1
|
Leier S, Wuest F. Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry. Pharmaceuticals (Basel) 2024; 17:1270. [PMID: 39458911 PMCID: PMC11510044 DOI: 10.3390/ph17101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The incorporation of radionuclides into peptides and larger biomolecules requires efficient and sometimes biorthogonal reaction conditions, to which click chemistry provides a convenient approach. Methods: Traditionally, click-based radiolabeling techniques have focused on classical click chemistry, such as copper(I)-catalyzed alkyne-azide [3+2] cycloaddition (CuAAC), strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), traceless Staudinger ligation, and inverse electron demand Diels-Alder (IEDDA). Results: However, newly emerging click-based radiolabeling techniques, including tyrosine-click, sulfo-click, sulfur(VI) fluoride exchange (SuFEx), thiol-ene click, azo coupling, hydrazone formations, oxime formations, and RIKEN click offer valuable alternatives to classical click chemistry. Conclusions: This review will discuss the applications of these techniques in peptide radiochemistry.
Collapse
Affiliation(s)
- Samantha Leier
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
2
|
Sweetening Pharmaceutical Radiochemistry by 18F-Fluoroglycosylation: Recent Progress and Future Prospects. Pharmaceuticals (Basel) 2021; 14:ph14111175. [PMID: 34832957 PMCID: PMC8621802 DOI: 10.3390/ph14111175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
In the field of 18F-chemistry for the development of radiopharmaceuticals for positron emission tomography (PET), various labeling strategies by the use of prosthetic groups have been implemented, including chemoselective 18F-labeling of biomolecules. Among those, chemoselective 18F-fluoroglycosylation methods focus on the sweetening of pharmaceutical radiochemistry by offering a highly valuable tool for the synthesis of 18F-glycoconjugates with suitable in vivo properties for PET imaging studies. A previous review covered the various 18F-fluoroglycosylation methods that were developed and applied as of 2014 (Maschauer and Prante, BioMed. Res. Int. 2014, 214748). This paper is an updated review, providing the recent progress in 18F-fluoroglycosylation reactions and the preclinical application of 18F-glycoconjugates, including small molecules, peptides, and high-molecular-weight proteins.
Collapse
|
3
|
Rapp MA, Baudendistel OR, Steiner UE, Wittmann V. Rapid glycoconjugation with glycosyl amines. Chem Sci 2021; 12:14901-14906. [PMID: 34820106 PMCID: PMC8597863 DOI: 10.1039/d1sc05008g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Conjugation of unprotected carbohydrates to surfaces or probes by chemoselective ligation reactions is indispensable for the elucidation of their numerous biological functions. In particular, the reaction with oxyamines leading to the formation of carbohydrate oximes which are in equilibrium with cyclic N-glycosides (oxyamine ligation) has an enormous impact in the field. Although highly chemoselective, the reaction is rather slow. Here, we report that the oxyamine ligation is significantly accelerated without the need for a catalyst when starting with glycosyl amines. Reaction rates are increased up to 500-fold compared to the reaction of the reducing carbohydrate. For comparison, aniline-catalyzed oxyamine ligation is only increased 3.8-fold under the same conditions. Glycosyl amines from mono- and oligosaccharides are easily accessible from reducing carbohydrates via the corresponding azides by using Shoda's reagent (2-chloro-1,3-dimethylimidazolinium chloride, DMC) and subsequent reduction. Furthermore, glycosyl amines are readily obtained by enzymatic release from N-glycoproteins making the method suited for glycomic analysis of these glycoconjugates which we demonstrate employing RNase B. Oxyamine ligation of glycosyl amines can be carried out at close to neutral conditions which makes the procedure especially valuable for acid-sensitive oligosaccharides. A new method for carbohydrate-oxyamine ligation starting from glycosyl amines 1 instead of the commonly used reducing sugars 2 results in tremendously increased ligation rates without the need for a catalyst, such as aniline.![]()
Collapse
Affiliation(s)
- Mareike A Rapp
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10 78457 Konstanz Germany
| | - Oliver R Baudendistel
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10 78457 Konstanz Germany
| | - Ulrich E Steiner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10 78457 Konstanz Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
4
|
Musolino M, Fleming IN, Schweiger LF, O'Hagan D, Dall'Angelo S, Zanda M. Synthesis, Radiosynthesis, and
in vitro
Studies on Novel Hypoxia PET Tracers Incorporating [
18
F]FDR. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuele Musolino
- Institute of Medical Sciences and Aberdeen Biomedical Imaging Centre University of Aberdeen AB25 2ZD Aberdeen Scotland United Kingdom
| | - Ian N. Fleming
- Institute of Medical Sciences and Aberdeen Biomedical Imaging Centre University of Aberdeen AB25 2ZD Aberdeen Scotland United Kingdom
| | - Lutz F. Schweiger
- Institute of Medical Sciences and Aberdeen Biomedical Imaging Centre University of Aberdeen AB25 2ZD Aberdeen Scotland United Kingdom
| | - David O'Hagan
- School of Chemistry and Centre for Biomolecular Sciences University of St. Andrews KY16 9ST North Haugh, St Andrews Fife Scotland United Kingdom
| | - Sergio Dall'Angelo
- Institute of Medical Sciences and Aberdeen Biomedical Imaging Centre University of Aberdeen AB25 2ZD Aberdeen Scotland United Kingdom
| | - Matteo Zanda
- Institute of Medical Sciences and Aberdeen Biomedical Imaging Centre University of Aberdeen AB25 2ZD Aberdeen Scotland United Kingdom
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC) via Mancinelli 7 20131 Milan Italy
| |
Collapse
|
5
|
Dai J, Li Y, Long Z, Jiang R, Zhuang Z, Wang Z, Zhao Z, Lou X, Xia F, Tang BZ. Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. ACS NANO 2020; 14:854-866. [PMID: 31820925 DOI: 10.1021/acsnano.9b07972] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photodynamic therapy (PDT) strategy has been widely used in tumor treatment, and the reagents for reactive oxygen species (ROS) play a crucial role. Herein, we develop a fluorogen (TTB) containing an electron-accepting benzo[1,2-b:4,5-b']dithiophene 1,1,5,5-tetraoxide core and electron-donating 4,4'-(2,2-diphenylethene-1,1-diyl)bis(N,N-diphenylaniline) groups for image-guided targeting PDT application. TTB exhibits a prominent aggregation-induced emission (AIE) property with strong near-infrared (NIR) fluorescence in aggregates and is capable of efficiently generating ROS of O2•- and 1O2 under white light irradiation. The nanoparticles (RGD-4R-MPD/TTB NPs) with NIR emission (∼730 nm), high photostability, and low dark cytotoxicity are fabricated by encapsulating TTB within polymeric matrix and then modified with RGD-4R peptide. They show excellent performance in targeting PDT treatment of PC3, HeLa, and SKOV-3 cancer cells in vitro. The investigations on pharmacokinetics, biodistribution, and long-term tracing in vivo reveal that RGD-4R-MPD/TTB NPs can selectively accumulate in tumors for real-time, long-term image-guided PDT treatment. The RGD-4R-MPD/TTB NPs-mediated PDT in multiple xenograft tumor models disclose that the growth of cervical, prostate, and ovarian cancers in mice can be effectively inhibited. These results demonstrate that the reagents employing NIR fluorogen TTB as a photosensitizer could be promising candidates for in vivo image-guided PDT treatments of tumors.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yinghao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zi Long
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ruming Jiang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| |
Collapse
|
6
|
Tu C, Zhou J, Peng L, Man S, Ma L. Self-assembled nano-aggregates of fluorinases demonstrate enhanced enzymatic activity, thermostability and reusability. Biomater Sci 2020; 8:648-656. [PMID: 31761913 DOI: 10.1039/c9bm00402e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three SAP (self-assembling peptide)-tagged fluorinases (FLAs), namely, FLA-ELK16, FLA-L6KD and FLA-18A (named after the SAP used for tagging FLA) were successfully engineered. All three SAP-tagged FLAs could be highly over-expressed using engineered E. coli host cells despite being in the form of aggregates (inclusion bodies). It was noted that all three SAP-tagged FLAs exhibited enzymatic activity. It was also observed that all three SAP-tagged FLAs were capable of self-assembly to form nano-sized particles with different dimensions in aqueous solutions. Strikingly, one of the SAP-tagged FLA (FLA-L6KD) displayed improved enzyme activity, thermostability and reusability, which is potentially ideal for bio-transformation. FLA is an exotic enzyme that is capable of catalysing the formation of C-F bonds using inorganic fluorine ions as substrates. This significant feature enables it to incorporate [18F]-fluoride into different small molecules to generate radiopharmaceuticals in PET (positron emission tomography) labeling. In addition, fluorinase is greatly valuable in synthetic biology for incorporating the fluorine element into building blocks to produce non-natural organofluorines or as a biocatalyst for transforming non-native substrates. Our method would be a further step in making FLA-based biocatalysis even 'greener' by enhancing the enzymatic activity, thermostability and reusability of FLA through the introduction of nano-sized aggregates. Enzymes are such nontrivial biomaterials, which can be manifested in different scenarios. Our research expands their reach and tunes their properties by tagging SAP partners. Thus, this methodology can be put into the 'toolbox' of enzymologists, which can be further explored and generalised for others.
Collapse
Affiliation(s)
- Chunhao Tu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
7
|
Andriu A, Crockett J, Dall'Angelo S, Piras M, Zanda M, Fleming IN. Binding of α vβ 3 Integrin-Specific Radiotracers Is Modulated by Both Integrin Expression Level and Activation Status. Mol Imaging Biol 2018; 20:27-36. [PMID: 28695371 PMCID: PMC5775384 DOI: 10.1007/s11307-017-1100-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Molecular imaging of αvβ3 integrin has exhibited real potential to guide the appropriate use of anti-angiogenic therapies. However, an incomplete understanding of the factors that influence binding of αvβ3 integrin-specific radiotracers currently limits their use for assessing response to therapy in cancer patients. This study identifies two fundamental factors that modulate uptake of these radiotracers. Procedures Experiments were performed in prostate cancer (PC3) and glioblastoma (U87MG) cells, which differentially express αvβ3 integrin. αvβ3 integrin-specific radiotracers were used to investigate the effect of manipulating αvβ3 integrin expression or activation in cellular binding assays. β3 integrin and αvβ3 integrin expression were measured by western blotting and flow cytometry, respectively. The effect of select pharmacological inhibitors on αvβ3 integrin activation and expression was also determined. RESULTS Radiotracer binding was proportional to αvβ3 integrin expression when it was decreased (β3 knock-down cells) or increased, either using pharmacological inhibitors of cell signalling or by culturing cells for different times. Studies with both small molecule and arginine-glycine-aspartic acid (RGD)-based radiotracers revealed increased radiotracer binding after activation of αvβ3 integrin with Mn2+ or talin head domain. Moreover, inhibition of fundamental signalling pathways (mitogen-activated protein kinase kinase (MEK), Src and VEGFR2) decreased radiotracer binding, reflecting reduced αvβ3 integrin activity. CONCLUSION Binding of small molecule ligands and radiolabelled RGD peptides is modulated by expression and activation status of αvβ3 integrin. αvβ3 integrin-specific radiotracers can provide otherwise inaccessible information of the effect of signalling pathways on αvβ3 integrin. This has significant implications for assessing response to anti-angiogenic therapies in clinical studies.
Collapse
Affiliation(s)
- Alexandra Andriu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Julie Crockett
- Arthritis and Musculoskeletal Medicine Research Programme, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sergio Dall'Angelo
- Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, AB25 2ZD, UK
| | - Monica Piras
- Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, AB25 2ZD, UK
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, AB25 2ZD, UK
| | - Ian N Fleming
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
8
|
Keinänen O, Partelová D, Alanen O, Antopolsky M, Sarparanta M, Airaksinen AJ. Efficient cartridge purification for producing high molar activity [ 18F]fluoro-glycoconjugates via oxime formation. Nucl Med Biol 2018; 67:27-35. [PMID: 30380464 DOI: 10.1016/j.nucmedbio.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 10/07/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION 18F-fluoroglycosylation via oxime formation is a chemoselective and mild radiolabeling method for sensitive molecules. Glycosylation can also improve the bioavailability, in vivo kinetics, and stability of the compound in blood, as well as accelerate clearance of biomolecules. A typical synthesis procedure for 18F-fluoroglycosylation with [18F]FDG (2-deoxy-2-[18F]fluoro-d-glucose) and [18F]FDR (5-deoxy-5-[18F]fluoro-d-ribose) involves two HPLC (high performance liquid chromatography) purifications: one after 18F-fluorination of the carbohydrate to remove its labeling precursor, and a second one after the oxime formation step to remove the aminooxy precursor. The two HPLC purifications can be time consuming and complicate the adaptation of the synthetic strategy in nuclear medicine applications and automated synthesis. We have developed a procedure in which SPE (solid phase extraction) and resin purification methods replace both of the needed HPLC purification steps. METHODS We used [18F]FDR and [18F]FDG as prosthetic groups to radiolabel two aminooxy-modified model molecules, a tetrazine and a PSMA (prostate specific membrane antigen) inhibitor. After fluorination, the excess carbohydrate precursor was removed by derivatizing it with 4,4'-dimethoxytrityl chloride (DMT-Cl). The DMT moiety increases the hydrophobicity of the unreacted precursor making the separation from the fluorinated precursor possible with simple C18 Sep-Pak cartridge. For removal of the aminooxy precursor, we used a commercially available aldehyde resin (AminoLink, Thermo Fisher Scientific). C18 Sep-Pak SPE cartridge was used to separate [18F]FDR and [18F]FDG from the 18F-fluoroglycoconjugate end product. RESULTS [18F]FDR and [18F]FDG were efficiently purified from their precursors, free fluorine-18, and other impurities. The aldehyde resin quantitatively removed the unreacted aminooxy precursors after the oxime formation. The fluorine-18 labeled oxime end products were obtained with high radiochemical purity (>99%) and molar activity (>600 GBq μmol-1). CONCLUSIONS We have developed an efficient cartridge purification method for producing high molar activity 18F-glycoconjugates synthesized via oxime formation.
Collapse
Affiliation(s)
- Outi Keinänen
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Denisa Partelová
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland; Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Osku Alanen
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolsky
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Anu J Airaksinen
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Convenient Preparation of 18F-Labeled Peptide Probes for Potential Claudin-4 PET Imaging. Pharmaceuticals (Basel) 2017; 10:ph10040099. [PMID: 29258264 PMCID: PMC5748654 DOI: 10.3390/ph10040099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023] Open
Abstract
Since pancreatic cancer is often diagnosed in a late state of cancer development, diagnostic opportunities allowing early disease detection are highly sought after. As such, cancer expression of claudin proteins is markedly dysregulated, making it an attractive target for molecular imaging like positron emission tomography (PET). Claudins are a family of transmembrane proteins that have a pivotal role as members of the tight junctions. In particular, claudin-3 and claudin-4 are frequently overexpressed in pancreatic cancer. 18F-Labeled claudin selective peptides would provide access to a novel kind of imaging tools for pancreatic cancer. In this work we describe the synthesis of the first 18F-labeled probes potentially suitable for PET imaging of claudin-4 expression. These probes were prepared using oxime ligation of 5-[18F]fluoro-5-deoxyribose (5-[18F]FDR) to claudin selective peptides. As a proof-of-principle, one of them, 5-[18F]FDR-Clone 27, was isolated in >98% radiochemical purity and in 15% radiochemical yield (EOB) within 98 min, and with a molar activity of 4.0 GBq/μmol (for 30 MBq of tracer). Moreover, we present first biological data for the prepared 5-FDR-conjugates. These tracers could pave the way for an early diagnosis of pancreatic tumor, and thus improve the outcome of anticancer therapy.
Collapse
|
10
|
Aboagye E, Alger K, Archibald S, Bakar N, Barton N, Bergare J, Bloom J, Bragg R, Burke B, Burns M, Carroll L, Calatayud D, Cawthorne C, Cortezon-Tamarit F, Crean C, Crump M, Dilworth J, Domarkas J, Duckett S, Eggleston I, Elmore C, van Es E, Fekete M, Goodwin M, Green G, Grönberg G, Hayes C, Hayes M, Hollis S, Hueting R, Ivanov P, Johnston G, Kerr W, Kohler A, Knox G, Lawrie K, Lee R, Lewis W, Lin B, Lockley W, López-Torres E, Lv K, Maddocks S, Marsh B, Mendiola A, Mirabello V, Miranda C, Norcott P, O'Hagan D, Olaru A, Pascu S, Rayner P, Read D, Ridge K, Ritter T, Roberts I, Samuri N, Sarpaki S, Somers D, Taylor R, Tuttle T, Varcoe J, Willis C. Abstracts of the 25th
International Isotope Society (UK Group) symposium: Synthesis and applications of labelled compounds 2016. J Labelled Comp Radiopharm 2017. [DOI: 10.1002/jlcr.3523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Samad AA, Bethry A, Janouskova O, Ciccione J, Wenk C, Coll JL, Subra G, Etrych T, Omar FE, Bakkour Y, Coudane J, Nottelet B. Iterative Photoinduced Chain Functionalization as a Generic Platform for Advanced Polymeric Drug Delivery Systems. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Assala Al Samad
- IBMM (UMR5247); Univ Montpellier; CNRS; ENSCM; Montpellier France
- Laboratory of applied Chemistry; Faculty of Science III; Lebanese University; P.O. Box 826 Tripoli Lebanon
| | - Audrey Bethry
- IBMM (UMR5247); Univ Montpellier; CNRS; ENSCM; Montpellier France
| | - Olga Janouskova
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovského nám. 2 162 06 Prague Czech Republic
| | - Jérémie Ciccione
- IBMM (UMR5247); Univ Montpellier; CNRS; ENSCM; Montpellier France
| | - Christiane Wenk
- INSERM U1209; Institut Albert Bonniot/Université Grenoble Alpes; F-38000 Grenoble France
| | - Jean-Luc Coll
- INSERM U1209; Institut Albert Bonniot/Université Grenoble Alpes; F-38000 Grenoble France
| | - Gilles Subra
- IBMM (UMR5247); Univ Montpellier; CNRS; ENSCM; Montpellier France
| | - Tomas Etrych
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovského nám. 2 162 06 Prague Czech Republic
| | - Fawaz El Omar
- Laboratory of applied Chemistry; Faculty of Science III; Lebanese University; P.O. Box 826 Tripoli Lebanon
| | - Youssef Bakkour
- Laboratory of applied Chemistry; Faculty of Science III; Lebanese University; P.O. Box 826 Tripoli Lebanon
| | - Jean Coudane
- IBMM (UMR5247); Univ Montpellier; CNRS; ENSCM; Montpellier France
| | | |
Collapse
|
12
|
Piras M, Testa A, Fleming IN, Dall'Angelo S, Andriu A, Menta S, Mori M, Brown GD, Forster D, Williams KJ, Zanda M. High-Affinity “Click” RGD Peptidomimetics as Radiolabeled Probes for Imaging αv
β3
Integrin. ChemMedChem 2017; 12:1142-1151. [DOI: 10.1002/cmdc.201700328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Monica Piras
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Andrea Testa
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Ian N. Fleming
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Sergio Dall'Angelo
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Alexandra Andriu
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Sergio Menta
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; P.le A. Moro 5 00185 Rome Italy
- Current affiliation: IRBM Science Park SpA; Via Pontina km 30 600 00071 Pomezia RM Italy
| | - Mattia Mori
- Center for Life Nano Science@Sapienza; Istituto Italiano di Tecnologia; Viale Regina Elena 291 00161 Roma RM Italy
| | - Gavin D. Brown
- Manchester Cancer Research Centre and Wolfson Molecular Imaging Centre; The University of Manchester; Palatine Road Manchester M20 3JJ UK
| | - Duncan Forster
- Manchester Cancer Research Centre and Wolfson Molecular Imaging Centre; The University of Manchester; Palatine Road Manchester M20 3JJ UK
| | - Kaye J. Williams
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Manchester Cancer Research Centre, Division of Pharmacy and Optometry; The University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Matteo Zanda
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
- C.N.R.-I.C.R.M.; via Mancinelli 7 20131 Milan Italy
| |
Collapse
|
13
|
Bernhagen D, De Laporte L, Timmerman P. High-Affinity RGD-Knottin Peptide as a New Tool for Rapid Evaluation of the Binding Strength of Unlabeled RGD-Peptides to α vβ 3, α vβ 5, and α 5β 1 Integrin Receptors. Anal Chem 2017; 89:5991-5997. [PMID: 28492301 DOI: 10.1021/acs.analchem.7b00554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe a highly sensitive competition ELISA to measure integrin-binding of RGD-peptides in high-throughput without using cells, ECM-proteins, or antibodies. The assay measures (nonlabeled) RGD-peptides' ability to inhibit binding of a biotinylated "knottin"-RGD peptide to surface-immobilized integrins and, thus, enables quantification of the binding strength of high-, medium-, and low-affinity RGD-binders. We introduced the biotinylated knottin-RGD peptide instead of biotinylated cyclo[RGDfK] (as reported by Piras et al.), as integrin-binding was much stronger and clearly detectable for all three integrins. In order to maximize sensitivity and cost-efficiency, we first optimized several parameters, such as integrin-immobilization levels, knottin-RGD concentration, buffer compositions, type of detection tag (biotin, His- or cMyc-tag), and spacer length. We thereby identified two key factors, that is, (i) the critical spacer length (longer than Gly) and (ii) the presence of Ca2+ and Mg2+ in all incubation and washing buffers. Binding of knottin-RGD peptide was strongest for αvβ3 but also detectable for both αvβ5 and α5β1, while binding of biotinylated cyclo[RGDfK] was very weak and only detectable for αvβ3. For assay validation, we finally determined IC50 values for three unlabeled peptides, that is: (i) linear GRGDS, (ii) cyclo[RGDfK], and (iii) the knottin-RGD itself for binding to three different integrin receptors (αvβ3, αvβ5, α5β1). Major benefits of the novel assay are (i) the extremely low consumption of integrin (50 ng/peptide), (ii) the fact that neither antibodies/ECM-proteins nor integrin-expressing cells are required for detection, and (iii) its suitability for high-throughput screening of (RGD-)peptide libraries.
Collapse
Affiliation(s)
- Dominik Bernhagen
- Pepscan Therapeutics , Zuidersluisweg 2, 8243 RC, Lelystad, The Netherlands
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Peter Timmerman
- Pepscan Therapeutics , Zuidersluisweg 2, 8243 RC, Lelystad, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam , Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of Halogenase Enzymes for Use in Synthesis. Chem Rev 2017; 118:232-269. [PMID: 28466644 DOI: 10.1021/acs.chemrev.7b00032] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.
Collapse
Affiliation(s)
- Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
15
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
16
|
Compounds for radionuclide imaging and therapy of malignant foci characterized by the increased angiogenesis. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Mossine AV, Thompson S, Brooks AF, Sowa AR, Miller JM, Scott PJH. Fluorine-18 patents (2009-2015). Part 2: new radiochemistry. Pharm Pat Anal 2016; 5:319-49. [PMID: 27610753 PMCID: PMC5138992 DOI: 10.4155/ppa-2016-0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Fluorine-18 ((18)F) is one of the most common positron-emitting radionuclides used in the synthesis of positron emission tomography radiotracers due to its ready availability, convenient half-life and outstanding imaging properties. In Part 1 of this review, we presented the first analysis of patents issued for novel radiotracers labeled with fluorine-18. In Part 2, we follow-up with a focus on patents issued for new radiochemistry methodology using fluorine-18 issued between January 2009 and December 2015.
Collapse
Affiliation(s)
- Andrew V Mossine
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
| | - Stephen Thompson
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
| | - Alexandra R Sowa
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Jason M Miller
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Peter JH Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Zhang Q, Dall'Angelo S, Fleming IN, Schweiger LF, Zanda M, O'Hagan D. Last-Step Enzymatic [(18) F]-Fluorination of Cysteine-Tethered RGD Peptides Using Modified Barbas Linkers. Chemistry 2016; 22:10998-1004. [PMID: 27374143 DOI: 10.1002/chem.201601361] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/05/2022]
Abstract
We report a last-step fluorinase-catalyzed [(18) F]-fluorination of a cysteine-containing RGD peptide. The peptide was attached through sulfur to a modified and more hydrophilic variant of the recently disclosed Barbas linker which was itself linked to a chloroadenosine moiety via a PEGylated chain. The fluorinase was able to use this construct as a substrate for a transhalogenation reaction to generate [(18) F]-radiolabeled RGD peptides, which retained high affinity to cancer-cell relevant αv β3 integrins.
Collapse
Affiliation(s)
- Qingzhi Zhang
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| | - Sergio Dall'Angelo
- John Mallard Scottish PET Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Ian N Fleming
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Lutz F Schweiger
- John Mallard Scottish PET Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Matteo Zanda
- John Mallard Scottish PET Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - David O'Hagan
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
19
|
Salvadó M, Amgarten B, Castillón S, Bernardes GJL, Boutureira O. Synthesis of Fluorosugar Reagents for the Construction of Well-Defined Fluoroglycoproteins. Org Lett 2015; 17:2836-9. [DOI: 10.1021/acs.orglett.5b01259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Míriam Salvadó
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Beatrice Amgarten
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Sergio Castillón
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
- Instituto
de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Omar Boutureira
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
20
|
Synthesis and anticancer properties of RGD peptides conjugated to nitric oxide releasing functional groups and abiraterone. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
O'Hagan D, Deng H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem Rev 2014; 115:634-49. [PMID: 25253234 DOI: 10.1021/cr500209t] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David O'Hagan
- EaStChem School of Chemistry, University of St Andrews , North Haugh, St Andrews KY169ST, United Kingdom
| | | |
Collapse
|
22
|
Thompson S, Zhang Q, Onega M, McMahon S, Fleming I, Ashworth S, Naismith JH, Passchier J, O'Hagan D. A Localized Tolerance in the Substrate Specificity of the Fluorinase Enzyme enables “Last-Step”18F Fluorination of a RGD Peptide under Ambient Aqueous Conditions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Thompson S, Zhang Q, Onega M, McMahon S, Fleming I, Ashworth S, Naismith JH, Passchier J, O'Hagan D. A localized tolerance in the substrate specificity of the fluorinase enzyme enables "last-step" 18F fluorination of a RGD peptide under ambient aqueous conditions. Angew Chem Int Ed Engl 2014; 53:8913-8. [PMID: 24989327 DOI: 10.1002/anie.201403345] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 12/29/2022]
Abstract
A strategy for last-step (18)F fluorination of bioconjugated peptides is reported that exploits an "Achilles heel" in the substrate specificity of the fluorinase enzyme. An acetylene functionality at the C-2 position of the adenosine substrate projects from the active site into the solvent. The fluorinase catalyzes a transhalogenation of 5'-chlorodeoxy-2-ethynyladenosine (ClDEA) to 5'-fluorodeoxy-2-ethynyladenosine (FDEA). Extending a polyethylene glycol linker from the terminus of the acetylene allows the presentation of bioconjugation cargo to the enzyme for (18)F labelling. The method uses an aqueous solution (H2(18)O) of [(18)F]fluoride generated by the cyclotron and has the capacity to isotopically label peptides of choice for positron emission tomography (PET).
Collapse
Affiliation(s)
- Stephen Thompson
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST (UK)
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sweetening pharmaceutical radiochemistry by (18)f-fluoroglycosylation: a short review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:214748. [PMID: 24991541 PMCID: PMC4058687 DOI: 10.1155/2014/214748] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022]
Abstract
At the time when the highly efficient [(18)F]FDG synthesis was discovered by the use of the effective precursor 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanesulfonyl- β -D-mannopyranose (mannose triflate) for nucleophilic (18)F-substitution, the field of PET in nuclear medicine experienced a long-term boom. Thirty years later, various strategies for chemoselective (18)F-labeling of biomolecules have been developed, trying to keep up with the emerging field of radiopharmaceutical sciences. Among the new radiochemical strategies, chemoselective (18)F-fluoroglycosylation methods aim at the sweetening of pharmaceutical radiochemistry by providing a powerful and highly valuable tool for the design of (18)F-glycoconjugates with suitable in vivo properties for PET imaging studies. This paper provides a short review (reflecting the literature not older than 8 years) on the different (18)F-fluoroglycosylation reactions that have been applied to the development of various (18)F-glycoconjugate tracers, including not only peptides, but also nonpeptidic tracers and high-molecular-weight proteins.
Collapse
|
25
|
Using 5-deoxy-5-[18F]fluororibose to glycosylate peptides for positron emission tomography. Nat Protoc 2013; 9:138-45. [PMID: 24356772 DOI: 10.1038/nprot.2013.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
So far seven peptide-based (18)F-radiopharmaceuticals for diagnostic applications with positron emission tomography (PET) have entered into clinical trials. Three candidates out of these seven are glycosylated peptides, which may be explained by the beneficial influence of glycosylation on in vivo pharmacokinetics of peptide tracers. This protocol describes the method for labeling peptides with 5-deoxy-5-[(18)F]fluororibose ([(18)F]FDR) as a prosthetic group. The synthesis of [(18)F]FDR is effected by a nucleophilic fluorination step by using dried Kryptofix 2.2.2-K2CO3-K(18)F complex and a subsequent HCl-catalyzed hydrolysis. The conjugation of [(18)F]FDR to the N-terminus aminooxy (-ONH2)-functionalized peptides is carried out in anilinium buffer at pH 4.6 and at room temperature (RT, 21-23 °C), with the concentration of peptide precursors being 0.3 mM. The procedure takes about 120 min and includes two cartridge isolation steps and two reversed-phase (RP) HPLC purification steps. The quaternary methyl amine (QMA) anion exchange cartridge and the hydrophilic-lipophilic balanced (HLB) cartridge are used for the isolation of (18)F-fluoride and [(18)F]FDR-conjugated peptides, respectively. The first HPLC purification provides the (18)F-fluorinated precursor of [(18)F]FDR and the second HPLC purification is to separate labeled peptides from their unlabeled precursors. The final product is formulated in PBS ready for injection, with a radiochemical purity of >98% and a radiochemical yield (RCY) of 27-37% starting from the end of bombardment (EOB). The carbohydrate nature of [(18)F]FDR and the operational convenience of this protocol should facilitate its general use.
Collapse
|
26
|
Sergeev ME, Morgia F, Javed MR, Doi M, Keng PY. Enzymatic radiofluorination: Fluorinase accepts methylaza-analog of SAM as substrate for FDA synthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|