1
|
Chellali JE, Alverson AK, Robinson JR. Zinc Aryl/Alkyl β-diketiminates: Balancing Accessibility and Stability for High-Activity Ring-Opening Polymerization of rac-Lactide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jonathan E. Chellali
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Alexander K. Alverson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R. Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
2
|
Turner ZR, Wilmore JT, Rees NH, Buffet JC. Sterically rigid bismuth pincer complexes; observation of the growing polymer chain in polar monomer polymerisation. Dalton Trans 2022; 51:3060-3074. [PMID: 35089302 DOI: 10.1039/d1dt04297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of pyridine dipyrrolide bismuth complexes (Mes,PhL)MX (1-6) (M = Bi, X = O-2,6-Me-C6H3 = OXyl (1); M = Sb, X = OXyl (2); M = Bi, X = O-2,6-iPr-C6H3 = ODipp (3), O-2,6-tBu-C6H3 = OArtBu (4), OtBu (5) and OCMe2Et = OAm (6), N(SiMe3)2 = N'' (7) and CH2Ph (8)) have been prepared and investigated as initiators for the ring-opening polymerisation of lactide monomers. Bismuth lactate complexes (Mes,PhL)Bi{OC(H)(Me)C(O)OR} were prepared as models for the propagating species (R = tBu (9), Me (10), iPr (11)). The first insertion of the lactide monomer is rate limiting and the second and subsequent insertions are more rapid (kinit ≪ kLA2 < kprop), leading to a significant induction period. The sterically demanding, rigid pincer ligand affords a well-defined coordination environment at the metal centre and allows for the enchainment of two lactide monomers to be differentiated spectroscopically ((Mes,PhL)Bi{OC(H)(Me)C(O)}4OX (12-X)), with this species also implied to be the true initiator for the regime of propagation with first order kinetics. Well-controlled first order kinetic data for the polymerisation of L-, D-, rac- and meso-lactide are observed.
Collapse
Affiliation(s)
- Zoë R Turner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | - Jamie T Wilmore
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | - Nicholas H Rees
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | - Jean-Charles Buffet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
3
|
Jia Z, Li Y, Wu J. Sequence‐Controlled Alternating Copolyesters Synthesis via Selective Ring‐Opening Polymerization. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhaowei Jia
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering. Lanzhou University No. 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Yuju Li
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering. Lanzhou University No. 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering. Lanzhou University No. 222 Tianshui South Road Lanzhou 730000 P. R. China
| |
Collapse
|
4
|
Diaz C, Mehrkhodavandi P. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polym Chem 2021. [DOI: 10.1039/d0py01534b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxygenated block copolymers with biodegradable polyester segments can be prepared in one-pot through sequential or simultaneous addition of monomers. This review highlights the state of the art in this area.
Collapse
Affiliation(s)
- Carlos Diaz
- University of British Columbia
- Department of Chemistry
- Vancouver
- Canada
| | | |
Collapse
|
5
|
Deng S, Diaconescu PL. A switchable dimeric yttrium complex and its three catalytic states in ring opening polymerization. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01479f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A dimeric yttrium phenoxide complex can be oxidized in a stepwise fashion to access three oxidation states. The three states show different activity in the ring opening polymerization of cyclic esters and epoxides.
Collapse
Affiliation(s)
- Shijie Deng
- University of California
- Los Angeles
- Department of Chemistry and Biochemistry
- Los Angeles
- USA
| | - Paula L. Diaconescu
- University of California
- Los Angeles
- Department of Chemistry and Biochemistry
- Los Angeles
- USA
| |
Collapse
|
6
|
Limburg B, Cristòfol À, Della Monica F, Kleij AW. Unlocking the Potential of Substrate-Directed CO 2 Activation and Conversion: Pushing the Boundaries of Catalytic Cyclic Carbonate and Carbamate Formation. CHEMSUSCHEM 2020; 13:6056-6065. [PMID: 33022846 DOI: 10.1002/cssc.202002246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The unparalleled potential of substrate-induced reactivity modes in the catalytic conversion of carbon dioxide and alcohol or amine functionalized epoxides is discussed in relation to more conventional epoxide/CO2 coupling strategies. This conceptually new approach allows for a substantial extension of the substitution degree and functionality of cyclic carbonate/carbamate products, which are predominant products in the area of nonreductive CO2 transformations. Apart from the creation of an advanced library of CO2 -based heterocyclic products and intermediates, also the underlying mechanistic reasons for this novel reactivity profile are debated with a prominent role for the design and structure of the involved catalysts.
Collapse
Affiliation(s)
- Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Francesco Della Monica
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
7
|
Ahlinder A, Charlon S, Fuoco T, Soulestin J, Finne-Wistrand A. Minimise thermo-mechanical batch variations when processing medical grade lactide based copolymers in additive manufacturing. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Fuoco T, Almas RA, Finne‐Wistrand A. Multipurpose Degradable Physical Adhesive Based on Poly(
d,l
‐lactide‐
co
‐trimethylene Carbonate). MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58 Stockholm SE 100‐44 Sweden
| | - Ria Afifah Almas
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58 Stockholm SE 100‐44 Sweden
| | - Anna Finne‐Wistrand
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Teknikringen 56‐58 Stockholm SE 100‐44 Sweden
| |
Collapse
|
9
|
Fuoco T, Mathisen T, Finne-Wistrand A. Poly(l-lactide) and Poly(l-lactide- co-trimethylene carbonate) Melt-Spun Fibers: Structure-Processing-Properties Relationship. Biomacromolecules 2019; 20:1346-1361. [PMID: 30665299 DOI: 10.1021/acs.biomac.8b01739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Lactide/trimethylene carbonate copolymers have been produced as multifilament fibers by high-speed melt-spinning. The relationship existing between the composition, processing parameters and physical properties of the fibers has been disclosed by analyzing how the industrial process induced changes at the macromolecular level, i.e., the chain microstructure and crystallinity development. A poly(l-lactide) and three copolymers having trimethylene carbonate contents of 5, 10 and 18 mol % were synthesized with high molecular weight ( Mn) up to 377 kDa and narrow dispersity. Their microstructure, crystallinity and thermal properties were dictated by the composition. The spinnability was then assessed for all the as-polymerized materials: four melt-spun multifilament fibers with increasing linear density were collected for each (co)polymer at a fixed take-up speed of 1800 m min-1 varying the mass throughput during the extrusion. A linear correlation resulted between the as-spun fiber properties and the linear density. The as-spun fibers could be further oriented, developing more crystallinity and improving their tensile properties by a second stage of hot-drawing. This ability was dependent on the composition and crystallinity achieved during the melt-spinning and the parameters selected for the hot-drawing, such as temperature, draw ratio and input speed. The crystalline structure evolved to a more stable form, and the degree of crystallinity increased from 0-52% to 25-66%. Values of tensile strength and Young's modulus up to 0.32-0.61 GPa and 4.9-8.4 GPa were respectively achieved.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | | | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| |
Collapse
|
10
|
Hua X, Liu X, Cui D. Sequence controlled copolymerization of lactide and a functional cyclic carbonate using stereoselective aluminum catalysts. Polym Chem 2019. [DOI: 10.1039/c9py00424f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stereoselective aluminum complexes were applied for the ROP of LA and MAC producing functional copolyesters with quasi-diblock, tapered, gradient and random sequence distributions.
Collapse
Affiliation(s)
- Xiufang Hua
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xinli Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
11
|
Wei J, Meng H, Guo B, Zhong Z, Meng F. Organocatalytic Ring-Opening Copolymerization of Trimethylene Carbonate and Dithiolane Trimethylene Carbonate: Impact of Organocatalysts on Copolymerization Kinetics and Copolymer Microstructures. Biomacromolecules 2018; 19:2294-2301. [DOI: 10.1021/acs.biomac.8b00415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jingjing Wei
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Hao Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Beibei Guo
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
12
|
Chen X, Wu X, Fan Z, Zhao Q, Liu Q. Biodegradable poly(trimethylene carbonate-b
-(L
-lactide-ran
-glycolide)) terpolymers with tailored molecular structure and advanced performance. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoyu Chen
- Department of Materials Science; Fudan University; Shanghai 200433 China
| | - Xiaomeng Wu
- Department of Materials Science; Fudan University; Shanghai 200433 China
| | - Zhongyong Fan
- Department of Materials Science; Fudan University; Shanghai 200433 China
| | - Qinghua Zhao
- Beijing Advanced Medical Technologies, Ltd. Inc.; Beijing 100085 China
| | - Qing Liu
- The Institute for Biomedical Engineering & Nano Science; School of Medicine Tongji University; Shanghai 200092 China
- The Institute for Translational Nanomedicine, Shanghai East Hospital; Shanghai 200092 China
- Beijing Advanced Medical Technologies, Ltd. Inc.; Beijing 100085 China
| |
Collapse
|
13
|
Liu X, Hua X, Cui D. Copolymerization of Lactide and Cyclic Carbonate via Highly Stereoselective Catalysts To Modulate Copolymer Sequences. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinli Liu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiufang Hua
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of
Chinese Academy of Sciences, Changchun Branch, Changchun 130022, China
| | - Dongmei Cui
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
14
|
Effect of the Configuration of a Bulky Aluminum Initiator on the Structure of Copolymers of l,l-Lactide with Symmetric Comonomer Trimethylene Carbonate. Polymers (Basel) 2018; 10:polym10010070. [PMID: 30966105 PMCID: PMC6414924 DOI: 10.3390/polym10010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/25/2022] Open
Abstract
The effect of configuration of an asymmetric bulky initiator 2,2′-[1,1′-binaphtyl-2,2′-diyl- bis-(nitrylomethilidyne)]diphenoxy aluminum isopropoxide (Ini) on structure of copolymer of asymmetric monomer l,l-lactide (Lac) with symmetric comonomer trimethylene carbonate (Tmc) was studied using polarimetry, dilatometry, Size Exclusion Chromatography (SEC), and Carbon Nuclear Magnetic Resonance (13C NMR). When the S-enantiomer of Ini was used the distribution in copolymer chains at the beginning of polymerization is statistical, with alternacy tendency, changing next through a gradient region to homoblocks of Tmc. However, when R-Ini was used, the product formed was a gradient oligoblock one, with Tmc blocks prevailing at the beginning, changing to Lac blocks dominating at the end part of chains. Initiation of copolymerization with the mixture of both initiator enantiomers (S:R = 6:94) gave a multiblock copolymer of similar features but shorter blocks. Analysis of copolymerization progress required complex analysis of dilatometric data, assuming different molar volume contraction coefficients for units located in different triads. Comonomer reactivity ratios of studied copolymerizations were determined.
Collapse
|
15
|
Abubekerov M, Wei J, Swartz KR, Xie Z, Pei Q, Diaconescu PL. Preparation of multiblock copolymers via step-wise addition of l-lactide and trimethylene carbonate. Chem Sci 2018; 9:2168-2178. [PMID: 29719690 PMCID: PMC5903370 DOI: 10.1039/c7sc04507g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023] Open
Abstract
The synthesis of up to pentablock copolymers from various combinations of l-lactide and trimethylene carbonate was accomplished using a dinuclear zinc complex, and the physical, thermal, and mechanical properties of the resulting copolymers evaluated.
Poly(l-lactide) (PLA) is a bioderived and biodegradable polymer that has limited applications due to its hard and brittle nature. Incorporation of 1,3-trimethylene carbonate into PLA, in a block copolymer fashion, improves the mechanical properties, while retaining the biodegradability of the polymer, and broadens its range of applications. However, the preparation of 1,3-trimethylene carbonate (TMC)/l-lactide (LA) copolymers beyond diblock and triblock structures has not been reported, with explanations focusing mostly on thermodynamic reasons that impede the copolymerization of TMC after lactide. We discuss the preparation of multiblock copolymers via the ring opening polymerization (ROP) of LA and TMC, in a step-wise addition, by a ferrocene-chelating heteroscorpionate zinc complex, {[fc(PPh2)(BH[(3,5-Me)2pz]2)]Zn(μ-OCH2Ph)}2 ([(fcP,B)Zn(μ-OCH2Ph)]2, fc = 1,1′-ferrocenediyl, pz = pyrazole). The synthesis of up to pentablock copolymers, from various combinations of LA and TMC, was accomplished and the physical, thermal, and mechanical properties of the resulting copolymers evaluated.
Collapse
Affiliation(s)
- Mark Abubekerov
- Department of Chemistry and Biochemistry , University of California , Los Angeles , CA 90095 , USA .
| | - Junnian Wei
- Department of Chemistry and Biochemistry , University of California , Los Angeles , CA 90095 , USA .
| | - Kevin R Swartz
- Department of Chemistry and Biochemistry , University of California , Los Angeles , CA 90095 , USA .
| | - Zhixin Xie
- Department of Materials Science and Engineering , University of California , Los Angeles , CA 90095 , USA
| | - Qibing Pei
- Department of Materials Science and Engineering , University of California , Los Angeles , CA 90095 , USA
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry , University of California , Los Angeles , CA 90095 , USA .
| |
Collapse
|
16
|
Nysenko ZN, Said-Galiev EE, Ilyin MM, Rusak VV, Glazkov AA, Sakharov AM. Anionic coordination copolymerization of propylene oxide, carbon dioxide, and l-lactide. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1247-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ottou WN, Sardon H, Mecerreyes D, Vignolle J, Taton D. Update and challenges in organo-mediated polymerization reactions. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.12.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Socka M, Duda A, Adamus A, Wach RA, Ulanski P. Lactide/trimethylene carbonate triblock copolymers: Controlled sequential polymerization and properties. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Pepels MPF, Hermsen I, Noordzij GJ, Duchateau R. Molecular Structure–Catalytic Activity Relationship in the Ring-Opening Polymerization of (Macro)lactones. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mark P. F. Pepels
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Inge Hermsen
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Geert J. Noordzij
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rob Duchateau
- Laboratory
of Polymer Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- SABIC Europe B.V., Urmonderbaan
22, 6160 AH Geleen, The Netherlands
| |
Collapse
|
20
|
Barouti G, Khalil A, Orione C, Jarnouen K, Cammas-Marion S, Loyer P, Guillaume SM. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles. Chemistry 2016; 22:2819-30. [PMID: 26791328 DOI: 10.1002/chem.201504824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/18/2022]
Abstract
Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.
Collapse
Affiliation(s)
- Ghislaine Barouti
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Ali Khalil
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Clement Orione
- Centre Régional de Mesures Physiques de l'Ouest, Université de Rennes 1, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Kathleen Jarnouen
- INSERM, UMR991, Liver, Metabolisms and Cancer, CHU Pontchaillou, 35033 Rennes Cedex -, Université de Rennes 1, 35043, Rennes Cedex, France
| | - Sandrine Cammas-Marion
- Ecole Nationale Supérieure de Chimie de Rennes, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 11 Allée de Beaulieu CS 50837, 35708, Rennes Cedex, France
| | - Pascal Loyer
- INSERM, UMR991, Liver, Metabolisms and Cancer, CHU Pontchaillou, 35033 Rennes Cedex -, Université de Rennes 1, 35043, Rennes Cedex, France
| | - Sophie M Guillaume
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| |
Collapse
|
21
|
Chesterman JP, Amsden BG. Triethylamine-based catalysts for the melt polymerization of carbonate monomers. Polym Chem 2016. [DOI: 10.1039/c6py01248e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Triethylamine hydrochloride and triethylamine catalyze the melt polymerization of carbonate monomers faster than stannous octoate.
Collapse
Affiliation(s)
- J. P. Chesterman
- Department of Chemical Engineering
- Queen's University
- Kingston ON K7L 3N6
- Canada
| | - B. G. Amsden
- Department of Chemical Engineering
- Queen's University
- Kingston ON K7L 3N6
- Canada
| |
Collapse
|
22
|
Zhi X, Liu J, Li Z, Wang H, Wang X, Cui S, Chen C, Zhao C, Li X, Guo K. Ionic hydrogen bond donor organocatalyst for fast living ring-opening polymerization. Polym Chem 2016. [DOI: 10.1039/c5py01315a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A positive charge enhanced H-bond donor combined with H-bond acceptor as a bifunctional organocatalyst enables fast living ring-opening polymerization of lactide.
Collapse
|
23
|
Wang X, Liu J, Xu S, Xu J, Pan X, Liu J, Cui S, Li Z, Guo K. Traceless switch organocatalysis enables multiblock ring-opening copolymerizations of lactones, carbonates, and lactides: by a one plus one approach in one pot. Polym Chem 2016. [DOI: 10.1039/c6py01107a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A switch of organocatalysis from cationic to base/conjugate-acid bifunctional mechanisms made ring-opening copolymerizations of lactones/carbonates to lactides success.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jiaqi Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Songquan Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jiaxi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xianfu Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jingjing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Saide Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
24
|
Leng X, Wei Z, Ren Y, Bian Y, Wang Q, Li Y. Copolymerization of l-lactide/trimethylene carbonate by organocatalysis: controlled synthesis of comb-like graft copolymers with side chains with different topologies. RSC Adv 2016. [DOI: 10.1039/c6ra05481a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synthesis of comb-like graft copolymers of lcP(LLA-co-TMC) from an organocatalyst/PB–OH system: including lcP(TMC-b-LLA), lcP(LLA-grad-TMC) and lcP(LLA-ran-TMC).
Collapse
Affiliation(s)
- Xuefei Leng
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yingying Ren
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yufei Bian
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Qinyi Wang
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
25
|
Diallo AK, Guerin W, Slawinski M, Brusson JM, Carpentier JF, Guillaume SM. Block and Random Copolymers of 1,2-Cyclohexyl Cyclocarbonate and l-Lactide or Trimethylene Carbonate Synthesized by Ring-Opening Polymerization. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00548] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Abdou Khadri Diallo
- Institut des Sciences Chimiques de Rennes, Organometallics, Materials and Catalysis Laboratories, UMR 6226 CNRS-Université
de Rennes 1, Campus de Beaulieu, F-35042 Rennes, Cedex, France
| | - William Guerin
- Institut des Sciences Chimiques de Rennes, Organometallics, Materials and Catalysis Laboratories, UMR 6226 CNRS-Université
de Rennes 1, Campus de Beaulieu, F-35042 Rennes, Cedex, France
| | - Martine Slawinski
- Total Raffinage
Chimie Feluy, Zone Industrielle Feluy
C, B-7181 Seneffe, Belgium
| | - Jean-Michel Brusson
- Total S.A., Corporate Science, Tour
Michelet A, 24 Cours Michelet
- La Défense 10, 92069 Paris La Défense, Cedex, France
| | - Jean-François Carpentier
- Institut des Sciences Chimiques de Rennes, Organometallics, Materials and Catalysis Laboratories, UMR 6226 CNRS-Université
de Rennes 1, Campus de Beaulieu, F-35042 Rennes, Cedex, France
| | - Sophie M. Guillaume
- Institut des Sciences Chimiques de Rennes, Organometallics, Materials and Catalysis Laboratories, UMR 6226 CNRS-Université
de Rennes 1, Campus de Beaulieu, F-35042 Rennes, Cedex, France
| |
Collapse
|
26
|
Olsén P, Odelius K, Keul H, Albertsson AC. Macromolecular Design via an Organocatalytic, Monomer-Specific and Temperature-Dependent "On/Off Switch". High Precision Synthesis of Polyester/Polycarbonate Multiblock Copolymers. Macromolecules 2015; 48:1703-1710. [PMID: 26294800 PMCID: PMC4535708 DOI: 10.1021/acs.macromol.5b00254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/27/2015] [Indexed: 12/23/2022]
Abstract
The employment of a monomer-specific "on/off switch" was used to synthesize a nine-block copolymer with a predetermined molecular weight and narrow distribution (Đ = 1.26) in only 2.5 h. The monomers consisted of a six-membered cyclic carbonate (i.e., 2-allyloxymethyl-2-ethyl-trimethylene carbonate (AOMEC)) and ε-caprolactone (εCL), which were catalyzed by 1,5,7-triazabicyclo[4.4.0]-dec-5-ene (TBD). The dependence of polymerization rate with temperature was different for the two monomers. Under similar reaction conditions, the ratio of the apparent rate constant of AOMEC and εCL [kpapp(AOMEC)/kpapp(εCL)] changes from 400 at T = -40 °C to 50 at T = 30 °C and 10 at T = 100 °C. Therefore, by decreasing the copolymerization temperature from 30 °C to -40 °C, the conversion of εCL can be switched "off", and by increasing the temperature to 30 °C, the conversion of εCL can be switched "on" again. The addition of AOMEC at T = -40 °C results in the formation of a pure carbonate block. The cyclic addition of AOMEC to a solution of εCL along with a simultaneous temperature change leads to the formation of multiblock copolymers. This result provides a new straightforward synthetic route to degradable multiblock copolymers, yielding new interesting materials with endless structural possibilities.
Collapse
Affiliation(s)
- Peter Olsén
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Karin Odelius
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Helmut Keul
- DWI
− Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany
| | - Ann-Christine Albertsson
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, SE-100 44, Stockholm, Sweden
| |
Collapse
|
27
|
Guerin W, Helou M, Slawinski M, Brusson JM, Carpentier JF, Guillaume SM. Ethylene carbonate/cyclic ester random copolymers synthesized by ring-opening polymerization. Polym Chem 2015. [DOI: 10.1039/c4py01660b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The successful ring-opening copolymerization of ethylene carbonate (EC) with various cyclic esters such as β-butyrolactone (BL), δ-valerolactone (VL), ε-caprolactone (CL) orl-lactide (LLA) has been achieved.
Collapse
Affiliation(s)
- William Guerin
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- F-35042 Rennes Cedex
- France
| | - Marion Helou
- Total Raffinage Chimie Feluy
- Zone Industrielle Feluy C
- B-7181 Seneffe
- Belgium
| | - Martine Slawinski
- Total Raffinage Chimie Feluy
- Zone Industrielle Feluy C
- B-7181 Seneffe
- Belgium
| | | | - Jean-François Carpentier
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- F-35042 Rennes Cedex
- France
| | - Sophie M. Guillaume
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- F-35042 Rennes Cedex
- France
| |
Collapse
|
28
|
Synthesis and characterization of statistical copolymers of trimethylene carbonate and l-lactide using Mg(II)/Ti(IV) mixed alkoxides as initiator system. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Guerin W, Helou M, Slawinski M, Brusson JM, Carpentier JF, Guillaume SM. Macromolecular engineering via ring-opening polymerization (3): trimethylene carbonate block copolymers derived from glycerol. Polym Chem 2014. [DOI: 10.1039/c3py00955f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Jaffredo CG, Carpentier JF, Guillaume SM. Poly(hydroxyalkanoate) Block or Random Copolymers of β-Butyrolactone and Benzyl β-Malolactone: A Matter of Catalytic Tuning. Macromolecules 2013. [DOI: 10.1021/ma401332k] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Cédric G. Jaffredo
- Institut des Sciences Chimiques
de Rennes, Organometallics, Materials and Catalysis, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - Jean-François Carpentier
- Institut des Sciences Chimiques
de Rennes, Organometallics, Materials and Catalysis, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - Sophie M. Guillaume
- Institut des Sciences Chimiques
de Rennes, Organometallics, Materials and Catalysis, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
| |
Collapse
|
31
|
Wang L, Kefalidis CE, Sinbandhit S, Dorcet V, Carpentier JF, Maron L, Sarazin Y. Heteroleptic tin(II) initiators for the ring-opening (co)polymerization of lactide and trimethylene carbonate: mechanistic insights from experiments and computations. Chemistry 2013; 19:13463-78. [PMID: 23955851 DOI: 10.1002/chem.201301751] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Indexed: 11/10/2022]
Abstract
The tin(II) complexes {LO(x)}Sn(X) ({LO(x)}(-) =aminophenolate ancillary) containing amido (1-4), chloro (5), or lactyl (6) coligands (X) promote the ring-opening polymerization (ROP) of cyclic esters. Complex 6, which models the first insertion of L-lactide, initiates the living ROP of L-LA on its own, but the amido derivatives 1-4 require the addition of alcohol to do so. Upon addition of one to ten equivalents of iPrOH, precatalysts 1-4 promote the ROP of trimethylene carbonate (TMC); yet, hardly any activity is observed if tert-butyl (R)-lactate is used instead of iPrOH. Strong inhibition of the reactivity of TMC is also detected for the simultaneous copolymerization of L-LA and TMC, or for the block copolymerization of TMC after that of L-LA. Experimental and computational data for the {LO(x)}Sn(OR)complexes (OR=lactyl or lactidyl) replicating the active species during the tin(II)-mediated ROP of L-LA demonstrate that the formation of a five-membered chelate is largely favored over that of an eight-membered one, and that it constitutes the resting state of the catalyst during this (co)polymerization. Comprehensive DFT calculations show that, out of the four possible monomer insertion sequences during simultaneous copolymerization of L-LA and TMC: 1) TMC then TMC, 2) TMC then L-LA, 3) L-LA then L-LA, and 4) L-LA then TMC, the first three are possible. By contrast, insertion of L-LA followed by that of TMC (i.e., insertion sequence 4) is endothermic by +1.1 kcal mol(-1), which compares unfavorably with consecutive insertions of two L-LA units (i.e., insertion sequence 3) (-10.2 kcal mol(-1)). The copolymerization of L-LA and TMC thus proceeds under thermodynamic control.
Collapse
Affiliation(s)
- Lingfang Wang
- Organometallics: Materials and Catalysis, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France)
| | | | | | | | | | | | | |
Collapse
|