1
|
Zhou JJ, Yang L, Ma QY, Xie QY, Dai HF, Liu YH, You-Xing Z. Cochliomycin H, a new 12-membered resorcylic acid lactone from sponge-derived fungus Curvularia sp. ZYX-Z-4. Nat Prod Res 2025:1-5. [PMID: 39743781 DOI: 10.1080/14786419.2024.2448206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
A new 12-membered resorcylic acid lactone, cochliomycin H (1), and one known resorcylic acid lactone, O-demethylated-zeaenol (2), were isolated from sponge-derived fungus Curvularia sp. ZYX-Z-4. The structure of 1 was elucidated by 1D and 2D NMR spectroscopic as well as HR-ESI-MS analysis. The configuration of 1 was established by the NMR chemical shifts calculation followed by DP4+ analysis and ECD calculation. Compounds 1 and 2 were evaluated for the antifungal and neuroprotective activities and compound 2 showed comparable neuroprotective effect on the H2O2 injured SH-SY5Y cells to that of trolox.
Collapse
Affiliation(s)
- Jiu-Jiu Zhou
- Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, China
| | - Li Yang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Qing-Yun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Qing-Yi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Hao-Fu Dai
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - You-Hua Liu
- Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, China
| | - Zhao You-Xing
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
2
|
Kishore A, Fetter A, Zeilinger C. Microarray-Based Screening of Putative HSP90 Inhibitors Predicted and Isolated from Microorganisms. Methods Mol Biol 2022; 2489:435-448. [PMID: 35524063 DOI: 10.1007/978-1-0716-2273-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein microarrays are useful tools for detecting the presence of a target where different prey and bait combinations exist. Here we describe the extended application for a functional target-oriented screening assay with full length Heat shock proteins (HSPs ) for the identification of novel compounds.
Collapse
Affiliation(s)
- Anusha Kishore
- Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Hannover, Germany
| | - Artem Fetter
- Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Hannover, Germany
| | - Carsten Zeilinger
- Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Hannover, Germany.
| |
Collapse
|
3
|
Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Cells 2021; 10:2849. [PMID: 34831072 PMCID: PMC8616389 DOI: 10.3390/cells10112849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is still one of the major killer parasitic diseases in tropical settings, posing a public health threat. The development of antimalarial drug resistance is reversing the gains made in attempts to control the disease. The parasite leads a complex life cycle that has adapted to outwit almost all known antimalarial drugs to date, including the first line of treatment, artesunate. There is a high unmet need to develop new strategies and identify novel therapeutics to reverse antimalarial drug resistance development. Among the strategies, here we focus and discuss the merits of the development of antimalarials targeting the Heat shock protein 90 (Hsp90) due to the central role it plays in protein quality control.
Collapse
Affiliation(s)
| | | | | | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (M.L.S.); (C.C.); (M.d.V.)
| |
Collapse
|
4
|
Kuttikrishnan S, Prabhu KS, Al Sharie AH, Al Zu'bi YO, Alali FQ, Oberlies NH, Ahmad A, El-Elimat T, Uddin S. Natural resorcylic acid lactones: A chemical biology approach for anticancer activity. Drug Discov Today 2021; 27:547-557. [PMID: 34655796 DOI: 10.1016/j.drudis.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/25/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
Resorcylic acid lactones (RALs) are fungal polyketides that consist of a β-resorcylic acid residue (2,4-dihydroxybenzoic acid) embedded in a macrolactone ring. RALs exhibit a broad range of biological activities, including anticancer activities. Following discovery of the selective Hsp90 inhibition activity of radicicol, the kinase inhibition activity of hypothemycin, monocillin II, 5Z-7-oxo-zeaenol, and L-783,277 RALs, and the nuclear factor kappa B (NF-κB) inhibition activity of the RAL zearalenone, have attracted great attention as potential therapeutics for cancer treatment. In this minireview, we focus on natural RALs that possess cytotoxic activities [IC50 values < 10 μM (or 4-5 μg/ml)], discussing their structures, isolation, occurrence, biological activities, and anticancer molecular mechanisms.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed H Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yazan O Al Zu'bi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Feras Q Alali
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; QU Health, Qatar University, Doha, Qatar
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
5
|
Bansod S, Raj N, R A, Nair AS, Bhattacharyya S. Molecular docking and molecular dynamics simulation identify a novel Radicicol derivative that predicts exclusive binding to Plasmodium falciparum Topoisomerase VIB. J Biomol Struct Dyn 2021; 40:6939-6951. [PMID: 33650468 DOI: 10.1080/07391102.2021.1891970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Plasmodium falciparum harbors a unique type II topoisomerase, Topoisomerase VIB (PfTopoVIB), expressed specifically at the actively replicating stage of the parasite. An earlier study showed that Radicicol inhibits the decatenation activity of PfTopoVIB and thereby arrests the parasites at the schizont stage. Radicicol targets a unique ATP-binding fold called the Bergerat fold, which is also present in the N-terminal domain of the heat shock protein 90 (PfHsp90). Hence, Radicicol may manifest off-target activity within the parasite. We speculate that the affinity of Radicicol towards PfTopoVIB could be enhanced by modifying its structure so that it shows preferential binding towards PfTopoVIB but not to PfHsp90. Here, we have performed the docking and affinity studies of 97 derivatives (structural analogs) of Radicicol and have identified 3 analogs that show selective binding only to PfTopoVIB and no binding with PfHsp90 at all. Molecular dynamics simulation study was performed for 50 ns in triplicate with those 3 analogs and we find that one of them shows a stable association with Radicicol. This study identifies the structural molecule which could be instrumental in blocking the function of PfTopoVIB and hence can serve as an important inhibitor for malaria pathogenesis. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shephali Bansod
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Navya Raj
- Department of Health Informatics, College of Health Sciences, Saudi Electronic University, Dammam, Kingdom of Saudi Arabia
| | - Amjesh R
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Kim Y, Sengupta S, Sim T. Natural and Synthetic Lactones Possessing Antitumor Activities. Int J Mol Sci 2021; 22:ijms22031052. [PMID: 33494352 PMCID: PMC7865919 DOI: 10.3390/ijms22031052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer is one of the leading causes of death globally, accounting for an estimated 8 million deaths each year. As a result, there have been urgent unmet medical needs to discover novel oncology drugs. Natural and synthetic lactones have a broad spectrum of biological uses including anti-tumor, anti-helminthic, anti-microbial, and anti-inflammatory activities. Particularly, several natural and synthetic lactones have emerged as anti-cancer agents over the past decades. In this review, we address natural and synthetic lactones focusing on their anti-tumor activities and synthetic routes. Moreover, we aim to highlight our journey towards chemical modification and biological evaluation of a resorcylic acid lactone, L-783277 (4). We anticipate that utilization of the natural and synthetic lactones as novel scaffolds would benefit the process of oncology drug discovery campaigns based on natural products.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Sandip Sengupta
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-0797
| |
Collapse
|
7
|
Menon BRK, Richmond D, Menon N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1823788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binuraj R. K. Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel Richmond
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Navya Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
8
|
Liu W, Yuan L, Wang S. Recent Progress in the Discovery of Antifungal Agents Targeting the Cell Wall. J Med Chem 2020; 63:12429-12459. [PMID: 32692166 DOI: 10.1021/acs.jmedchem.0c00748] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to the limit of available treatments and the emergence of drug resistance in the clinic, invasive fungal infections are an intractable problem with high morbidity and mortality. The cell wall, as a fungi-specific structure, is an appealing target for the discovery and development of novel and low-toxic antifungal agents. In an attempt to accelerate the discovery of novel cell wall targeted drugs, this Perspective will provide a comprehensive review of the progress made to date on the development of fungal cell wall inhibitors. Specifically, this review will focus on the targets, discovery process, chemical structures, antifungal activities, and structure-activity relationships. Although two types of cell wall antifungal agents are clinically available or in clinical trials, it is still a long way for the other cell wall targeted inhibitors to be translated into clinical applications. Future efforts should be focused on the identification of inhibitors against novel conserved cell wall targets.
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Middle Road, Xi'an 710021, People's Republic of China
| | - Lin Yuan
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Middle Road, Xi'an 710021, People's Republic of China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, People's Republic of China
| |
Collapse
|
9
|
Hegmann N, Prusko L, Diesendorf N, Heinrich MR. In Situ Conformational Fixation of the Amide Bond Enables General Access to Medium-Sized Lactams via Ring-Closing Metathesis. Org Lett 2018; 20:7825-7829. [DOI: 10.1021/acs.orglett.8b03320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nina Hegmann
- Department of Chemistry and Pharmacy; Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Lea Prusko
- Department of Chemistry and Pharmacy; Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Nina Diesendorf
- Department of Chemistry and Pharmacy; Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy; Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Jana N, Nanda S. Resorcylic acid lactones (RALs) and their structural congeners: recent advances in their biosynthesis, chemical synthesis and biology. NEW J CHEM 2018. [DOI: 10.1039/c8nj02534g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resorcylic acid lactones (RALs) are naturally occurring 14-membered macrolactones that constitute a class of polyketides derived from fungal metabolites and that possess significant and promising biological activity.
Collapse
Affiliation(s)
- Nandan Jana
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Samik Nanda
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
11
|
Crowley VM, Huard DJE, Lieberman RL, Blagg BSJ. Second Generation Grp94-Selective Inhibitors Provide Opportunities for the Inhibition of Metastatic Cancer. Chemistry 2017; 23:15775-15782. [PMID: 28857290 DOI: 10.1002/chem.201703398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 12/24/2022]
Abstract
Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum (ER) resident isoform of the 90 kDa heat shock protein (Hsp90) family and its inhibition represents a promising therapeutic target for the treatment of many diseases. Modification of the first generation cis-amide bioisostere imidazole to alter the angle between the resorcinol ring and the benzyl side chain via cis-amide replacements produced compounds with improved Grp94 affinity and selectivity. Structure-activity relationship studies led to the discovery of compound 30, which exhibits 540 nm affinity and 73-fold selectivity towards Grp94. Grp94 is responsible for the maturation and trafficking of proteins associated with cell signaling and motility, including select integrins. The Grp94-selective inhibitor 30 was shown to exhibit potent anti-migratory effects against multiple aggressive and metastatic cancers.
Collapse
Affiliation(s)
- Vincent M Crowley
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Dr. Malott 4070, Lawrence, KS, 66045, USA
| | - Dustin J E Huard
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Brian S J Blagg
- Warren Family Research Center for Drug Discovery and Development, and Department of Chemistry & Biochemistry, University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
12
|
Zhang XQ, Spadafora C, Pineda LM, Ng MG, Sun JH, Wang W, Wang CY, Gu YC, Shao CL. Discovery, Semisynthesis, Antiparasitic and Cytotoxic Evaluation of 14-Membered Resorcylic Acid Lactones and Their Derivatives. Sci Rep 2017; 7:11822. [PMID: 28924201 PMCID: PMC5603512 DOI: 10.1038/s41598-017-12336-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023] Open
Abstract
Ten antifouling 14-membered resorcylic acid lactones 1-10 were isolated previously with low or trace natural abundance from the zoanthid-derived Cochliobolus lunatus fungus. Further optimization of fermentation conditions led to the isolation of two major natural compounds 7 and 8 with multi-gram quantities. By one or two steps, we semisynthesized the six trace natural compounds 1-6 and a series of derivatives 11-27 of compounds 7 and 8 with high yields (65-95%). Compounds 11-13 showed strong antiplasmodial activity against Plasmodium falciparum with IC50 values of 1.84, 8.36, and 6.95 μM, respectively. Very importantly, 11 and 12 were non-toxic with very safety and high therapeutic indices (CC50/IC50 > 180), and thus representing potential promising leads for antiplasmodial drug discovery. Furthermore, 11 was the only compound showed obvious antileishmanial activity against Leishmania donovani with an IC50 value of 9.22 μM. Compounds 11 and 12 showed the values of IC50 at 11.9 and 17.2 μM against neglected Chagas' disease causing Trypanosoma cruzi, respectively.
Collapse
Affiliation(s)
- Xue-Qing Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado, 0816-02852, Panama
| | - Laura M Pineda
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado, 0816-02852, Panama
| | - Michelle G Ng
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado, 0816-02852, Panama
| | - Ji-Hong Sun
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Wei Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
13
|
Huang R, Ayine-Tora DM, Muhammad Rosdi MN, Li Y, Reynisson J, Leung IK. Virtual screening and biophysical studies lead to HSP90 inhibitors. Bioorg Med Chem Lett 2017; 27:277-281. [DOI: 10.1016/j.bmcl.2016.11.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
14
|
Barbeiro CS, Vasconcelos SNS, Zukerman-Schpector J, Caracelli I, Pimenta DC, Rodrigues ACB, Fernandes AS, Correra TC, Bastos EL, Stefani HA. Chlorinated 2-hydroxynaphthalenoxazolines: Synthesis, Reaction Mechanism and Fluorescence Properties. ChemistrySelect 2016. [DOI: 10.1002/slct.201601526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cristiane S. Barbeiro
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo, SP Brazil
| | - Stanley N. S. Vasconcelos
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo, SP Brazil
| | - Júlio Zukerman-Schpector
- Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento de Química; Universidade Federal de São Carlos; São Carlos, SP Brazil
| | - Ignez Caracelli
- BioMat-Departamento de Física; Universidade Federal de São Carlos; São Carlos, SP Brazil
| | - Daniel C. Pimenta
- Departamento de Bioquímica e Biofísica; Instituto Butantã; São Paulo, SP Brazil
| | - Ana Clara B. Rodrigues
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo, SP Brazil
| | - André S. Fernandes
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo, SP Brazil
| | - Thiago C. Correra
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo, SP Brazil
| | - Erick L. Bastos
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo, SP Brazil
| | - Hélio A. Stefani
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo, SP Brazil
| |
Collapse
|
15
|
Teo RD, Dong SS, Gross Z, Gray HB, Goddard WA. Computational predictions of corroles as a class of Hsp90 inhibitors. MOLECULAR BIOSYSTEMS 2016; 11:2907-14. [PMID: 26252737 DOI: 10.1039/c5mb00352k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Corroles have been shown experimentally to cause cell cycle arrest, and there is some evidence that this might be attributed to an inhibitory effect of corroles on Heat shock protein 90 (Hsp90), which is known to play a vital role in cancer cell proliferation. In this study, we used molecular dynamics to examine the interaction of gallium corroles with Hsp90, and found that they can bind preferentially to the ATP-binding N-terminal site. We also found that structural variations of the corrole ring can influence the binding energies and affinities of the corrole to Hsp90. We predict that both the bis-carboxylated corrole (4-Ga) and a proposed 3,17-bis-sulfonated corrole (7-Ga) are promising alternatives to Ga(III) 5,10,15-tris(pentafluorophenyl)-2,17-bis(sulfonic acid)-corrole (1-Ga) as anti-cancer agents.
Collapse
Affiliation(s)
- Ruijie D Teo
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | |
Collapse
|
16
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Bodireddy MR, Mahla RS, Khaja Mohinuddin PM, Reddy GT, Raghava Prasad DV, Kumar H, Reddy NCG. Discovery of a new class of 16-membered (2Z,11Z)-3,11-di(aryl/naphthyl)-1,13-dioxa-5,9-dithia-2,12-diazacyclohexadeca-2,11-dienes as anti-tumor agents. RSC Adv 2016. [DOI: 10.1039/c6ra15140j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of new 16-membered macrocyclic compounds were synthesized and evaluation of in vitro anti-tumor activities on MDAMB-231 cell lines reveal that the macrocycles, 1a, 1f, 1g, 1i and 1k are promising anti-tumor agents.
Collapse
Affiliation(s)
- Mohan Reddy Bodireddy
- Department of Chemistry
- School of Physical Sciences
- Yogi Vemana University
- Kadapa-516 003
- India
| | - Ranjeet Singh Mahla
- Department of Biological Sciences
- Indian Institute of Science Education and Research (IISER)
- Bhopal-462023
- India
| | | | - G. Trivikram Reddy
- Department of Chemistry
- School of Physical Sciences
- Yogi Vemana University
- Kadapa-516 003
- India
| | | | - Himanshu Kumar
- Department of Biological Sciences
- Indian Institute of Science Education and Research (IISER)
- Bhopal-462023
- India
- Laboratory of Host Defense
| | - N. C. Gangi Reddy
- Department of Chemistry
- School of Physical Sciences
- Yogi Vemana University
- Kadapa-516 003
- India
| |
Collapse
|
18
|
Hügel HM, Smith AT, Rizzacasa MA. Macrolactam analogues of macrolide natural products. Org Biomol Chem 2016; 14:11301-11316. [DOI: 10.1039/c6ob02149b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The chemical modification of macrolide natural products into aza- or lactam analogues is a strategy employed to improve their metabolic stability and biological activity.
Collapse
Affiliation(s)
- Helmut M. Hügel
- School of Science & Biomedical and Health Innovations Enabling Capability Platform
- RMIT University
- Melbourne
- Australia
| | - Andrew T. Smith
- Griffith Sciences
- Gold Coast campus
- Griffith University
- Australia
| | - Mark A. Rizzacasa
- School of Chemistry
- the Bio21 Institute
- The University of Melbourne
- Australia
| |
Collapse
|
19
|
Mahankali B, Srihari P. A Carbohydrate Approach for the First Total Synthesis of Cochliomycin C: Stereoselective Total Synthesis of Paecilomycin E, Paecilomycin F and 6′-epi-Cochliomycin C. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
|
21
|
Bolte B, Basutto JA, Bryan CS, Garson MJ, Banwell MG, Ward JS. Modular total syntheses of the marine-derived resorcylic Acid lactones cochliomycins a and B using a late-stage nozaki-hiyama-kishi macrocyclization reaction. J Org Chem 2014; 80:460-70. [PMID: 25405580 DOI: 10.1021/jo5024602] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The natural products cochliomycin A (1) and cochliomycin B (2), two resorcylic acid lactones obtained from marine sources, have been prepared in a concise and stereocontrolled manner from the readily accessible building blocks 4-6. Olefin cross-metathesis, trans-esterification and Nozaki-Hiyama-Kishi (NHK) macrocyclization reactions were employed in the key steps. Hydrolysis of the immediate precursor to cochliomycin B affords the resorcylic acid lactone zeaenol (24).
Collapse
Affiliation(s)
- Benoit Bolte
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Jose A Basutto
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Christopher S Bryan
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Mary J Garson
- ‡School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Martin G Banwell
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Jas S Ward
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
22
|
Abstract
Trypanosomiasis is caused by Trypanosoma species which affect both human and animal populations and pose a major threat to developing countries. The incidence of animal trypanosomiasis is on the rise. Surra is a type of animal trypanosomiasis, caused by Trypanosoma evansi, and has been included in priority list B of significant diseases by the World Organization of Animal Health (OIE). Control of surra has been a challenge due to the lack of effective drugs and vaccines and emergence of resistance towards existing drugs. Our laboratory has previously implicated Heat shock protein 90 (Hsp90) from protozoan parasites as a potential drug target and successfully demonstrated efficacy of an Hsp90 inhibitor in cell culture as well as a pre-clinical mouse model of trypanosomiasis. This article explores the role of Hsp90 in the Trypanosoma life cycle and its potential as a drug target. It appears plausible that the repertoire of Hsp90 inhibitors available in academia and industry may have value for treatment of surra and other animal trypanosomiasis.
Collapse
|