate School of Science and EngineeringYamagata University Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
11
|
Romoff TT, Ignacio BG, Mansour N, Palmer AB, Creighton CJ, Abe H, Moriwaki H, Han J, Konno H, Soloshonok VA. Large-Scale Synthesis of the Glycine Schiff Base Ni(II) Complex Derived from (S)- and (R)-N-(2-Benzoyl-4-chlorophenyl)-1-[(3,4-dichlorophenyl)methyl]-2-pyrrolidinecarboxamide. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Todd T. Romoff
- Hamari Chemicals USA, San Diego, California 92121, United States
| | | | - Noel Mansour
- Hamari Chemicals USA, San Diego, California 92121, United States
| | - Andrew B. Palmer
- Hamari Chemicals USA, San Diego, California 92121, United States
| | | | - Hidenori Abe
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Hiroyuki Konno
- Department of Biochemical Engineering, Graduate School of Science and Technology, Yamagata University,
Yonezawa, Yamagata 992-8510, Japan
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
12
|
Han J, Takeda R, Liu X, Konno H, Abe H, Hiramatsu T, Moriwaki H, Soloshonok VA. Preparative Method for Asymmetric Synthesis of ( S)-2-Amino-4,4,4-trifluorobutanoic Acid. Molecules 2019; 24:E4521. [PMID: 31835583 PMCID: PMC6943542 DOI: 10.3390/molecules24244521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022] Open
Abstract
Enantiomerically pure derivatives of 2-amino-4,4,4-trifluorobutanoic acid are in great demand as bioisostere of leucine moiety in the drug design. Here, we disclose a method specifically developed for large-scale (>150 g) preparation of the target (S)-N-Fmoc-2-amino-4,4,4-trifluorobutanoic acid. The method employs a recyclable chiral auxiliary to form the corresponding Ni(II) complex with glycine Schiff base, which is alkylated with CF3-CH2-I under basic conditions. The resultant alkylated Ni(II) complex is disassembled to reclaim the chiral auxiliary and 2-amino-4,4,4-trifluorobutanoic acid, which is in situ converted to the N-Fmoc derivative. The whole procedure was reproduced several times for consecutive preparation of over 300 g of the target (S)-N-Fmoc-2-amino-4,4,4-trifluorobutanoic acid.
Collapse
Affiliation(s)
- Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; (J.H.); (X.L.)
| | - Ryosuke Takeda
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan; (R.T.); (T.H.)
| | - Xinyi Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; (J.H.); (X.L.)
| | - Hiroyuki Konno
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992‑8510, Japan;
| | - Hidenori Abe
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan; (R.T.); (T.H.)
| | - Takahiro Hiramatsu
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan; (R.T.); (T.H.)
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan; (R.T.); (T.H.)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain
| |
Collapse
|
13
|
Mei H, Han J, Klika KD, Izawa K, Sato T, Meanwell NA, Soloshonok VA. Applications of fluorine-containing amino acids for drug design. Eur J Med Chem 2019; 186:111826. [PMID: 31740056 DOI: 10.1016/j.ejmech.2019.111826] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/26/2023]
Abstract
Fluorine-containing amino acids are becoming increasingly prominent in new drugs due to two general trends in the modern pharmaceutical industry. Firstly, the growing acceptance of peptides and modified peptides as drugs; and secondly, fluorine editing has become a prevalent protocol in drug-candidate optimization. Accordingly, fluorine-containing amino acids represent one of the more promising and rapidly developing areas of research in organic, bio-organic and medicinal chemistry. The goal of this Review article is to highlight the current state-of-the-art in this area by profiling 42 selected compounds that combine fluorine and amino acid structural elements. The compounds under discussion represent pharmaceutical drugs currently on the market, or in clinical trials as well as examples of drug-candidates that although withdrawn from development had a significant impact on the progress of medicinal chemistry and/or provided a deeper understanding of the nature and mechanism of biological action. For each compound, we present features of biological activity, a brief history of the design principles and the development of the synthetic approach, focusing on the source of tailor-made amino acid structures and fluorination methods. General aspects of the medicinal chemistry of fluorine-containing amino acids and synthetic methodology are briefly discussed.
Collapse
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan.
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, United States.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| |
Collapse
|
14
|
Mei H, Han J, Takeda R, Sakamoto T, Miwa T, Minamitsuji Y, Moriwaki H, Abe H, Soloshonok VA. Practical Method for Preparation of ( S)-2-Amino-5,5,5-trifluoropentanoic Acid via Dynamic Kinetic Resolution. ACS OMEGA 2019; 4:11844-11851. [PMID: 31460294 PMCID: PMC6682081 DOI: 10.1021/acsomega.9b01537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
This work reports an operationally convenient ∼20 g scale synthesis of (S)-2-amino-5,5,5-trifluoropentanoic acid and its Fmoc-derivative via dynamic kinetic resolution of the corresponding racemate.
Collapse
Affiliation(s)
- Haibo Mei
- College
of Chemical Engineering Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- College
of Chemical Engineering Nanjing Forestry University, Nanjing 210037, China
| | - Ryosuke Takeda
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, San Sebastián 20018, Spain
| | - Tsubasa Sakamoto
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Toshio Miwa
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Yutaka Minamitsuji
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hidenori Abe
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, San Sebastián 20018, Spain
- IKERBASQUE—Basque
Foundation for Science, María
Díaz de Haro 3, Plaza Bizkaia, Bilbao 48013, Spain
| |
Collapse
|
15
|
Yin Z, Moriwaki H, Abe H, Miwa T, Han J, Soloshonok VA. Large-Scale Asymmetric Synthesis of Fmoc-( S)-2-Amino-6,6,6-Trifluorohexanoic Acid. ChemistryOpen 2019; 8:701-704. [PMID: 31183311 PMCID: PMC6554705 DOI: 10.1002/open.201900131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/12/2019] [Indexed: 11/18/2022] Open
Abstract
Here we report the first large-scale synthesis of Fmoc-(S)-2-amino-6,6,6-trifluorohexanoic acid via asymmetric alkylation of chiral Ni(II)-complex of glycine Schiff base with CF3(CH2)3I. The synthesis was performed on over 100 g scale and can be recommended as the most advanced procedure for reliable preparation of large amounts of enantiomerically pure Fmoc-(S)-2-amino-6,6,6-trifluorohexanoic acid for protein engineering and drug design. Chiral auxiliary used in this protocol can be >90 % recovered and reused.
Collapse
Affiliation(s)
- Zizhen Yin
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd.1-4-29 Kunijima, Higashi-Yodogawa-kuOsaka533-0024Japan
| | - Hidenori Abe
- Hamari Chemicals Ltd.1-4-29 Kunijima, Higashi-Yodogawa-kuOsaka533-0024Japan
| | - Toshio Miwa
- Hamari Chemicals Ltd.1-4-29 Kunijima, Higashi-Yodogawa-kuOsaka533-0024Japan
| | - Jianlin Han
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel Lardizábal 320018San SebastiánSpain
- IKERBASQUEBasque Foundation for ScienceMaría Díaz de Haro 3, Plaza Bizkaia48013BilbaoSpain
| |
Collapse
|
16
|
Mei H, Jean M, Albalat M, Vanthuyne N, Roussel C, Moriwaki H, Yin Z, Han J, Soloshonok VA. Effect of substituents on the configurational stability of the stereogenic nitrogen in metal(II) complexes of α-amino acid Schiff bases. Chirality 2019; 31:401-409. [PMID: 30916841 DOI: 10.1002/chir.23066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2023]
Abstract
Herein, we report a general method for quantitative measurement of the configurational stability of the stereogenic nitrogen coordinated to M (II) in the corresponding square planar complexes. This stereochemical approach is quite sensitive to steric and electronic effects of the substituents and shown to work well for Ni(II), Pd(II), and Cu(II) complexes. Structural simplicity of the compounds used, coupled with high sensitivity and reliability of experimental procedures, bodes well for application of this approach in evaluation of chemical stability and stereochemical properties of newly designed chiral ligands for general asymmetric synthesis of tailor-made amino acids.
Collapse
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Marion Jean
- iSm2, Aix Marseille Université, Marseille, France
| | | | | | | | | | - Zizhen Yin
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Takahashi M, Moriwaki H, Miwa T, Hoang B, Wang P, Soloshonok VA. Large Scale Synthesis of Chiral (3Z,5Z)-2,7-Dihydro-1H-azepine-Derived Hamari Ligand for General Asymmetric Synthesis of Tailor-Made Amino Acids. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Motohiro Takahashi
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Toshio Miwa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Brittanie Hoang
- Hamari Chemicals USA, San Diego Research Center, 11494 Sorrento Valley Road, San Diego, California 92121, United States
| | - Peng Wang
- Hamari Chemicals USA, San Diego Research Center, 11494 Sorrento Valley Road, San Diego, California 92121, United States
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain
| |
Collapse
|
18
|
Asymmetric synthesis of (2S,3S)-3-Me-glutamine and (R)-allo-threonine derivatives proper for solid-phase peptide coupling. Amino Acids 2018; 51:419-432. [PMID: 30449004 DOI: 10.1007/s00726-018-2677-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/07/2018] [Indexed: 01/17/2023]
Abstract
Practical new routes for preparation of (2S,3S)-3-Me-glutamine and (R)-allo-threonine derivatives, the key structural components of cytotoxic marine peptides callipeltin O and Q, suitable for the Fmoc-SPPS, were developed. (2S,3S)-Fmoc-3-Me-Gln(Xan)-OH was synthesized via Michael addition reactions of Ni (II) complex of chiral Gly-Schiff base; while Fmoc-(R)-allo-Thr-OH was prepared using chiral Ni (II) complex-assisted α-epimerization methodology, starting form (S)-Thr(tBu)-OH.
Collapse
|
19
|
Takeda R, Kawashima A, Yamamoto J, Sato T, Moriwaki H, Izawa K, Abe H, Soloshonok VA. Tandem Alkylation-Second-Order Asymmetric Transformation Protocol for the Preparation of Phenylalanine-Type Tailor-Made α-Amino Acids. ACS OMEGA 2018; 3:9729-9737. [PMID: 31459102 PMCID: PMC6644829 DOI: 10.1021/acsomega.8b01424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 05/02/2023]
Abstract
In this work, we disclose an advanced general process for the synthesis of tailor-made α-amino acids (α-AAs) via tandem alkylation-second-order asymmetric transformation. The first step is the alkylation of the chiral Ni(II) complex of glycine Schiff base, which is conducted under mild phase-transfer conditions allowing the structural construction of target α-AAs. The second step is based on the methodologically rare second-order asymmetric transformation, resulting in nearly complete precipitation of the corresponding (SC,RN,RC)-configured diastereomer, which can be collected by a simple filtration. The operational convenience and potential scalability of all experimental procedures, coupled with excellent stereochemical outcome, render this method of high synthetic value for the preparation of various tailor-made α-AAs.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- E-mail: (R.T.)
| | - Aki Kawashima
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Junya Yamamoto
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Tatsunori Sato
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Kunisuke Izawa
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hidenori Abe
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain
- E-mail: (V.A.S.)
| |
Collapse
|
20
|
Zhang W, Ekomo RE, Roussel C, Moriwaki H, Abe H, Han J, Soloshonok VA. Axially chiral Ni(II) complexes of α-amino acids: Separation of enantiomers and kinetics of racemization. Chirality 2018; 30:498-508. [PMID: 29359493 DOI: 10.1002/chir.22815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/27/2023]
Abstract
Herein we present design, synthesis, chiral HPLC resolution, and kinetics of racemization of axially chiral Ni(II) complexes of glycine and di-(benzyl)glycine Schiff bases. We found that while the ortho-fluoro derivatives are configurationally unstable, the pure enantiomers of corresponding axially chiral ortho-chloro-containing complexes can be isolated by preparative HPLC and show exceptional configurational stability (t1/2 from 4 to 216 centuries) at ambient conditions. Synthetic implications of this discovery for the development of new generation of axially chiral auxiliaries, useful for general asymmetric synthesis of α-amino acids, are discussed.
Collapse
Affiliation(s)
- Wenzhong Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China
| | - Romuald Eto Ekomo
- Aix Marseille Univ, CNRS, Centrale Marseille iSm2, Marseille, France
| | - Christian Roussel
- Aix Marseille Univ, CNRS, Centrale Marseille iSm2, Marseille, France
| | | | | | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
21
|
Bremerich M, Bolm C, Raabe G, Soloshonok VA. Design, Synthesis, and Evaluation of N
-(tert
-Butyl)-Alanine-Derived Chiral Ligands - Aspects of Reactivity and Diastereoselectivity in the Reactions with α-Amino Acids. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maximilian Bremerich
- Institute for Organic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
- Department of Organic Chemistry I; Faculty of Chemistry; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
| | - Carsten Bolm
- Institute for Organic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| | - Gerhard Raabe
- Institute for Organic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I; Faculty of Chemistry; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE; Basque Foundation for Science; Maria Diaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
22
|
Takeda R, Abe H, Shibata N, Moriwaki H, Izawa K, Soloshonok VA. Asymmetric synthesis of α-deuterated α-amino acids. Org Biomol Chem 2017; 15:6978-6983. [DOI: 10.1039/c7ob01720k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A generalized approach for the preparation of α-2H-α-amino acids in enantiomerically pure form and with up to 99% deuteration is disclosed.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Hamari Chemicals Ltd
- Osaka 533-0024
- Japan
- Department of Organic Chemistry I
- Faculty of Chemistry
| | | | - Norio Shibata
- Department of Nanopharmaceutical Science & Department of Frontier Materials
- Nagoya Institute of Technology
- Nagoya
- Japan
| | | | | | - Vadim A. Soloshonok
- Department of Organic Chemistry I
- Faculty of Chemistry
- University of the Basque Country UPV/EHU
- 20018 San Sebastián
- Spain
| |
Collapse
|
23
|
Ryzhkina IS, Sergeeva SY, Masagutova EM, Murtazina LI, Mishina OA, Timosheva AP, Baranov VV, Kravchenko AN, Konovalov AI. Features of self-organization of highly dilute solutions of (S)-, (R)-, and (SR)-methionines and related carbamides and glycolurils. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1127-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Sato T, Izawa K, Aceña JL, Liu H, Soloshonok VA. Tailor-Made α-Amino Acids in the Pharmaceutical Industry: Synthetic Approaches to (1R,2S)-1-Amino-2-vinylcyclopropane-1-carboxylic Acid (Vinyl-ACCA). European J Org Chem 2016. [DOI: 10.1002/ejoc.201600112] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tatsunori Sato
- Hamari Chemicals, Ltd.; 1-4-29 Kunijima, Higashi-Yodogawa-ku 533-0024 Osaka Japan
| | - Kunisuke Izawa
- Hamari Chemicals, Ltd.; 1-4-29 Kunijima, Higashi-Yodogawa-ku 533-0024 Osaka Japan
| | - José Luis Aceña
- Department of Organic Chemistry I; Faculty of Chemistry; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- Department of Organic Chemistry; Autónoma University of Madrid; Cantoblanco 28049 Madrid Spain
| | - Hong Liu
- Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road 201203 Shanghai P. R. China
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I; Faculty of Chemistry; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE; Basque Foundation for Science; Alameda Urquijo 36-5, Plaza Bizkaia 48011 Bilbao Spain
| |
Collapse
|
25
|
Li J, Zhou S, Wang J, Kawashima A, Moriwaki H, Soloshonok VA, Liu H. Asymmetric Synthesis of Aromatic and Heteroaromatic α-Amino Acids Using a Recyclable Axially Chiral Ligand. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem Rev 2016; 116:422-518. [PMID: 26756377 DOI: 10.1021/acs.chemrev.5b00392] [Citation(s) in RCA: 1806] [Impact Index Per Article: 225.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhanni Gu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - José Luis Aceña
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,Department of Organic Chemistry, Autónoma University of Madrid , Cantoblanco, 28049 Madrid, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
27
|
Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base. Amino Acids 2015; 48:973-986. [DOI: 10.1007/s00726-015-2138-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/18/2015] [Indexed: 12/17/2022]
|
28
|
Nian Y, Wang J, Zhou S, Wang S, Moriwaki H, Kawashima A, Soloshonok VA, Liu H. Recyclable Ligands for the Non‐Enzymatic Dynamic Kinetic Resolution of Challenging α‐Amino Acids. Angew Chem Int Ed Engl 2015; 54:12918-22. [DOI: 10.1002/anie.201507273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Yong Nian
- School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing 210009 (China)
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Shengbin Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1‐4‐29 Kunijima, Higashi‐Yodogawa‐ku, Osaka 533‐0024 (Japan)
| | - Aki Kawashima
- Hamari Chemicals Ltd., 1‐4‐29 Kunijima, Higashi‐Yodogawa‐ku, Osaka 533‐0024 (Japan)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián (Spain)
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36‐5, Plaza Bizkaia, 48013 Bilbao (Spain)
| | - Hong Liu
- School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing 210009 (China)
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| |
Collapse
|
29
|
Nian Y, Wang J, Zhou S, Wang S, Moriwaki H, Kawashima A, Soloshonok VA, Liu H. Recyclable Ligands for the Non-Enzymatic Dynamic Kinetic Resolution of Challenging α-Amino Acids. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Han J, Aceña JL, Yasuda N, Uekusa H, Ono T, Soloshonok VA, Klika KD. Carbonyl group coordination preferences in square-planar NiII and PdII complexes of pentadentate ligands by electron-withdrawing/donating substituents. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Moozeh K, So SM, Chin J. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine. Angew Chem Int Ed Engl 2015; 54:9381-5. [PMID: 26119066 DOI: 10.1002/anie.201503616] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/30/2015] [Indexed: 12/17/2022]
Abstract
A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations.
Collapse
Affiliation(s)
- Kimia Moozeh
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada) http://www.diaminopharm.com
| | - Soon Mog So
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada) http://www.diaminopharm.com
| | - Jik Chin
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada) http://www.diaminopharm.com.
| |
Collapse
|
32
|
Moozeh K, So SM, Chin J. Catalytic Stereoinversion ofL-Alanine to DeuteratedD-Alanine. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Synthesis of (2S,3S)-β-(trifluoromethyl)-α,β-diamino acid by Mannich addition of glycine Schiff base Ni(II) complexes to N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimine. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2014.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Takeda R, Kawamura A, Kawashima A, Sato T, Moriwaki H, Izawa K, Akaji K, Wang S, Liu H, Aceña JL, Soloshonok VA. Chemical Dynamic Kinetic Resolution andS/R Interconversion of Unprotected α-Amino Acids. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Takeda R, Kawamura A, Kawashima A, Sato T, Moriwaki H, Izawa K, Akaji K, Wang S, Liu H, Aceña JL, Soloshonok VA. Chemical dynamic kinetic resolution and S/R interconversion of unprotected α-amino acids. Angew Chem Int Ed Engl 2014; 53:12214-7. [PMID: 25244328 DOI: 10.1002/anie.201407944] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 12/17/2022]
Abstract
Reported herein is the first purely chemical method for the dynamic kinetic resolution (DKR) of unprotected racemic α-amino acids (α-AAs), a method which can rival the economic efficiency of the enzymatic reactions. The DKR reaction principle can be readily applied for S/R interconversions of α-AAs, the methodological versatility of which is unmatched by biocatalytic approaches. The presented process features a virtually complete stereochemical outcome, fully recyclable source of chirality, and operationally simple and convenient reaction conditions, thus allowing its ready scalability. A quite unique and novel mode of the thermodynamic control over the stereochemical outcome, including an exciting interplay between axial, helical, and central elements of chirality is proposed.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024 (Japan)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Takeda R, Kawamura A, Kawashima A, Moriwaki H, Sato T, Aceña JL, Soloshonok VA. Design and synthesis of (S)- and (R)-α-(phenyl)ethylamine-derived NH-type ligands and their application for the chemical resolution of α-amino acids. Org Biomol Chem 2014; 12:6239-49. [DOI: 10.1039/c4ob00669k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Krivosudský L, Schwendt P, Šimunek J, Gyepes R. Vanadium-Controlled Crystallization of Stereoisomers of NBu 4[VO 2( N-Salicylidene-isoleucinato)] through Epimerization. Chemistry 2014; 20:8872-5. [DOI: 10.1002/chem.201403125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 11/06/2022]
|
38
|
Zhou S, Wang J, Chen X, Aceña JL, Soloshonok VA, Liu H. Chemical Kinetic Resolution of Unprotected β-Substituted β-Amino Acids Using Recyclable Chiral Ligands. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Zhou S, Wang J, Chen X, Aceña JL, Soloshonok VA, Liu H. Chemical Kinetic Resolution of Unprotected β-Substituted β-Amino Acids Using Recyclable Chiral Ligands. Angew Chem Int Ed Engl 2014; 53:7883-6. [DOI: 10.1002/anie.201403556] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/14/2014] [Indexed: 01/22/2023]
|
40
|
Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations. Amino Acids 2014; 46:2047-73. [DOI: 10.1007/s00726-014-1764-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/08/2014] [Indexed: 12/17/2022]
|
41
|
Moriwaki H, Resch D, Li H, Ojima I, Takeda R, Aceña JL, Soloshonok VA. Synthesis and stereochemical assignments of diastereomeric Ni(II) complexes of glycine Schiff base with (R)-2-(N-{2-[N-alkyl-N-(1-phenylethyl)amino]acetyl}amino)benzophenone; a case of configurationally stable stereogenic nitrogen. Beilstein J Org Chem 2014; 10:442-8. [PMID: 24605164 PMCID: PMC3943998 DOI: 10.3762/bjoc.10.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/17/2014] [Indexed: 01/21/2023] Open
Abstract
A family of chiral ligands derived from α-phenylethylamine and 2-aminobenzophenone were prepared by alkylation of the nitrogen atom. Upon reaction with glycine and a Ni(II) salt, these ligands were transformed into diastereomeric complexes, as a result of the configurational stability of the stereogenic nitrogen atom. Different diastereomeric ratios were observed depending on the substituent R introduced in the starting ligand, and stereochemical assignments were based on X-ray analysis, along with NMR studies and optical rotation measurements.
Collapse
Affiliation(s)
- Hiroki Moriwaki
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - Daniel Resch
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Hengguang Li
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Iwao Ojima
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Ryosuke Takeda
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - José Luis Aceña
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country, 20018 San Sebastián, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
42
|
Moriwaki H, Resch D, Li H, Ojima I, Takeda R, Aceña JL, Soloshonok V. Inexpensive chemical method for preparation of enantiomerically pure phenylalanine. Amino Acids 2014; 46:945-52. [DOI: 10.1007/s00726-013-1656-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/17/2013] [Indexed: 12/16/2022]
|
43
|
Han J, Ono T, Uekusa H, Klika KD, Soloshonok VA. Substituent-controlled preference of carbonyl group–metal coordination in d8 metal complexes with non-symmetric pentadentate ligands. Structural and stereochemical aspects. Dalton Trans 2014; 43:5375-81. [DOI: 10.1039/c3dt53312c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sidearm substitution of chirally switchable Ni(ii) and Pd(ii) complexes permits stereochemical inclinations to be controlled in the solid state.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing, China
| | - Taizo Ono
- National Institute of Advanced Industrial Science and Technology (AIST)
- Nagoya, Japan
| | - Hidehiro Uekusa
- Department of Chemistry and Materials Science
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Karel D. Klika
- Molecular Structure Analysis
- German Cancer Research Center (DKFZ)
- D-69009 Heidelberg, Germany
- Department of Chemistry
- University of Turku
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I
- Faculty of Chemistry
- University of the Basque Country UPV/EHU
- 20018 San Sebastián, Spain
- IKERBASQUE
| |
Collapse
|
44
|
Bergagnini M, Fukushi K, Han J, Shibata N, Roussel C, Ellis TK, Aceña JL, Soloshonok VA. NH-type of chiral Ni(ii) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications. Org Biomol Chem 2014; 12:1278-91. [DOI: 10.1039/c3ob41959b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Aceña JL, Sorochinsky AE, Moriwaki H, Sato T, Soloshonok VA. Synthesis of fluorine-containing α-amino acids in enantiomerically pure form via homologation of Ni(II) complexes of glycine and alanine Schiff bases. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok V. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: Aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids. Amino Acids 2013; 45:1017-33. [DOI: 10.1007/s00726-013-1580-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/11/2013] [Indexed: 10/26/2022]
|