1
|
Lee YJ, Park S, Kim Y, Kim SH, Seo J. Facile synthetic method for peptoids bearing multiple azoles on side chains. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yen Jea Lee
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju Republic of Korea
| | - Soyeon Park
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju Republic of Korea
| | - Yujeong Kim
- Western Seoul Center Korea Basic Science Institute Seoul Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center Korea Basic Science Institute Seoul Republic of Korea
- Department of Chemistry and Nano Science Ewha Womans University Seoul Republic of Korea
| | - Jiwon Seo
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju Republic of Korea
| |
Collapse
|
2
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Abdildinova A, Kurth MJ, Gong Y. Solid‐Phase Synthesis of Peptidomimetics with Peptide Backbone Modifications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| | - Mark J. Kurth
- Department of Chemistry University of California Davis CA 95616 USA
| | - Young‐Dae Gong
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| |
Collapse
|
4
|
Kim S, Lee J, Choi J, Nam HY, Seo J, Lee J. Synthesis and structure‐activity relationship of mitochondria‐targeting peptoids with varying hydrophobicity and cationic charge. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Soyoung Kim
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju South Korea
| | - Ji‐Yu Lee
- Department of Next‐Generation Applied Science Sungshin University Seoul South Korea
| | - Jieun Choi
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju South Korea
| | - Ho Yeon Nam
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju South Korea
| | - Jiwon Seo
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju South Korea
| | - Jiyoun Lee
- Department of Next‐Generation Applied Science Sungshin University Seoul South Korea
- School of Biopharmaceutical and Medical Sciences Sungshin University Seoul South Korea
| |
Collapse
|
5
|
Herlan CN, Meschkov A, Schepers U, Bräse S. Cyclic Peptoid-Peptide Hybrids as Versatile Molecular Transporters. Front Chem 2021; 9:696957. [PMID: 34249865 PMCID: PMC8267177 DOI: 10.3389/fchem.2021.696957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Addressing intracellular targets is a challenging task that requires potent molecular transporters capable to deliver various cargos. Herein, we report the synthesis of hydrophobic macrocycles composed of both amino acids and peptoid monomers. The cyclic tetramers and hexamers were assembled in a modular approach using solid as well as solution phase techniques. To monitor their intracellular localization, the macrocycles were attached to the fluorophore Rhodamine B. Most molecular transporters were efficiently internalized by HeLa cells and revealed a specific accumulation in mitochondria without the need for cationic charges. The data will serve as a starting point for the design of further cyclic peptoid-peptide hybrids presenting a new class of highly efficient, versatile molecular transporters.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems- Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anna Meschkov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Karlsruhe Institute of Technology (KIT), EPICUR European University, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems- Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
6
|
Wijaya AW, Nguyen AI, Roe LT, Butterfoss GL, Spencer RK, Li NK, Zuckermann RN. Cooperative Intramolecular Hydrogen Bonding Strongly Enforces cis-Peptoid Folding. J Am Chem Soc 2019; 141:19436-19447. [DOI: 10.1021/jacs.9b10497] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew W. Wijaya
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Leah T. Roe
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ryan K. Spencer
- Department of Chemistry, Department of Chemical Engineering & Material Science, University of California, Irvine, California 92697, United States
| | - Nan K. Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ronald N. Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Utochnikova VV, Kalyakina AS, Solodukhin NN, Aslandukov AN. On the Structural Features of Substituted Lanthanide Benzoates. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Valentina V. Utochnikova
- Department of Chemistry; M. V. Lomonosov Moscow State University; 119991 Moscow Russian Federation
- SIA Evoled; 1a Puskina iela LV-1020 Riga Latvia
| | - Alena S. Kalyakina
- Institute of Organic Chemistry; Karlsruhe Institute of Technology (KIT); Fritz-Haber Weg 6 76131 Karlsruhe Germany
| | - Nikolay N. Solodukhin
- Department of Chemistry; M. V. Lomonosov Moscow State University; 119991 Moscow Russian Federation
| | - Andrey N. Aslandukov
- Department of Chemistry; M. V. Lomonosov Moscow State University; 119991 Moscow Russian Federation
| |
Collapse
|
8
|
Wu J, Li J, Wang H, Liu CB. Mitochondrial-targeted penetrating peptide delivery for cancer therapy. Expert Opin Drug Deliv 2018; 15:951-964. [PMID: 30173542 DOI: 10.1080/17425247.2018.1517750] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mitochondria are promising targeting organelles for anticancer strategies; however, mitochondria are difficult for antineoplastic drugs to recognize and bind. Mitochondria-penetrating peptides (MPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into mitochondria. MPPs have combined or delivered a variety of antitumor cargoes and obviously inhibited the tumor growth in vivo and in vitro. MPPs create new opportunities to develop new treatments for cancer. AREAS COVERED We review the target sites of mitochondria and the target-penetration mechanism of MPPs, different strategies, and various additional strategies decorated MPPs for tumor cell mitochondria targeting, the decorating mattes including metabolism molecules, RNA, DNA, and protein, which exploited considered as therapeutic combined with MPPs and target in human cancer treatment. EXPERT OPINION/COMMENTARY Therapeutic selectivity that preferentially targets the mitochondrial abnormalities in cancer cells without toxic impact on normal cells still need to be deepen. Moreover, it needs appropriate study designs for a correct evaluation of the target delivery outcome and the degradation rate of the drug in the cell. Generally, it is optimistic that the advances in mitochondrial targeting drug delivery by MPPs plasticity outlined here will ultimately help to the discovery of new approaches for the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Jiao Wu
- a Affiliated Ren He Hospital of China Three Gorges University , Yichang , China.,b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China.,c Medical School , China Three Gorges University , Yichang , China
| | - Jason Li
- d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Hu Wang
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China.,c Medical School , China Three Gorges University , Yichang , China.,d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Chang-Bai Liu
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China.,c Medical School , China Three Gorges University , Yichang , China
| |
Collapse
|
9
|
Zhang Y, Feng H, Liu X, Huang L. A Highly Chemoselective Synthesis of Cyclic Divalent Propargylamines by Copper-Catalyzed Annulation/Double A3
-Couplings. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yazhen Zhang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road 200032 Shanghai China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| |
Collapse
|
10
|
Abstract
Mitochondria-specific delivery methods offer a valuable tool for studying mitochondria-related diseases and provide breakthroughs in therapeutic development. Although several small-molecule and peptide-based transporters have been developed, peptoids, proteolysis-resistant peptidomimetics, are a promising alternative to current approaches. We designed a series of amphipathic peptoids and evaluated their cellular uptake and mitochondrial localization. Two peptoids with cyclohexyl residues demonstrated highly efficient cell penetration and mitochondrial localization without significant adverse effects on the cells and mitochondria. These mitochondria-targeting peptoids could facilitate the selective and robust targeted delivery of bioactive compounds, such as drugs, antioxidants, and photosensitizers, with minimal off-target effects.
Collapse
Affiliation(s)
| | - Jong-Ah Hong
- Department of Global Medical Science , Sungshin University , Kangbuk-gu, Seoul 01133 , Republic of Korea
| | | | | | | | | | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Kangbuk-gu, Seoul 01133 , Republic of Korea
| |
Collapse
|
11
|
Lee J, Kang D, Choi J, Huang W, Wadman M, Barron AE, Seo J. Effect of side chain hydrophobicity and cationic charge on antimicrobial activity and cytotoxicity of helical peptoids. Bioorg Med Chem Lett 2018; 28:170-173. [DOI: 10.1016/j.bmcl.2017.11.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022]
|
12
|
Castro V, Rodríguez H, Albericio F. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS COMBINATORIAL SCIENCE 2016; 18:1-14. [PMID: 26652044 DOI: 10.1021/acscombsci.5b00087] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.
Collapse
Affiliation(s)
- Vida Castro
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
| | - Hortensia Rodríguez
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- School
of Chemistry, Yachay Tech, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001-Durban, South Africa
| |
Collapse
|
13
|
Ren X, Yang C, Li C, Gao J, Shi Y, Yang Z. Controlling the width of nanosheets by peptide length in peptoid–peptide biohybrid hydrogels. RSC Adv 2016. [DOI: 10.1039/c6ra15291k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The width of self-assembling nanosheets could be controlled by the variation of peptide length.
Collapse
Affiliation(s)
- Xinrui Ren
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
| | - Chengbiao Yang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
| | - Can Li
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
| |
Collapse
|
14
|
Jong T, Pérez-López AM, Johansson EMV, Lilienkampf A, Bradley M. Flow and Microwave-Assisted Synthesis of N-(Triethylene glycol)glycine Oligomers and Their Remarkable Cellular Transporter Activities. Bioconjug Chem 2015; 26:1759-65. [PMID: 26155805 DOI: 10.1021/acs.bioconjchem.5b00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- ThingSoon Jong
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Ana M. Pérez-López
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Emma M. V. Johansson
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Annamaria Lilienkampf
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Mark Bradley
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| |
Collapse
|
15
|
Rosli N, Christie MP, Moyle PM, Toth I. Peptide based DNA nanocarriers incorporating a cell-penetrating peptide derived from neurturin protein and poly-l-lysine dendrons. Bioorg Med Chem 2015; 23:2470-9. [DOI: 10.1016/j.bmc.2015.03.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022]
|
16
|
Tyagi M, Kartha KPR. Synthesis of glycotriazololipids and observations on their self-assembly properties. Carbohydr Res 2015; 413:85-92. [PMID: 26114887 DOI: 10.1016/j.carres.2015.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 11/28/2022]
Abstract
Various carbohydrate-anchored triazole-linked lipids prepared by solvent-free mechanochemical azide-alkyne click reaction, on analysis by TEM, have been found to spontaneously self-assemble in solvents leading to structures of interesting physicochemical attributes. Interestingly, analogous compounds based on different sugars (e.g., d-glucose, and d-galactose, as also d-lactose) assemble in patterns distinctly different from each other thus reiterating the fact that the structure of the sugar as well as that of the lipid are important factors that determine the size and shape of the supramolecular assembly formed. Besides, the molecular self-assembly was also found to be solvent-as well as temperature-dependent.
Collapse
Affiliation(s)
- Mohit Tyagi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - K P Ravindranathan Kartha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India.
| |
Collapse
|
17
|
Althuon D, Rönicke F, Fürniss D, Quan J, Wellhöfer I, Jung N, Schepers U, Bräse S. Functionalized triazolopeptoids--a novel class for mitochondrial targeted delivery. Org Biomol Chem 2015; 13:4226-30. [PMID: 25739445 DOI: 10.1039/c5ob00250h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here we introduce linear 1,4-triazolopeptoids as a novel class of cell penetrating peptidomimetics suitable as organ targeting molecular transporters of bioactive cargo. Repetitive triazole moieties with up to three residues were assembled on solid supports using copper-catalyzed alkyne-azide cycloadditions (CuAAC) in a submonomer approach. Depending on the lipophilicity of their side chain appendages the 1,4-triazolopeptoids showed either endosomal localization or a strong colocalization with the mitochondria of HeLa cells with moderate toxicity. While the basic triazolopeptoids mainly target the neuromast cells in zebrafish embryos, the lipophilic ones colocalize with either cartilage in the jaws and the blood vessel system.
Collapse
Affiliation(s)
- Daniela Althuon
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kölmel DK, Nieger M, Bräse S. Highly efficient synthesis of polyfluorinated dendrons suitable for click chemistry. RSC Adv 2015. [DOI: 10.1039/c5ra02804c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new and efficient access to C2v-symmetric dendrons with up to 72 magnetically equivalent fluorine atoms is presented. Those dendrons are well suited to act as potential 19F MRI probes.
Collapse
Affiliation(s)
- Dominik K. Kölmel
- Karlsruhe Institute of Technology (KIT)
- Institute of Organic Chemistry
- 76131 Karlsruhe
- Germany
| | - Martin Nieger
- University of Helsinki
- Laboratory of Inorganic Chemistry
- Finland
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT)
- Institute of Organic Chemistry
- 76131 Karlsruhe
- Germany
- Karlsruhe Institute of Technology (KIT)
| |
Collapse
|
19
|
Fisher GM, Tanpure RP, Douchez A, Andrews KT, Poulsen SA. Synthesis and Evaluation of Antimalarial Properties of Novel 4-Aminoquinoline Hybrid Compounds. Chem Biol Drug Des 2014; 84:462-72. [DOI: 10.1111/cbdd.12335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Gillian M. Fisher
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| | - Rajendra P. Tanpure
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| | - Antoine Douchez
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| | - Katherine T. Andrews
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| | - Sally-Ann Poulsen
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| |
Collapse
|
20
|
Kölmel DK, Hörner A, Rönicke F, Nieger M, Schepers U, Bräse S. Cell-penetrating peptoids: introduction of novel cationic side chains. Eur J Med Chem 2014; 79:231-43. [PMID: 24739871 DOI: 10.1016/j.ejmech.2014.03.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
Abstract
During the last decade peptoid-based molecular transporters have been broadly applied. They are highly valued for their easy synthesis and their superior stability against enzymatic degradation. The special structure of peptoids generally allows introducing a variety of different side chains. Yet, the cationic side chains of cell-penetrating peptoids displayed solely lysine- or arginine-like structures. Thus this report is intended to extend the spectrum of cationic peptoid side chains. Herein, we present novel functional groups, like polyamines, aza-crown ethers, or triphenylphosphonium ions that are introduced into peptoids for the first time. In addition, the obtained peptoids were tested for their cell-penetrating properties.
Collapse
Affiliation(s)
- Dominik K Kölmel
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Anna Hörner
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Light Technology Institute, Engesserstraße 13, D-76131 Karlsruhe, Germany
| | - Franziska Rönicke
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- University of Helsinki, Laboratory of Inorganic Chemistry, PO Box 55, FIN-00014, Finland
| | - Ute Schepers
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|