1
|
Ahmad A, Priyadarshini M, Ghangrekar MM, Surampalli RY. Performance evaluation of hybrid electrochemical oxidation and ultraviolet light-based persulfate process for the abatement of sodium dodecyl sulfate from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34824-3. [PMID: 39210224 DOI: 10.1007/s11356-024-34824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The application of hybrid advanced oxidation processes (AOPs) is an efficacious way to remediate emerging contaminants from wastewater. In the present research work, a hybrid electrochemical oxidation and ultraviolet light-based persulfate activation processes (EO-UV/PS) were used to efficiently degrade sodium dodecyl sulfate (SDS) surfactant from synthetic and municipal wastewater. By operating the EO-UV/PS at optimum operating conditions at pH of 7.0, NaCl of 0.02 M, current density of 6.4 mA/cm2, persulfate dose of 2.5 mM, and operating period of 180 min, about 94.5 ± 2.8% of SDS (20 mg/L) removal was achieved from synthetic wastewater. The abetment of SDS in both EO and UV/PS obeyed pseudo-first-order kinetics with a rate constant of 0.012 and 0.019 min-1, respectively. Moreover, the economic analysis revealed 0.23 $ m-3 order-1 as the operating cost for degrading SDS in EO-UV/PS. The degradation pathway experimentation suggested the generation of lauric acid by-product during SDS abatement. Besides, nearly 89.3 ± 2.9% of SDS and 58.7 ± 2.4% of total organic carbon reduction was also achieved from real municipal wastewater. Phytotoxicity test on Vigna radiata affirms the non-toxic nature of the EO-UV/PS effluent.
Collapse
Affiliation(s)
- Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand Madhao Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Rao Y Surampalli
- Environment and Sustainability, Global Institute for Energy, Lenexa, KS, USA
| |
Collapse
|
2
|
Gangemi CMA, Barattucci A, Bonaccorsi PM. A Portrait of the OPE as a Biological Agent. Molecules 2021; 26:3088. [PMID: 34064279 PMCID: PMC8196911 DOI: 10.3390/molecules26113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Oligophenylene ethynylenes, known as OPEs, are a sequence of aromatic rings linked by triple bonds, the properties of which can be modulated by varying the length of the rigid main chain or/and the nature and position of the substituents on the aromatic units. They are luminescent molecules with high quantum yields and can be designed to enter a cell and act as antimicrobial and antiviral compounds, as biocompatible fluorescent probes directed towards target organelles in living cells, as labelling agents, as selective sensors for the detection of fibrillar and prefibrillar amyloid in the proteic field and in a fluorescence turn-on system for the detection of saccharides, as photosensitizers in photodynamic therapy (due to their capacity to highly induce toxicity after light activation), and as drug delivery systems. The antibacterial properties of OPEs have been the most studied against very popular and resistant pathogens, and in this paper the achievements of these studies are reviewed, together with almost all the other roles held by such oligomers. In the recent decade, their antifungal and antiviral effects have attracted the attention of researchers who believe OPEs to be possible biocides of the future. The review describes, for instance, the preliminary results obtained with OPEs against severe acute respiratory syndrome coronavirus 2, the virus responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Anna Barattucci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), Università degli Studi di Messina, 98168 Messina, Italy; (C.M.A.G.); (P.M.B.)
| | | |
Collapse
|
3
|
Wang J, Yang X, Zhao P, Deng H, Zhuo LG, Wang G, Yang Y, Wei H, Zhou Z, Liao W. Investigating Antibacterial Efficiency and Mechanism of Oligo-thiophenes under White Light and Specific Biocidal Activity against E. coli in Dark. ACS APPLIED BIO MATERIALS 2021; 4:3561-3570. [DOI: 10.1021/acsabm.1c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jing Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Xia Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Peng Zhao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
| | - Hao Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People’s Republic of China
| | - Lian-Gang Zhuo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Guanquan Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Hongyuan Wei
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Zhijun Zhou
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
| | - Wei Liao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| |
Collapse
|
4
|
Khuong Mai D, Kang B, Pegarro Vales T, Badon IW, Cho S, Lee J, Kim E, Kim HJ. Synthesis and Photophysical Properties of Tumor-Targeted Water-Soluble BODIPY Photosensitizers for Photodynamic Therapy. Molecules 2020; 25:molecules25153340. [PMID: 32717858 PMCID: PMC7435441 DOI: 10.3390/molecules25153340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
The synthesis of three water-soluble lactose-modified 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based photosensitizers with tumor-targeting capabilities is reported, including an investigation into their photodynamic therapeutic activity on three distinct cancer cell lines (human hepatoma Huh7, cervical cancer HeLa, and breast cancer MCF-7 cell lines). The halogenated BODIPY dyes exhibited a decreased fluorescence quantum yield compared to their non-halogenated counterpart, and facilitated the efficient generation of singlet oxygen species. The synthesized dyes exhibited low cytotoxicities in the dark and high photodynamic therapeutic capabilities against the treated cancer cell lines following irradiation at 530 nm. Moreover, the incorporation of lactose moieties led to an enhanced cellular uptake of the BODIPY dyes. Collectively, the results presented herein provide promising insights for the development of photodynamic therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Duy Khuong Mai
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
| | - Byungman Kang
- Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea;
| | - Temmy Pegarro Vales
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
- Department of Natural Sciences, Caraga State University, Butuan City 8600, Philippines
| | - Isabel Wen Badon
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
| | - Sung Cho
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| | - Joomin Lee
- College of Food and Nutrition, Chosun University, Gwangju 61452, Korea
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| |
Collapse
|
5
|
Yuan Q, Wang Y, Yao P, Lv J, Wang Q, Sun F, Feng W. Effect of unsymmetrical oligo-phenylene-ethynylene OPE3 against multidrug-resistant bacteria in vitro and in vivo. J Chemother 2020; 33:156-164. [PMID: 32460634 DOI: 10.1080/1120009x.2020.1770026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rapid proliferation of multidrug-resistant (MDR) bacterial infections has posed the serious health threats. Photodynamic therapy is considered one of the most promising therapeutic strategies for combating bacterial resistance. In the present study, we synthesized an unsymmetrical oligo-p-phenylene ethynylene (OPE), namely OPE3, and investigated its antimicrobial activity against gram-negative and gram-positive MDR bacteria in vitro and in vivo. The results showed that OPE3 had marked antibacterial activity against MDR bacteria under light irradiation conditions. OPE3 exerted a slightly greater effect on gram-positive bacteria than gram-negative bacteria. Biofilm assay results showed that OPE3 could not inhibit biofilm formation at sub-minimum inhibitory concentrations (MICs), whereas a significant decrease in preformed biofilms was observed when they were treated with OPE3 at concentrations ≥2 × MIC. OPE3 had no hemolytic activity or cytotoxicity in mammalian cells at low concentrations. In the mouse model of burn infection caused by Pseudomonas aeruginosa and Staphylococcus aureus, the treatment of infected wounds with OPE3 resulted in a significant dose-dependent reduction in the bacterial load and caused smaller skin lesions. In addition, the levels of the inflammatory cytokines TNF-α and IL-6 in the serum were also significantly reduced. The present study results indicate that OPE3 may serve as a potent antimicrobial molecule for the treatment of MDR bacterial infections.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Lv
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qianmei Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
6
|
Li J, Zhong W, Zhang K, Wang D, Hu J, Chan-Park MB. Biguanide-Derived Polymeric Nanoparticles Kill MRSA Biofilm and Suppress Infection In Vivo. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21231-21241. [PMID: 31934739 DOI: 10.1021/acsami.9b17747] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a significant cause of drug-resistant infections. Its propensity to develop biofilms makes it especially resistant to conventional antibiotics. We present a novel nanoparticle (NP) system made from biocompatible F-127 surfactant, tannic acid (TA), and biguanide-based polymetformin (PMET) (termed FTP NPs), which can kill MRSA biofilm bacteria effectively in vitro and in vivo and which has excellent biocompatibility. FTP NPs exhibit biofilm bactericidal activity-ability to kill bacteria both inside and outside biofilm-significantly better than many antimicrobial peptides or polymers. At low concentrations (8-32 μg/mL) in vitro, FTP NPs outperformed PMET with ∼100-fold (∼2 log10) greater reduction of MRSA USA300 biofilm bacterial cell counts, which we attribute to the antifouling property of the hydrophilic poly(ethylene glycol) contributed by F-127. Further, in an in vivo murine excisional wound model, FTP NPs achieved 1.8 log10 reduction of biofilm-associated MRSA USA300 bacteria, which significantly outperformed vancomycin (0.8 log10 reduction). Moreover, in vitro cytotoxicity tests showed that FTP NPs have less toxicity than PMET toward mammalian cells, and in vivo intravenous injection of FTP NPs at 10 mg/kg showed no acute toxicity to mice with negligible body weight loss and no significant perturbation of blood biomarkers. These biguanide-based FTP NPs are a promising approach to therapy of MRSA infections.
Collapse
Affiliation(s)
- Jianghua Li
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Wenbin Zhong
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Kaixi Zhang
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Dongwei Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315000, China
| | - Jingbo Hu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315000, China
| | - Mary B Chan-Park
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore
| |
Collapse
|
7
|
Whitten DG, Tang Y, Zhou Z, Yang J, Wang Y, Hill EH, Pappas HC, Donabedian PL, Chi EY. A Retrospective: 10 Years of Oligo(phenylene-ethynylene) Electrolytes: Demystifying Nanomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:307-325. [PMID: 30056722 DOI: 10.1021/acs.langmuir.8b01810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this retrospective, we first reviewed the synthesis of the oligo(phenylene-ethynylene) electrolytes (OPEs) we created in the past 10 years. Since the general antimicrobial activity of these OPEs had been reported in our previous account in Langmuir, we are focusing only on the unusual spectroscopic and photophysical properties of these OPEs and their complexes with anionic scaffolds and detergents in this Feature Article. We applied classical all-atom MD simulations to study the hydrogen bonding environment in the water surrounding the OPEs with and without detergents present. Our finding is that OPEs could form a unit cluster or unit aggregate with a few oppositely charged detergent molecules, indicating that the photostability and photoreactivity of these OPEs might be considerably altered with important consequences to their activity as antimicrobials and fluorescence-based sensors. Thus, in the following sections, we showed that OPE complexes with detergents exhibit enhanced light-activated biocidal activity compared to either OPE or detergent individually. We also found that similar complexes between certain OPEs and biolipids could be used to construct sensors for the enzyme activity. Finally, the OPEs could covalently bind to microsphere surfaces to make a bactericidal surface, which is simpler and more ordered than the surface grafted from microspheres with polyelectrolytes. In the Conclusions and Prospects section, we briefly summarize the properties of OPEs developed so far and future areas for investigation.
Collapse
Affiliation(s)
- David G Whitten
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Yanli Tang
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Zhijun Zhou
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Jianzhong Yang
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Ying Wang
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eric H Hill
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Harry C Pappas
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Patrick L Donabedian
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eva Y Chi
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
8
|
Wu W, Feng G, Xu S, Liu B. A Photostable Far-Red/Near-Infrared Conjugated Polymer Photosensitizer with Aggregation-Induced Emission for Image-Guided Cancer Cell Ablation. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00958] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wenbo Wu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
- Department
of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574
| | - Guangxue Feng
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Shidang Xu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, Innovis, Singapore 138634
| |
Collapse
|
9
|
Deni E, Zamarrón A, Bonaccorsi P, Carmen Carreño M, Juarranz Á, Puntoriero F, Sciortino MT, Ribagorda M, Barattucci A. Glucose-functionalized amino-OPEs as biocompatible photosensitizers in PDT. Eur J Med Chem 2016; 111:58-71. [PMID: 26854378 DOI: 10.1016/j.ejmech.2016.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 12/21/2015] [Accepted: 01/21/2016] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive procedure that can provide a selective eradication of neoplastic diseases by the combined effect of a photosensitizer, light and oxygen. New amino oligo(phenylene-ethynylene)s (OPEs), bearing hydrophilic glucoside terminations, have been prepared, characterized and tested as photosensitizers in PDT. The effectiveness of these compounds in combination with UVA light has been checked on two tumor cell lines (HEp-2 and HeLa cells, derived from a larynx carcinoma and a cervical carcinoma, respectively). The compounds triggered a mitotic blockage that led to the cell death, being the effect active up to 3 μm concentration. The photophysical properties of OPEs, such as high quantum yield, stability, singlet oxygen production, biocompatibility, easy cell-internalization and very good response even at low concentration, make them promising photosensitizers in the application of PDT.
Collapse
Affiliation(s)
- Elisa Deni
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali- ChiBioFarAm, Università di Messina, Messina, Italy
| | - Alicia Zamarrón
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paola Bonaccorsi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali- ChiBioFarAm, Università di Messina, Messina, Italy
| | - M Carmen Carreño
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángeles Juarranz
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali- ChiBioFarAm, Università di Messina, Messina, Italy
| | - Maria Teresa Sciortino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali- ChiBioFarAm, Università di Messina, Messina, Italy
| | - María Ribagorda
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Anna Barattucci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali- ChiBioFarAm, Università di Messina, Messina, Italy.
| |
Collapse
|
10
|
Aggregation of cationic p-phenylene ethynylenes on Laponite clay in aqueous dispersions and solid films. J Colloid Interface Sci 2015; 449:347-56. [DOI: 10.1016/j.jcis.2014.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 12/24/2022]
|
11
|
Mati SS, Chall S, Bhattacharya SC. Aggregation-induced fabrication of fluorescent organic nanorings: selective biosensing of cysteine and application to molecular logic gate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5025-5032. [PMID: 25893428 DOI: 10.1021/acs.langmuir.5b00154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Self-aggregation behavior in aqueous medium of four naphthalimide derivatives has exhibited substitution-dependent, unusual, aggregation induced emission enhancement (AIEE) phenomena. Absorption, emission, and time-resolved study initially indicated the formation of J-type fluorescent organic nanoaggregates (FONs). Simultaneous applications of infrared spectroscopy, theoretical studies, and dynamic light scattering (DLS) measurements explored the underlying mechanism of such substitution-selective aggregation of a chloro-naphthalimide organic molecule. Furthermore, transmission electron microscopy (TEM) visually confirmed the formation of ring like FONs with average size of 7.5-9.5 nm. Additionally, naphthalimide FONs also exhibited selective and specific cysteine amino acid sensing property. The specific behavior of NPCl aggregation toward amino acids was also employed as a molecular logic gate in information technology (IT).
Collapse
Affiliation(s)
| | - Sayantani Chall
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | | |
Collapse
|
12
|
Pappas HC, Lovchik JA, Whitten DG. Assessing the Sporicidal Activity of Oligo-p-phenylene Ethynylenes and Their Role as Bacillus Germinants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4481-4489. [PMID: 25822668 DOI: 10.1021/acs.langmuir.5b00064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A wide range of oligo-p-phenylene ethynylenes has been shown to exhibit good biocidal activity against both Gram-negative and Gram-positive bacteria. While cell death may occur in the dark, these biocidal compounds are far more effective in the light as a result of their ability to sensitize the production of cell-damaging reactive oxygen species. In these studies, the interactions of a specific cationic oligo-p-phenylene ethynylene with spore-forming Bacillus atrophaeus and Bacillus anthracis Sterne have been investigated. Flow cytometry assays are used to rapidly monitor cell death as well as spore germination. This compound effectively killed Bacillus anthracis Sterne vegetative cells (over 4 log reduction), presumably by severe perturbations of the bacterial cell wall and cytoplasmic membrane, while also acting as an effective spore germinant in the dark. While 2 log reduction of B. anthracis Sterne spores was observed, it is hypothesized that further killing could be achieved through enhanced germination.
Collapse
Affiliation(s)
- Harry C Pappas
- †The Nanoscience and Microsystems Engineering Program, University of New Mexico, 1 University of New Mexico, Albuquerque, New Mexico 87131-1341, United States
- ‡Center for Biomedical Engineering, Department of Chemical and Biological Engineering, University of New Mexico, 1 University of New Mexico, Albuquerque, New Mexico 87131-1341, United States
| | - Julie A Lovchik
- §Department of Internal Medicine, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, New Mexico 87131-1341, United States
| | - David G Whitten
- ‡Center for Biomedical Engineering, Department of Chemical and Biological Engineering, University of New Mexico, 1 University of New Mexico, Albuquerque, New Mexico 87131-1341, United States
| |
Collapse
|
13
|
Karam P, Hariri AA, Calver CF, Zhao X, Schanze KS, Cosa G. Interaction of anionic phenylene ethynylene polymers with lipids: from membrane embedding to liposome fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10704-10711. [PMID: 25115171 DOI: 10.1021/la502572u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we report spectroscopic studies on the interaction of negatively charged, amphiphilic polyphenylene ethynylene (PPE) polymers with liposomes prepared either from negative, positive or zwitterionic lipids. Emission spectra of PPEs of 7 and 49 average repeat units bearing carboxylate terminated side chains showed that the polymer embeds within positively charged lipids where it exists as free chains. No interaction was observed between PPEs and negatively charged lipids. Here the polymer remained aggregated giving rise to broad emission spectra characteristic of the aggregate species. In zwitterionic lipids, we observed that the majority of the polymer remained aggregated yet a small fraction readily embedded within the membrane. Titration experiments revealed that saturation of zwitterionic lipids with polymer typically occurred at a polymer repeat unit to lipid mole ratio close to 0.05. No further membrane embedding was observed above that point. For liposomes prepared from positively charged lipids, saturation was observed at a PPE repeat unit to lipid mole ratio of ∼0.1 and liposome precipitation was observed above this point. FRET studies showed that precipitation was preceded by lipid mixing and liposome fusion induced by the PPEs. This behavior was prominent for the longer polymer and negligible for the shorter polymer at a repeat unit to lipid mole ratio of 0.05. We postulate that fusion is the consequence of membrane destabilization whereby the longer polymer gives rise to more extensive membrane deformation than the shorter polymer.
Collapse
Affiliation(s)
- Pierre Karam
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Hill EH, Pappas HC, Whitten DG. Activating the antimicrobial activity of an anionic singlet-oxygen sensitizer through surfactant complexation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5052-5056. [PMID: 24786342 DOI: 10.1021/la501230m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cationic oligo-p-phenylene ethynylenes have shown much promise as broad-spectrum light-activated antimicrobial compounds against both Gram-positive and Gram-negative bacteria. The anionic varieties, however, have weak biocidal activity. In this study, a complex is formed between a weakly biocidal anionic oligomer and a cationic surfactant, and the effects on their biocidal activity against Gram-negative E. coli and Gram-positive S. aureus are explored. The enhancement in biocidal activity that is observed when the complex is irradiated suggests that interfacial surfactant gives the complex a net-positive charge, allowing it to associate strongly with the bacterial membrane. The results of this study demonstrate a method for the enhancement of biocidal activity of singlet-oxygen sensitizers and corroborate the use of surfactants as trans-membrane drug-delivery agents.
Collapse
Affiliation(s)
- Eric H Hill
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering and the Nanoscience and Microsystems Engineering Program, University of New Mexico , Albuquerque, New Mexico 87131-1341, United States
| | | | | |
Collapse
|