1
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
2
|
Gazagnaire E, Helminen J, King AWT, Golin Almeida T, Kurten T, Kilpeläinen I. Bicyclic guanidine superbase carboxylate salts for cellulose dissolution. RSC Adv 2024; 14:12119-12124. [PMID: 38628473 PMCID: PMC11019349 DOI: 10.1039/d4ra01734j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Bicyclic guanidines are utilized in organic synthesis as base catalysts or reagents. They also offer a platform for coordination chemistry, for example in CO2 activation, and their carboxylate salts offer an efficient media for cellulose dissolution. We have studied a series of bicyclic guanidines with varying ring sizes and with varying methyl substituents with a specific aim to find hydrolytically stable acetate salts for dissolution and processing of cellulose. Different superbase synthesis pathways were tested, followed by hydrolytic stability and cellulose dissolution capacity tests. The synthesis pathways were designed to enable the scale up of the production of the superbases considering the availability of the starting molecules and the feasibility of the synthesis. As a result, we found several hydrolytically stable bicyclic guanidine structures, which can overcome many of the reoccurring problems as carboxylate salts or free bases.
Collapse
Affiliation(s)
- Eva Gazagnaire
- Department of Chemistry, Material Division, University of Helsinki FI-00560 Helsinki Finland
| | - Jussi Helminen
- Department of Chemistry, Material Division, University of Helsinki FI-00560 Helsinki Finland
| | - Alistair W T King
- VTT Technical Research Centre of Finland Ltd Tietotie 4e 02150 Espoo Finland
| | - Thomas Golin Almeida
- Institute for Atmospheric and Earth System Research/Chemistry, Faculty of Science FI-00560 Helsinki Finland
| | - Theo Kurten
- Institute for Atmospheric and Earth System Research/Chemistry, Faculty of Science FI-00560 Helsinki Finland
| | - Ilkka Kilpeläinen
- Department of Chemistry, Material Division, University of Helsinki FI-00560 Helsinki Finland
| |
Collapse
|
3
|
Cadelis MM, Kim J, Rouvier F, Gill ES, Fraser K, Bourguet-Kondracki ML, Brunel JM, Copp BR. Exploration of Bis-Cinnamido-Polyamines as Intrinsic Antimicrobial Agents and Antibiotic Enhancers. Biomolecules 2023; 13:1087. [PMID: 37509123 PMCID: PMC10377643 DOI: 10.3390/biom13071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The marine natural product ianthelliformisamine C is a bis-cinnamido substituted spermine derivative that exhibits intrinsic antimicrobial properties and can enhance the action of doxycycline towards the Gram-negative bacterium Pseudomonas aeruginosa. As part of a study to explore the structure-activity requirements of these activities, we have synthesized a set of analogues that vary in the presence/absence of methoxyl group and bromine atoms and in the polyamine chain length. Intrinsic antimicrobial activity towards Staphylococcus aureus, methicillin-resistant S. aureus (MRSA) and the fungus Cryptococcus neoformans was observed for only the longest polyamine chain examples of non-brominated analogues while all examples bearing either one or two bromine atoms were active. Weak to no activity was typically observed towards Gram-negative bacteria, with exceptions being the longest polyamine chain examples 13f, 14f and 16f against Escherichia coli (MIC 1.56, 7.2 and 5.3 µM, respectively). Many of these longer polyamine-chain analogues also exhibited cytotoxic and/or red blood cell hemolytic properties, diminishing their potential as antimicrobial lead compounds. Two of the non-toxic, non-halogenated analogues, 13b and 13d, exhibited a strong ability to enhance the action of doxycycline against P. aeruginosa, with >64-fold and >32-fold enhancement, respectively. These results suggest that any future efforts to optimize the antibiotic-enhancing properties of cinnamido-polyamines should explore a wider range of aromatic ring substituents that do not include bromine or methoxyl groups.
Collapse
Affiliation(s)
- Melissa M Cadelis
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jisoo Kim
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- Membranes et Cibles Therapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Evangelene S Gill
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kyle Fraser
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Membranes et Cibles Therapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Cadelis MM, Edmeades LR, Chen D, Gill ES, Fraser K, Rouvier F, Bourguet-Kondracki ML, Brunel JM, Copp BR. Investigation of Naphthyl-Polyamine Conjugates as Antimicrobials and Antibiotic Enhancers. Antibiotics (Basel) 2023; 12:1014. [PMID: 37370335 DOI: 10.3390/antibiotics12061014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
As part of our search for new antimicrobials and antibiotic enhancers, a series of naphthyl- and biphenyl-substituted polyamine conjugates have been synthesized. The structurally-diverse library of compounds incorporated variation in the capping end groups and in the length of the polyamine (PA) core. Longer chain (PA-3-12-3) variants containing both 1-naphthyl and 2-naphthyl capping groups exhibited more pronounced intrinsic antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) (MIC ≤ 0.29 µM) and the fungus Cryptococcus neoformans (MIC ≤ 0.29 µM). Closer mechanistic study of one of these analogues, 20f, identified it as a bactericide. In contrast to previously reported diarylacyl-substituted polyamines, several examples in the current set were able to enhance the antibiotic action of doxycycline and/or erythromycin towards the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli. Two analogues (19a and 20c) were of note, exhibiting greater than 32-fold enhancement in activity. This latter result suggests that α,ω-disubstituted polyamines bearing 1-naphthyl- and 2-naphthyl-capping groups are worthy of further investigation and optimization as non-toxic antibiotic enhancers.
Collapse
Affiliation(s)
- Melissa M Cadelis
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Liam R Edmeades
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Dan Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Evangelene S Gill
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kyle Fraser
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- Membranes et Cibles Thérapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Membranes et Cibles Thérapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Chen D, Cadelis MM, Rouvier F, Troia T, Edmeades LR, Fraser K, Gill ES, Bourguet-Kondracki ML, Brunel JM, Copp BR. α,ω-Diacyl-Substituted Analogues of Natural and Unnatural Polyamines: Identification of Potent Bactericides That Selectively Target Bacterial Membranes. Int J Mol Sci 2023; 24:5882. [PMID: 36982955 PMCID: PMC10052977 DOI: 10.3390/ijms24065882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, α-ω-disubstituted polyamines exhibit a range of potentially useful biological activities, including antimicrobial and antibiotic potentiation properties. We have prepared an expanded set of diarylbis(thioureido)polyamines that vary in central polyamine core length, identifying analogues with potent methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Acinetobacter baumannii and Candida albicans growth inhibition properties, in addition to the ability to enhance action of doxycycline towards Gram-negative bacterium Pseudomonas aeruginosa. The observation of associated cytotoxicity/hemolytic properties prompted synthesis of an alternative series of diacylpolyamines that explored aromatic head groups of varying lipophilicity. Examples bearing terminal groups each containing two phenyl rings (15a-f, 16a-f) were found to have optimal intrinsic antimicrobial properties, with MRSA being the most susceptible organism. A lack of observed cytotoxicity or hemolytic properties for all but the longest polyamine chain variants identified these as non-toxic Gram-positive antimicrobials worthy of further study. Analogues bearing either one or three aromatic-ring-containing head groups were either generally devoid of antimicrobial properties (one ring) or cytotoxic/hemolytic (three rings), defining a rather narrow range of head group lipophilicity that affords selectivity for Gram-positive bacterial membranes versus mammalian. Analogue 15d is bactericidal and targets the Gram-positive bacterial membrane.
Collapse
Affiliation(s)
- Dan Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa M. Cadelis
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- UMR MD1 “Membranes et Cibles Therapeutiques”, U1261 INSERM, Faculté de Pharmacie, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Thomas Troia
- UMR MD1 “Membranes et Cibles Therapeutiques”, U1261 INSERM, Faculté de Pharmacie, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Liam R. Edmeades
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kyle Fraser
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Evangelene S. Gill
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- UMR MD1 “Membranes et Cibles Therapeutiques”, U1261 INSERM, Faculté de Pharmacie, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R. Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
7
|
Li SA, Cadelis MM, Deed RC, Douafer H, Bourguet-Kondracki ML, Michel Brunel J, Copp BR. Valorisation of the diterpene podocarpic acid - Antibiotic and antibiotic enhancing activities of polyamine conjugates. Bioorg Med Chem 2022; 64:116762. [PMID: 35477062 DOI: 10.1016/j.bmc.2022.116762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
As part of our search for new antimicrobials and antibiotic adjuvants, a series of podocarpic acid-polyamine conjugates have been synthesized. The library of compounds made use of the phenolic and carboxylic acid moieties of the diterpene allowing attachment of polyamines (PA) of different lengths to afford a structurally-diverse set of analogues. Evaluation of the conjugates for intrinsic antimicrobial properties identified two derivatives of interest: a PA3-4-3 (spermine) amide-bonded variant 7a that was a non-cytotoxic, non-hemolytic potent growth inhibitor of Gram-positive Staphylococcus aureus (MRSA) and 9d, a PA3-8-3 carbamate derivative that was a non-toxic selective antifungal towards Cryptococcus neoformans. Of the compound set, only one example exhibited activity towards Gram-negative bacteria. However, in the presence of sub-therapeutic amounts of either doxycycline (4.5 µM) or erythromycin (2.7 μM) several analogues were observed to exhibit weak to modest antibiotic adjuvant properties against Pseudomonas aeruginosa and/or Escherichia coli. The observation of strong cytotoxicity and/or hemolytic properties for subsets of the library, in particular those analogues bearing methyl ester or n-pentylamide functionality, highlighted the fine balance of structural requirements and lipophilicity for antimicrobial activity as opposed to mammalian cell toxicity.
Collapse
Affiliation(s)
- Steven A Li
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa M Cadelis
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Hana Douafer
- Aix-Marseille Universite, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385 Marseille, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Aix-Marseille Universite, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Négrel S, Brunel JM. Synthesis and Biological Activities of Naturally Functionalized Polyamines: An Overview. Curr Med Chem 2021; 28:3406-3448. [PMID: 33138746 DOI: 10.2174/0929867327666201102114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
Recently, extensive researches have emphasized the fact that polyamine conjugates are becoming important in all biological and medicinal fields. In this review, we will focus our attention on natural polyamines and highlight recent progress in both fundamental mechanism studies and interests in the development and application for the therapeutic use of polyamine derivatives.
Collapse
Affiliation(s)
- Sophie Négrel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| | - Jean Michel Brunel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
9
|
Khadake SN, Karamathulla S, Jena TK, Monisha M, Tuti NK, Khan FA, Anindya R. Synthesis and antibacterial activities of marine natural product ianthelliformisamines and subereamine synthetic analogues. Bioorg Med Chem Lett 2021; 39:127883. [PMID: 33662536 DOI: 10.1016/j.bmcl.2021.127883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022]
Abstract
Marine sponges of the genusSuberea produce variety of brominated tyrosine alkaloids which display diverse range of biological activities including antiproliferative, antimicrobial and antimalarial activities. In continuation of our search for biologically active marine natural products for antibacterial compounds, we report here the synthesis and evaluation of biological activity of panel of ianthelliformisamines and subereamine analogues using the literature known acid-amine coupling reaction. Several derivatives of Ianthelliformisamine were achieved by the coupling of Boc-protected polyamine chain with brominated aromatic acrylic acid derivatives by varying the bromine substituents on aromatic acid derivatives, amine spacer as well as geometry of the double bond, and then Boc-deprotection using TFA. Similarly, subereamine analogues were also synthesized employing coupling reaction between various brominated phenyl acrylic acids with commercially available chiral amino ester derivatives followed by ester hydrolysis. We screened these synthetic analogues for antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains. One of the compound 7c showed bactericidal activity against Staphylococcus aureus with an IC50 value of 3.8 μM (MIC = 25 μM).
Collapse
Affiliation(s)
- Shivaji Narayan Khadake
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Shaik Karamathulla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Tapan Kumar Jena
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Mohan Monisha
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Nikhil Kumar Tuti
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Faiz Ahmed Khan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India.
| |
Collapse
|
10
|
Total synthesis of (±) aspidostomide B, C, regioisomeric N-methyl aspidostomide D and their derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Pathan MA, Khan FA. N -dealkylative S N Ar reaction using aromatic halides: Synthesis of dihydrobenzoxazine and tetrahydrobenzoxazepine derivatives. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Chauhan J, Luthra T, Gundla R, Ferraro A, Holzgrabe U, Sen S. A diversity oriented synthesis of natural product inspired molecular libraries. Org Biomol Chem 2017; 15:9108-9120. [DOI: 10.1039/c7ob02230a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diversity oriented synthesis of natural product inspired compounds from S-tryptophan methyl ester.
Collapse
Affiliation(s)
- Jyoti Chauhan
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- GautamBudh Nagar
- India
| | - Tania Luthra
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- GautamBudh Nagar
- India
| | - Rambabu Gundla
- Department of Chemistry
- Gitam Institute of Technology
- GITAM University
- Hyderabad
- India
| | - Antonio Ferraro
- Institute of Pharmacy and Food Chemistry
- University of Würzburg
- Am Hubland
- Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry
- University of Würzburg
- Am Hubland
- Germany
| | - Subhabrata Sen
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- GautamBudh Nagar
- India
| |
Collapse
|
13
|
Moloney MG. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol Sci 2016; 37:689-701. [DOI: 10.1016/j.tips.2016.05.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/04/2023]
|
14
|
Cai SL, Song R, Dong HQ, Lin GQ, Sun XW. Practical Asymmetric Synthesis of Amathaspiramides B, D, and F. Org Lett 2016; 18:1996-9. [DOI: 10.1021/acs.orglett.6b00588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sen-Lin Cai
- Department
of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Ran Song
- Department
of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Han-Qing Dong
- Shanghai
Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Guo-Qiang Lin
- Department
of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
- Shanghai
Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Xing-Wen Sun
- Department
of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
15
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
16
|
Thiemann T, Elshorbagy MW, Salem MHFA, Ahmadani SAN, Al-Jasem Y, Azani MA, Al-Sulaibi MAM, Al-Hindawi B. Facile, Direct Reaction of Benzaldehydes to 3-Arylprop-2-Enoic Acids and 3-Arylprop-2-Ynoic Acids in Aqueous Medium. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijoc.2016.62014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Paniak TJ, Jennings MC, Shanahan PC, Joyce MD, Santiago CN, Wuest WM, Minbiole KPC. The antimicrobial activity of mono-, bis-, tris-, and tetracationic amphiphiles derived from simple polyamine platforms. Bioorg Med Chem Lett 2014; 24:5824-5828. [PMID: 25455498 DOI: 10.1016/j.bmcl.2014.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 01/10/2023]
Abstract
A series of 34 amphiphilic compounds varying in both number of quaternary ammonium groups and length of alkyl chains has been assembled. The synthetic preparations for these structures are simple and generally high-yielding, proceeding in 1-2 steps without the need for chromatography. Antibacterial MIC data for these compounds were determined, and over half boast single digit MIC values against a series of gram-positive and gram-negative bacteria. MIC variation mostly hinged on the length of the alkyl chain, where a dodecyl group led to optimal activity; surprisingly, the number of cations and/or basic nitrogens was less important in dictating bioactivity. Additional structural variation was prepared in a trisamine series dubbed 12,3,X,3,12, providing a series of potent amphiphiles functionalized with varied allyl, alkyl, and benzyl groups. Tetraamines were also investigated, culminating in a two-step preparation of a tetracationic structure that showed only modestly improved bioactivity versus amphiphiles with two or three cations.
Collapse
Affiliation(s)
- Thomas J Paniak
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Megan C Jennings
- Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Paul C Shanahan
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Maureen D Joyce
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Celina N Santiago
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - William M Wuest
- Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| |
Collapse
|
18
|
Pieri C, Borselli D, Di Giorgio C, De Méo M, Bolla JM, Vidal N, Combes S, Brunel JM. New Ianthelliformisamine Derivatives as Antibiotic Enhancers against Resistant Gram-Negative Bacteria. J Med Chem 2014; 57:4263-72. [DOI: 10.1021/jm500194e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cyril Pieri
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Institut Paoli Calmettes, Aix-Marseille Université, UM 105, Inserm, U1068, F-13009 Marseille, France
| | - Diane Borselli
- Aix-Marseille Université, IRBA, TMCD2 UMR-MD1, Faculté de Médecine, 13385 Marseille, France
| | - Carole Di Giorgio
- Aix-Marseille Université, CNRS, UMR 7263/IRD 237, 13385 Marseille Cedex 05, France
| | - Michel De Méo
- Aix-Marseille Université, CNRS, UMR 7263/IRD 237, 13385 Marseille Cedex 05, France
| | - Jean-Michel Bolla
- Aix-Marseille Université, IRBA, TMCD2 UMR-MD1, Faculté de Médecine, 13385 Marseille, France
| | - Nicolas Vidal
- UPCAM iSm2, Case 342, Aix-Marseille Université, Avenue Escadrille Normandie Niémen, 13397 Marseille Cedex 13, France
| | - Sébastien Combes
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Institut Paoli Calmettes, Aix-Marseille Université, UM 105, Inserm, U1068, F-13009 Marseille, France
| | - Jean Michel Brunel
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Institut Paoli Calmettes, Aix-Marseille Université, UM 105, Inserm, U1068, F-13009 Marseille, France
| |
Collapse
|