1
|
Lee S, Kwon H, Jee EK, Kim J, Lee KJ, Kim J, Ko N, Lee E, Lim HS. Synthesis and Structural Characterization of Macrocyclic α-ABpeptoids and Their DNA-Encoded Library. Org Lett 2024; 26:1100-1104. [PMID: 38295374 DOI: 10.1021/acs.orglett.3c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The first synthesis of macrocyclic α-ABpeptoids with varying lengths is described. X-ray crystal structures reveal that cyclic trimer displays a chair-like conformation with a cct amide sequence and cyclic tetramer has a saddle-like structure with an uncommon cccc amide arrangement. The creation of a DNA-encoded combinatorial library of macrocyclic α-ABpeptoids is described.
Collapse
Affiliation(s)
- Soobin Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyunchul Kwon
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Eun-Kyoung Jee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jaelim Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kang Ju Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jungyeon Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Nakeun Ko
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Eunsung Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
- Camel Biosciences, Pohang 37673, South Korea
| |
Collapse
|
2
|
Sun D. Recent Advances in Macrocyclic Drugs and Microwave-Assisted and/or Solid-Supported Synthesis of Macrocycles. Molecules 2022; 27:1012. [PMID: 35164274 PMCID: PMC8839925 DOI: 10.3390/molecules27031012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022] Open
Abstract
Macrocycles represent attractive candidates in organic synthesis and drug discovery. Since 2014, nineteen macrocyclic drugs, including three radiopharmaceuticals, have been approved by FDA for the treatment of bacterial and viral infections, cancer, obesity, immunosuppression, etc. As such, new synthetic methodologies and high throughput chemistry (e.g., microwave-assisted and/or solid-phase synthesis) to access various macrocycle entities have attracted great interest in this chemical space. This article serves as an update on our previous review related to macrocyclic drugs and new synthetic strategies toward macrocycles (Molecules, 2013, 18, 6230). In this work, I first reviewed recent FDA-approved macrocyclic drugs since 2014, followed by new advances in macrocycle synthesis using high throughput chemistry, including microwave-assisted and/or solid-supported macrocyclization strategies. Examples and highlights of macrocyclization include macrolactonization and macrolactamization, transition-metal catalyzed olefin ring-closure metathesis, intramolecular C-C and C-heteroatom cross-coupling, copper- or ruthenium-catalyzed azide-alkyne cycloaddition, intramolecular SNAr or SN2 nucleophilic substitution, condensation reaction, and multi-component reaction-mediated macrocyclization, and covering the literature since 2010.
Collapse
Affiliation(s)
- Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| |
Collapse
|
3
|
Gless BH, Olsen CA. Direct Peptide Cyclization and One-Pot Modification Using the MeDbz Linker. J Org Chem 2018; 83:10525-10534. [DOI: 10.1021/acs.joc.8b01237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bengt H. Gless
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Chouikrat R, Baros F, André JC, Vanderesse R, Viana B, Bulin AL, Dujardin C, Arnoux P, Verelst M, Frochot C. A Photosensitizer Lanthanide Nanoparticle Formulation that Induces Singlet Oxygen with Direct Light Excitation, But Not By Photon or X-ray Energy Transfer. Photochem Photobiol 2017; 93:1439-1448. [DOI: 10.1111/php.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rima Chouikrat
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Jean-Claude André
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM); UMR CNRS 7375; Université de Lorraine; Nancy France
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR CNRS 7375; CNRS; Nancy France
| | | | - Anne-Laure Bulin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Christophe Dujardin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Marc Verelst
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| |
Collapse
|
5
|
Shaheen F, Jabeen A, Ashraf S, Nadeem-Ul-Haque M, Shah ZA, Ziaee MA, Dastagir N, Ganesan A. Total synthesis, structural, and biological evaluation of stylissatin A and related analogs. J Pept Sci 2017; 22:607-17. [PMID: 27526945 DOI: 10.1002/psc.2909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 12/22/2022]
Abstract
The natural product cyclic peptide stylissatin A (1a) was reported to inhibit nitric oxide production in LPS-stimulated murine macrophage RAW 264.7 cells. In the current study, solid-phase total synthesis of stylissatin A was performed by using a safety-catch linker and yielded the peptide with a trans-Phe(7) -Pro(6) linkage, whereas the natural product is the cis rotamer at this position as evidenced by a marked difference in NMR chemical shifts. In order to preclude the possibility of 1b being an epimer of the natural product, we repeated the synthesis using d-allo-Ile in place of l-Ile and a different site for macrocyclization. The resulting product (d-allo-Ile(2) )-stylissatin A (1c) was also found to have the trans-Phe(7) -Pro(6) peptide conformations like rotamer 1b. Applying the second route to the synthesis of stylissatin A itself, we obtained stylissatin A natural rotamer 1a accompanied by rotamer 1b as the major product. Rotamers 1a, 1b, and the epimer 1c were separable by HPLC, and 1a was found to match the natural product in structure and biological activity. Six related analogs 2-7 of stylissatin A were synthesized on Wang resin and characterized by spectral analysis. The natural product (1a), the rotamer (1b), and (d-allo-Ile(2) )-stylissatin A (1c) exhibited significant inhibition of NO(.) . Further investigations were focused on 1b, which also inhibited proliferation of T-cells and inflammatory cytokine IL-2 production. The analogs 2-7 weakly inhibited NO(.) production, but strongly inhibited IL-2 cytokine production compared with synthetic peptide 1b. All analogs inhibited the proliferation of T-cells, with analog 7 having the strongest effect. In the analogs, the Pro(6) residue was replaced by Glu/Ala, and the SAR indicates that the nature of this residue plays a role in the biological function of these peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Farzana Shaheen
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Samreen Ashraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Nadeem-Ul-Haque
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zafar Ali Shah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Asad Ziaee
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Nida Dastagir
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
6
|
Culf AS, Čuperlović-Culf M, Léger DA, Decken A. Small head-to-tail macrocyclic α-peptoids. Org Lett 2014; 16:2780-3. [PMID: 24797336 DOI: 10.1021/ol501102b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient and efficient methodology for the head-to-tail macrocyclization of small 3-mer, 4-mer, and 5-mer α-peptoid acids (9-, 12-, and 15-atom N-substituted glycine oligomers) is described. The cyclic trimer has a ccc amide sequence in the crystal structure, whereas the tetramer has ctct and the pentamer has ttccc stereochemistry. NMR analysis reveals rigid structures in solution. These synthetic macrocycles may prove useful in medicinal and materials applications.
Collapse
Affiliation(s)
- Adrian S Culf
- Atlantic Cancer Research Institute , 35 Providence Street, Moncton, NB E1C 8X3, Canada
| | | | | | | |
Collapse
|