1
|
Uhlik F, Rud OV, Borisov OV, Zhulina EB. Hairy Gels: A Computational Study. Gels 2022; 8:793. [PMID: 36547317 PMCID: PMC9777993 DOI: 10.3390/gels8120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
We present results of MD and MC simulations of the equilibrium properties of swelling gels with comb-like or bottlebrush subchains and compare them to scaling-theory predictions. In accordance with theory, the simulation results demonstrate that swelling coefficient of the gel increases as a function of the polymerization degree of the main chains and exhibits a very weak maximum (or is virtually constant) as a function of the polymerization degree and grafting density of side chains. The bulk osmotic modulus passes through a shallow minimum as the polymerization degree of the side chains increases. This minimum is attributed to the onset of overlap of side chains belonging to different bottlebrush strands in the swollen gel.
Collapse
Affiliation(s)
- Filip Uhlik
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Oleg V. Rud
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, CEDEX 9, 64053 Pau, France
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| |
Collapse
|
2
|
Zhulina EB, Sheiko SS, Borisov OV. Theoretical advances in molecular bottlebrushes and comblike (co)polymers: solutions, gels, and self-assembly. SOFT MATTER 2022; 18:8714-8732. [PMID: 36373559 DOI: 10.1039/d2sm01141g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present an overview of state-of-the-art theory of (i) conformational properties of molecular bottlebrushes in solution, (ii) self-assembly of di- and triblock copolymers comprising comb-shaped and bottlebrush blocks in solutions and melts, and (iii) cross-linked and self-assembled gels with bottlebrush subchains. We demonstrate how theoretical models enable quantitative prediction and interpretation of experimental results and provide rational guidance for design of new materials with physical properties tunable by architecture of constituent bottlebrush blocks.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei S Sheiko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France.
| |
Collapse
|
3
|
Antignano I, D’Acunzo F, Arena D, Casciardi S, Del Giudice A, Gentile F, Pelosi M, Masci G, Gentili P. Influence of Nanoaggregation Routes on the Structure and Thermal Behavior of Multiple-Stimuli-Responsive Micelles from Block Copolymers of Oligo(ethylene glycol) Methacrylate and the Weak Acid [2-(Hydroxyimino)aldehyde]butyl Methacrylate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14371-14386. [PMID: 36346681 PMCID: PMC9686140 DOI: 10.1021/acs.langmuir.2c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, we compare nanoaggregation driven by pH-induced micellization (PIM) and by the standard solvent displacement (SD) method on a series of pH-, light-, and thermosensitive amphiphilic block copolymers. Specifically, we investigate poly(HIABMA)-b-poly(OEGMA) and poly(HIABMA)-b-poly(DEGMA-r-OEGMA), where HIABMA = [(hydroxyimino)aldehyde]butyl methacrylate, OEGMA = oligo(ethylene glycol)methyl ether methacrylate, and DEGMA = di(ethylene glycol)methyl ether methacrylate. The weakly acidic HIA group (pKa ≈ 8) imparts stability to micelles at neutral pH, unlike most of the pH-responsive copolymers investigated in the literature. With SD, only some of our copolymers yield polymeric micelles (34-59 nm), and their thermoresponsivity is either poor or altogether absent. In contrast, PIM affords thermoresponsive, smaller micelles (down to 24 nm), regardless of the polymer composition. In some cases, cloud points are remarkably well defined and exhibit limited hysteresis. By combining turbidimetric, dyamic light scattering, and small-angle X-ray scattering measurements, we show that SD yields loose micelles with POEGMA segments partly involved in the formation of the hydrophobic core, whereas PIM yields more compact core-shell micelles with a well-defined PHIABMA core. We conclude that pH-based nanoaggregation provides advantages over block-selective solvation to obtain compact micelles exhibiting well-defined responses to external stimuli.
Collapse
Affiliation(s)
- Irene Antignano
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Francesca D’Acunzo
- Institute
of Biological Systems (ISB), Italian National Research Council (CNR),
Sezione Meccanismi di Reazione, c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Roma, Italy
| | - Davide Arena
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Stefano Casciardi
- National
Institute for Insurance Against Accidents at Work (INAIL Research),
Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, 00078Monte Porzio Catone (Rome), Italy
| | | | - Francesca Gentile
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Maria Pelosi
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Giancarlo Masci
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Patrizia Gentili
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
- Institute
of Biological Systems (ISB), Italian National Research Council (CNR),
Sezione Meccanismi di Reazione, c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Roma, Italy
| |
Collapse
|
4
|
Quader S, Van Guyse JFR. Bioresponsive Polymers for Nanomedicine-Expectations and Reality! Polymers (Basel) 2022; 14:3659. [PMID: 36080733 PMCID: PMC9460233 DOI: 10.3390/polym14173659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/18/2022] Open
Abstract
Bioresponsive polymers in nanomedicine have been widely perceived to selectively activate the therapeutic function of nanomedicine at diseased or pathological sites, while sparing their healthy counterparts. This idea can be described as an advanced version of Paul Ehrlich's magic bullet concept. From that perspective, the inherent anomalies or malfunction of the pathological sites are generally targeted to allow the selective activation or sensory function of nanomedicine. Nonetheless, while the primary goals and expectations in developing bioresponsive polymers are to elicit exclusive selectivity of therapeutic action at diseased sites, this remains difficult to achieve in practice. Numerous research efforts have been undertaken, and are ongoing, to tackle this fine-tuning. This review provides a brief introduction to key stimuli with biological relevance commonly featured in the design of bioresponsive polymers, which serves as a platform for critical discussion, and identifies the gap between expectations and current reality.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Joachim F. R. Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
- Leiden Academic Center for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
5
|
Castellvi Corrons X, Gummel J, Smets J, Berti D. Liquid-liquid phase separated microdomains of an amphiphilic graft copolymer in a surfactant-rich medium. J Colloid Interface Sci 2022; 615:807-820. [PMID: 35180629 DOI: 10.1016/j.jcis.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
The liquid-liquid phase separation (LLPS) of amphiphilic thermoresponsive copolymers can lead to the formation of micron-sized domains, known as simple coacervates. Due to their potential to confine active principles, these copolymer-rich droplets have gained interest as encapsulating agents. Understanding and controlling the conditions inducing this LLPS is therefore essential for applicative purposes and requires thorough fundamental studies on self-coacervation. In this work, we investigate the LLPS of a comb-like graft copolymer (PEG-g-PVAc) consisting of a poly(ethylene glycol) backbone (6 kDa) with ∼2-3 grafted poly(vinyl acetate) chains, and a PEG/PVAc weight ratio of 40/60. Specifically, we report the effect of various water-soluble additives on its phase separation behavior. Kosmotropes and non-ionic surfactants were found to decrease the phase separation temperature of the copolymer, while chaotropes and, above all, ionic surfactants increased it. We then focus on the phase behavior of PEG-g-PVAc in the presence of sodium citrate and a C14-15 E7 non-ionic surfactant (N45-7), defining the compositional range for the generation of LLPS microdomains at room temperature and monitoring their formation with fluorescence confocal microscopy. Finally, we determine the composition of the microdomains through confocal Raman microscopy, demonstrating the presence of PEG-g-PVAc, N45-7, and water. These results expand our knowledge on polymeric self-coacervation, clarifying the optimal conditions and composition needed to obtain LLPS microdomains with encapsulation potential at room temperature in surfactant-rich formulations.
Collapse
Affiliation(s)
- Xavier Castellvi Corrons
- Department of Chemistry "Ugo Schiff" University of Florence, CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino Florence, Italy
| | - Jeremie Gummel
- Strategic Innovation and Technology, Procter & Gamble Brussels Innovation Center, Temselaan 100, 1853 Grimbergen, Belgium
| | - Johan Smets
- Strategic Innovation and Technology, Procter & Gamble Brussels Innovation Center, Temselaan 100, 1853 Grimbergen, Belgium
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" University of Florence, CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino Florence, Italy
| |
Collapse
|
6
|
Smart Magnetic Nanocarriers for Multi-Stimuli On-Demand Drug Delivery. NANOMATERIALS 2022; 12:nano12030303. [PMID: 35159647 PMCID: PMC8840331 DOI: 10.3390/nano12030303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
In this study, we report the realization of drug-loaded smart magnetic nanocarriers constituted by superparamagnetic iron oxide nanoparticles encapsulated in a dual pH- and temperature-responsive poly (N-vinylcaprolactam-co-acrylic acid) copolymer to achieve highly controlled drug release and localized magnetic hyperthermia. The magnetic core was constituted by flower-like magnetite nanoparticles with a size of 16.4 nm prepared by the polyol approach, with good saturation magnetization and a high specific absorption rate. The core was encapsulated in poly (N-vinylcaprolactam-co-acrylic acid) obtaining magnetic nanocarriers that revealed reversible hydration/dehydration transition at the acidic condition and/or at temperatures above physiological body temperature, which can be triggered by magnetic hyperthermia. The efficacy of the system was proved by loading doxorubicin with very high encapsulation efficiency (>96.0%) at neutral pH. The double pH- and temperature-responsive nature of the magnetic nanocarriers facilitated a burst, almost complete release of the drug at acidic pH under hyperthermia conditions, while a negligible amount of doxorubicin was released at physiological body temperature at neutral pH, confirming that in addition to pH variation, drug release can be improved by hyperthermia treatment. These results suggest this multi-stimuli-sensitive nanoplatform is a promising candidate for remote-controlled drug release in combination with magnetic hyperthermia for cancer treatment.
Collapse
|
7
|
Zhu X, Yu Z, Liu Y, Li X, Long R, Wang P, Wang J. NH2-MIL-125@PAA composite membrane for separation of oil/water emulsions and dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Siemiaszko G, Niemirowicz-Laskowska K, Markiewicz KH, Misztalewska-Turkowicz I, Dudź E, Milewska S, Misiak P, Kurowska I, Sadowska A, Car H, Wilczewska AZ. Synergistic effect of folate-conjugated polymers and 5-fluorouracil in the treatment of colon cancer. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00104-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
In recent years, targeted drug delivery strategies have received special attention from the scientific world due to advantages such as more effective therapy and reduction of side effects. The principle of operation is delayed excretion from the bloodstream of the drug delivery system compared to the drug itself, as well as facilitated penetration into diseased cells thanks to the use of ligands recognized by appropriate receptors. Particularly interesting drug carriers are amphiphilic copolymers that form nano-sized micelles with a drug, which can release the drug at a specific place in the body under the influence of appropriate stimuli.
Results
We describe the synthesis of the diblock polymer, poly(2-hydroxyethyl acrylate)-b-poly(N-vinylcaprolactam) using RAFT/MADIX (Reversible Addition-Fragmentation chain Transfer/MAcromolecular Design by Interchange of Xanthate) controlled polymerization affording polymers with good dispersity according to SEC (Size-Exclusion Chromatography). Some post-modifications of the polymer with folic acid were then performed as evidenced by NMR (Nuclear Magnetic Resonance), UV–Vis (UltraViolet–Visible) and FT-IR (Fourier-Transform Infrared) spectroscopy, and TGA (ThermoGravimetric Analysis). The formation of stable micellar systems from polymers with and without the drug, 5-fluorouracil, was confirmed by DLS (Dynamic Light Scattering) and zeta potential measurements, and TEM (Transmission Eelectron Microscopy) imaging. Finally, the cloud point of the polymers was investigated, which turned out to be close to the temperature of the human body. Most importantly, these micellar systems have been explored as a drug delivery system against colon cancer, showing increased cytotoxicity compared to the drug alone. This effect was achieved due to the easier cellular uptake by the interaction of folic acid and its receptors on the surface of cancer cells.
Conclusions
The presented results constitute a solid foundation for the implementation of a nano-sized drug delivery system containing folic acid for practical use in the treatment of drug-resistant cancer, as well as more effective therapy with fewer side effects.
Graphical Abstract
Collapse
|
9
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Thermoresponsive Chitosan-Grafted-Poly( N-vinylcaprolactam) Microgels via Ionotropic Gelation for Oncological Applications. Pharmaceutics 2021; 13:1654. [PMID: 34683947 PMCID: PMC8539247 DOI: 10.3390/pharmaceutics13101654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022] Open
Abstract
Microgels can be considered soft, porous and deformable particles with an internal gel structure swollen by a solvent and an average size between 100 and 1000 nm. Due to their biocompatibility, colloidal stability, their unique dynamicity and the permeability of their architecture, they are emerging as important candidates for drug delivery systems, sensing and biocatalysis. In clinical applications, the research on responsive microgels is aimed at the development of "smart" delivery systems that undergo a critical change in conformation and size in reaction to a change in environmental conditions (temperature, magnetic fields, pH, concentration gradient). Recent achievements in biodegradable polymer fabrication have resulted in new appealing strategies, including the combination of synthetic and natural-origin polymers with inorganic nanoparticles, as well as the possibility of controlling drug release remotely. In this review, we provide a literature review on the use of dual and multi-responsive chitosan-grafted-poly-(N-vinylcaprolactam) (CP) microgels in drug delivery and oncological applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
10
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
11
|
|
12
|
Zaborniak I, Macior A, Chmielarz P. Smart, Naturally-Derived Macromolecules for Controlled Drug Release. Molecules 2021; 26:molecules26071918. [PMID: 33805508 PMCID: PMC8037046 DOI: 10.3390/molecules26071918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/05/2022] Open
Abstract
A series of troxerutin-based macromolecules with ten poly(acrylic acid) (PAA) or poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) homopolymer side chains were synthesized by a supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) approach. The prepared precisely-defined structures with low dispersity (Mw/Mn < 1.09 for PAA-based, and Mw/Mn < 1.71 for PDMAEMA-based macromolecules) exhibited pH-responsive behavior depending on the length of the polymer grafts. The properties of the received polyelectrolytes were investigated by dynamic light scattering (DLS) measurement to determine the hydrodynamic diameter and zeta potential upon pH changes. Additionally, PDMAEMA-based polymers showed thermoresponsive properties and exhibited phase transfer at a lower critical solution temperature (LCST). Thanks to polyelectrolyte characteristics, the prepared polymers were investigated as smart materials for controlled release of quercetin. The influence of the length of the polymer grafts for the quercetin release profile was examined by UV–VIS spectroscopy. The results suggest the strong correlation between the length of the polymer chains and the efficiency of active substance release, thus, the adjustment of the composition of the macromolecules characterized by branched architecture can precisely control the properties of smart delivery systems.
Collapse
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Angelika Macior
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
- Correspondence: ; Tel.: +48-17-865-1809
| |
Collapse
|
13
|
Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH
‐sensitive polymers: Classification and some fine potential applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5230] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabrice Ofridam
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Émilie Gagnière
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Denis Mangin
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| |
Collapse
|
14
|
Chen Y, Chen N, Feng X. The role of internal and external stimuli in the rational design of skin-specific drug delivery systems. Int J Pharm 2021; 592:120081. [PMID: 33189810 DOI: 10.1016/j.ijpharm.2020.120081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/15/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
The concept of skin-specific drug delivery with a spatio-temporal control has just recently received concerns in dermatology. Inspired by the progress in smart materials and their perspective application in medicine science, development of stimuli responsive drug delivery systems with skin-specificity has become possible, which has led to a new era in the localized treatment of skin diseases. This review highlights both the internal and external stimuli that have been employed in this field, with a focus on their implication on the rational design of pharmaceutical formulations, especially those nanoscale drug carriers that are able to provide release of payloads with a precise spatio-temporal control in response to specific stimuli. Also, the strategy of dual stimuli responsive drug delivery systems will be discussed for further improvement of the efficacy of skin drug delivery. The prominent examples of the established approaches are described as comprehensive and current as possible. The review is expected to provide some inspiration for utilizing different stimuli for realizing the site-specific and on-demand drug delivery to the skin.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang 110034, China
| |
Collapse
|
15
|
Jiang T, Aseyev V, Niskanen J, Hietala S, Zhang Q, Tenhu H. Polyzwitterions with LCST Side Chains: Tunable Self-Assembly. Macromolecules 2020; 53:8267-8275. [PMID: 33122865 PMCID: PMC7586405 DOI: 10.1021/acs.macromol.0c01708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/05/2020] [Indexed: 12/20/2022]
Abstract
![]()
Manipulation
of self-assembly behavior of copolymers via environmental
change is attractive in the fabrication of smart polymeric materials.
We present tunable self-assembly behavior of graft copolymers, poly(sulfobetaine
methacrylate)-graft-poly[oligo(ethylene glycol) methyl
ether methacrylate)-co-di(ethylene glycol) methyl
ether methacrylate] (PSBM-g-P(OEGMA-co-DEGMA)). Upon heating the aqueous solutions, the graft copolymers
undergo a transition from micelles with PSBM cores to unimers (i.e.,
individual macromolecules) and then to reversed micelles with P(OEGMA-co-DEGMA) cores, thus demonstrating the tunability of the
self-assembling through temperature change. In the presence of salt
the temperature response of PSBM is eliminated, and the structure
of the micelles with the P(OEGMA-co-DEGMA) core changes.
Moreover, for the graft copolymer with long side chains, micelles
with aggregation number ∼ 2 were formed with
a PSBM core at low temperature, which is ascribed to the steric effect
of the P(OEGMA-co-DEGMA) shell.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Vladimir Aseyev
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Jukka Niskanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.,Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Qilu Zhang
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Zhang R, Cao J, Liu YN, Guan J, He M, Jiang Z. Metal–Organic Framework-Intercalated Graphene Oxide Membranes for Highly Efficient Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02721] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Jialin Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Ya-nan Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jingyuan Guan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Mingrui He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
17
|
pH tempted Micellization of β-Cyclodextrin based Diblock copolymer and its application in solid/liquid separation. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02095-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
pH/redox/UV irradiation multi-stimuli responsive nanogels from star copolymer micelles and Fe3+ complexation for “on-demand” anticancer drug delivery. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Ivanova AS, Mikhailov IV, Polotsky AA, Darinskii AA, Birshtein TM, Borisov OV. Cascades of unfolding transitions in amphiphilic molecular brushes. J Chem Phys 2020; 152:081101. [DOI: 10.1063/1.5144295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anna S. Ivanova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Ivan V. Mikhailov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Alexey A. Polotsky
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Anatoly A. Darinskii
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Tatiana M. Birshtein
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| |
Collapse
|
20
|
Micellization of novel biocompatible thermo-sensitive graft copolymers based on poly(ε-caprolactone), poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone). Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Tan KH, Demco DE, Fechete R, Pich A. Functional selenium modified microgels: temperature-induced phase transitions and network morphology. SOFT MATTER 2019; 15:3227-3240. [PMID: 30916678 DOI: 10.1039/c8sm02646g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microgels that host selenium and mimic the structure of the enzyme glutathione peroxidase are of great interest for biotechnological and catalytic applications. For this purpose selenium-functionalized thermoresponsive poly(N-vinylcaprolactam) (PVCL) microgels with cleavable diselenide crosslinks have been investigated. Thermodynamic and morphological parameters characterizing the temperature-induced phase transitions of dual crosslinked PVCL microgels were obtained using dynamic light scattering (DLS), 1H high-resolution magic-angle sample-spinning (MAS) NMR spectroscopy, and transverse magnetization (T2) NMR relaxometry. Quantities obtained from Flory-Rehner theory, a two-state model and Boltzmann sigmoidal function were used to relate the phase transitions of the dual crosslinked microgels to the transition temperature, entropy, temperature width of the phase transition, Flory interaction parameters, average number of strands, polymer volume fraction of the collapsed microgels, core-corona fractions and chain dynamics. The morphology of the selenium modified microgels after the oxidation and reduction processes was investigated by 1H T2 NMR and further correlated with the crosslink density.
Collapse
Affiliation(s)
- Kok H Tan
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH-Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | | | | | | |
Collapse
|
22
|
|
23
|
Abouelmagd SA, Ellah NHA, Hamid BNAE. Temperature and pH dual-stimuli responsive polymeric carriers for drug delivery. STIMULI RESPONSIVE POLYMERIC NANOCARRIERS FOR DRUG DELIVERY APPLICATIONS 2019:87-109. [DOI: 10.1016/b978-0-08-101995-5.00003-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
24
|
Xue R, Zhang X, Tian J. Synthesis of Water-Soluble Spiropyran-Modified Poly(acrylic acid) Micelles and Their Optical Behaviors. J PHOTOPOLYM SCI TEC 2018. [DOI: 10.2494/photopolymer.31.739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rui Xue
- School of Materials Science and Engineering, Ocean University of China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Ocean University of China
| | - Jintao Tian
- School of Materials Science and Engineering, Ocean University of China
| |
Collapse
|
25
|
|
26
|
Abstract
Polymer brushes are special macromolecular structures with polymer chains densely tethered to another polymer chain (one-dimensional, 1D) or the surface of a planar (two-dimensional, 2D), spherical or cylindrical (three-dimensional, 3D) solid via a stable covalent or noncovalent bond linkage. In comparison with the corresponding linear counterpart with similar molecular composition, one-dimension polymer brushes have some fascinating properties including wormlike conformation, compact molecular dimension, and notable chain end effects due to their compact and confined densely grafted structure. The introduction of polymer chains onto the surface of planar and spherical or cylindrical matrix will not only significantly change the surface-related properties of the matrix but also endows the obtained hybrid polymer brushes with new functionalities. Thus, polymer brushes are of great interest in the fields of polymer and material science due to their broad applications, such as catalysis, nanolithography, biomineralization, drug delivery, medical diagnosis, optoelectronics, and so on. Although a variety of 1D, 2D, and 3D polymer brushes have been prepared with the advent of living/controlled polymerization, the development of more efficient and facile synthetic protocols that permit access to polymer brushes with precisely controlled composition, structure, and functionality still represents a key contemporary challenge. In this Account, we summarize our recent efforts on the development of efficient methods to prepare 1D, 2D, and 3D polymer brushes and exploration of their potential applications in drug delivery, antifouling coating, catalysis, and lithium-ion batteries and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of efficient synthesis of polymer brushes with different structures and functionalities by the combination of monomer design with living/controlled polymerization. Given the excellent tolerance and use of the same catalytic system without any mutual interference of ATRP and Cu-catalyzed alkyne-azide cyclization (CuAAC) click reaction, a versatile and efficient platform for precise synthesis of complex asymmetric (Janus-type) 1D polymer brushes was developed on the basis of the "trifunctional monomer" strategy without polymeric functionality transformation. Subsequently, a noncovalent strategy based on crystallization-driven self assembly to prepare well-defined polymer brushes with precise control over their composition and dimensions is described. Notably, the crystallization-driven self assembly can be treated as a living/controlled polymerization of "polymeric monomer" with a special building segment for crystallization, which allows for preparing linear polymer brushes with length as high as tens of micrometers. Moreover, the properties and related applications of polymer brushes as interesting building blocks for constructing hierarchical nanostructures, efficient drug deliver carriers, antifouling films, and lithium-ion batteries are addressed by some typical examples. These advancements in this field will provide a new avenue for obtaining fascinating polymer-brush-based functional materials.
Collapse
Affiliation(s)
- Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
27
|
Aluri R, Saxena S, Joshi DC, Jayakannan M. Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on l-Tyrosine for Intracellular Drug Delivery to Cancer Cells. Biomacromolecules 2018; 19:2166-2181. [DOI: 10.1021/acs.biomac.8b00334] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rajendra Aluri
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Sonashree Saxena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
28
|
Sun W, An Z, Wu P. Hydrogen bonding reinforcement as a strategy to improve upper critical solution temperature of poly(N-acryloylglycinamide-co-methacrylic acid). Polym Chem 2018. [DOI: 10.1039/c8py00733k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HB-type copolymers with suitably tunable UCST and corresponding core–shell nanogels showing UCST–LCST type behavior.
Collapse
Affiliation(s)
- Wenhui Sun
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
- China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology
- College of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
29
|
Kizhnyaev VN, Pokatilov FA, Vil’yanen DV, Gross VI, Edel’shtein OA. Network Paired Polymers Based on Poly(acrylic acid). POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Lei L, Ma H, Qin Y, Yang M, Ma Y, Wang T, Yang Y, Lei Z, Lu D, Guan X. AIE-active florescent polymers: The design, synthesis and the cell imaging application. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Jazani AM, Oh JK. Dual Location, Dual Acidic pH/Reduction-Responsive Degradable Block Copolymer: Synthesis and Investigation of Ketal Linkage Instability under ATRP Conditions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and
Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and
Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
32
|
Ding A, Xu J, Gu G, Lu G, Huang X. PHEA-g-PMMA Well-Defined Graft Copolymer: ATRP Synthesis, Self-Assembly, and Synchronous Encapsulation of Both Hydrophobic and Hydrophilic Guest Molecules. Sci Rep 2017; 7:12601. [PMID: 28974694 PMCID: PMC5626726 DOI: 10.1038/s41598-017-12710-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 02/03/2023] Open
Abstract
A series of well-defined amphiphilic graft copolymer bearing a hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) backbone and hydrophobic poly(methyl methacrylate) (PMMA) side chains was synthesized by successive reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) through the grafting-from strategy. A well-defined PHEA-based backbone with Cl-containing ATRP initiating group in every repeated unit (Mw/Mn = 1.08), poly(2-hydroxyethyl 2-((2-chloropropanoyloxy)methyl)acrylate) (PHECPMA), was first prepared by RAFT homopolymerization of 2-hydroxyethyl 2-((2-chloropropanoyloxy)methyl)acrylate (HECPMA), a Cl-containing trifunctional acrylate. ATRP of methyl methacrylate was subsequently initiated by PHECPMA homopolymer to afford the target well-defined poly(2-hydroxyethyl acrylate)-graft-poly(methyl methacrylate) (PHEA-g-PMMA) graft copolymers (Mw/Mn ≤ 1.36) with 34 PMMA side chains and 34 pendant hydroxyls in PHEA backbone using CuCl/dHbpy as catalytic system. The critical micelle concentration (cmc) of the obtained graft copolymer was determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe while micellar morphologies in aqueous media were visualized by transmission electron microscopy. Interestingly, PHEA-g-PMMA graft copolymer could self-assemble into large compound micelles rather than common spherical micelles, which can encapsulate hydrophilic rhodamine 6 G and hydrophobic pyrene separately or simultaneously.
Collapse
Affiliation(s)
- Aishun Ding
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Jie Xu
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Guangxin Gu
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China.
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
33
|
Deng B, Palermo EF, Shi Y. Comparison of chain-growth polymerization in solution versus on surface using reactive coarse-grained simulations. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Atanase L, Desbrieres J, Riess G. Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Ahmadkhani L, Abbasian M, Akbarzadeh A. Synthesis of sharply thermo and PH responsive PMA-b-PNIPAM-b-PEG-b-PNIPAM-b-PMA by RAFT radical polymerization and its schizophrenic micellization in aqueous solutions. Des Monomers Polym 2017; 20:406-418. [PMID: 29491812 PMCID: PMC5784875 DOI: 10.1080/15685551.2017.1314654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/19/2017] [Indexed: 11/12/2022] Open
Abstract
Sharply thermo- and pH-responsive pentablock terpolymer with a core-shell-corona structure was prepared by RAFT polymerization of N-isopropylacrylamide and methacrylic acid monomers using PEG-based benzoate-type of RAFT agent. The PEG-based RAFT agent could be easily synthesized by dihydroxyl-capped PEG with 4-cyano-4-(thiobenzoyl) sulfanylpentanoic acids, using esterification reaction. This pentablock terpolymer was characterized by 1H NMR, FT-IR, and GPC. The PDI was obtained by GPC, indicating that the molecular weight distribution was narrow and the polymerization was well controlled. The thermo- and pH-responsive micellization of the pentablock terpolymer in aqueous solution was investigated using fluorescence spectroscopy technique, UV-vis transmittance, and TEM. The LCST of pentablock terpolymer increased (over 50 °C) compared to the NIPAM homopolymer (~32 °C), due to the incorporation of the hydrophilic PEG and PMA blocks in pentablock terpolymer (PNIPAM block as the core, PEG the block and the hydrophilic PMA block as the shell and the corona). Also, pH-dependent phase transition behavior shows at a pH value of about ~5.8, according to pKa of MAA. Thus, in acidic solution at room temperature, the pentablock terpolymer self-assembled to form core-shell-corona micelles, with the hydrophobic PMA block as the core, the PNIPAM block and the hydrophilic PEG block as the shell and the corona, respectively.
Collapse
Affiliation(s)
- Lida Ahmadkhani
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Mojtaba Abbasian
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
- Department of Basic Science, Payame Noor University (PNU), Tehran, Iran
| | - Abolfazl Akbarzadeh
- Faculty of Advanced Medical Science, Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Drugs Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Lu XJ, Yang XY, Meng Y, Li SZ. Temperature and pH dually-responsive poly(β-amino ester) nanoparticles for drug delivery. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1916-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Wang S, Liu C, Zhou H, Gao C, Zhang W. An efficient route to synthesize thermoresponsive molecular bottlebrushes of poly[o-aminobenzyl alcohol-graft-poly(N-isopropylacrylamide)]. Polym Chem 2017. [DOI: 10.1039/c6py02188c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The thermoresponsive molecular bottlebrushes of poly[o-aminobenzyl alcohol-graft-poly(N-isopropylacrylamide)] [P(oABA-g-PNIPAM)] were synthesized and their characteristic thermoresponse was demonstrated.
Collapse
Affiliation(s)
- Shuang Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chonggao Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Heng Zhou
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
38
|
Abstract
The synthesis and self-assembly study of CO2-responsive graft copolymers fabricated from a “graft-to” strategy based on pentafluorophenyl esters as grafting sites.
Collapse
Affiliation(s)
- Shaojian Lin
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Anindita Das
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| |
Collapse
|
39
|
Chen S, Ren H, Mei Z, Zhuo H, Yang H, Ge Z. Exploring the Biocompatibility of Zwitterionic Copolymers for Controlling Macrophage Phagocytosis of Bacteria. Macromol Biosci 2016; 16:1714-1722. [DOI: 10.1002/mabi.201600306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/22/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Shaojun Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| | - Huanhuan Ren
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| | - Zhankui Mei
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| | - Haitao Zhuo
- College of Chemistry and Environmental Engineering; Shenzhen University; Shenzhen 518060 China
| | - Haipeng Yang
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| | - Zaochuan Ge
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| |
Collapse
|
40
|
Zhou J, He R, Ma J. RAFT-Mediated Polymerization-Induced Self-Assembly of Poly(Acrylic Acid)-b-Poly(Hexafluorobutyl Acrylate): Effect of the pH on the Synthesis of Self-Stabilized Particles. Polymers (Basel) 2016; 8:polym8060207. [PMID: 30979302 PMCID: PMC6432396 DOI: 10.3390/polym8060207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/19/2022] Open
Abstract
This paper describes a very simple strategy towards self-stabilized poly(acrylic acid)-block-poly(hexafluorobutyl acrylate) (PAA-b-PHFBA) block copolymer particles via reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization-induced self-assembly. Hexafluorobutyl acrylate (HFBA) monomer conversion and number-average molar mass of PAA-b-PHFBA increased gradually with the increase in the pH value of the aqueous phase. When pH < 10, the molecular weight distributions of PAA-b-PHFBA were narrow, however, when the pH was raised to 11.55, PAA-b-PHFBA block copolymers had a broader distribution (ĐM = 1.82) with a serious trailing toward the low molecular weight. Furthermore, the morphology and size of PAA-b-PHFBA latex particles were measured by transmission electron microscopy and dynamic light scattering. The results indicated that the PAA-b-PHFBA latex particles had a clear spherical core-shell structure and the latex particles’ size increased with the increase of pH value.
Collapse
Affiliation(s)
- Jianhua Zhou
- School of Light Industry Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Renyan He
- School of Light Industry Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jianzhong Ma
- School of Light Industry Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
41
|
Panja S, Dey G, Bharti R, Kumari K, Maiti TK, Mandal M, Chattopadhyay S. Tailor-Made Temperature-Sensitive Micelle for Targeted and On-Demand Release of Anticancer Drugs. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12063-12074. [PMID: 27128684 DOI: 10.1021/acsami.6b03820] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The design of nanomedicines from the tuned architecture polymer is a leading object of immense research in recent years. Here, smart thermoresponsive micelles were prepared from novel architecture four-arm star block copolymers, namely, pentaerythritol polycaprolactone-b-poly(N-isopropylacrylamide) and pentaerythritol polycaprolactone-b-poly(N-vinylcaprolactam). The polymers were synthesized and tagged with folic acid (FA) to render them as efficient cancer cell targeting cargos. FA-conjugated block copolymers were self-assembled to a nearly spherical (ranging from 15 to 170 nm) polymeric micelle (FA-PM) with a sufficiently lower range of critical micelle concentration (0.59 × 10(-2) to 1.52 × 10(-2) mg/mL) suitable for performing as an efficient drug carrier. The blocks show lower critical solution temperature (LCST) ranging from 30 to 39 °C with high DOX-loading content (24.3%, w/w) as compared to that reported for a linear polymer in the contemporary literature. The temperature-induced reduction in size (57%) of the FA-PM enables a high rate of DOX release (78.57% after 24 h) at a temperature above LCST. The DOX release rate has also been tuned by on-demand administration of temperature. The in vitro biocompatibilities of the blank and DOX-loaded FA-PMs have been studied by the MTT assay. The cellular uptake study proves selective internalization of the FA-PM into cancerous cells (C6 glioma) compared that into normal cells (HaCaT). In vivo administration of the DOX-loaded FA-PMs into the C6 glioma rat tumor model resulted in significant accumulation in tumor sites, which drastically inhibited the tumor volume by ∼83.9% with respect to control without any significant systemic toxicity.
Collapse
Affiliation(s)
- S Panja
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - G Dey
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - R Bharti
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - K Kumari
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - T K Maiti
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - M Mandal
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - S Chattopadhyay
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| |
Collapse
|
42
|
Cortez-Lemus NA, Licea-Claverie A. Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.08.001] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Tang G, Hu M, Ma Y, You D, Bi Y. Synthesis and solution properties of novel thermo- and pH-responsive poly(N-vinylcaprolactam)-based linear–dendritic block copolymers. RSC Adv 2016. [DOI: 10.1039/c6ra04327e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study describes the synthesis and solution properties of the novel linear–dendritic block copolymers (LDBCs) based on thermoresponsive poly(N-vinylcaprolactam) (PNVCL) chains and pH-responsive poly(benzyl ether) dendrons.
Collapse
Affiliation(s)
- Gang Tang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Minqi Hu
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Yongcui Ma
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Dan You
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| |
Collapse
|
44
|
Abstract
Thermo- and pH-responsive poly(ionic liquid) membranes with tunable shape and transparency were synthesized.
Collapse
Affiliation(s)
- Fei Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Dan Xu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
45
|
Cui Y, Jiang X, Feng C, Gu G, Xu J, Huang X. First double hydrophilic graft copolymer bearing a poly(2-hydroxylethyl acrylate) backbone synthesized by sequential RAFT polymerization and SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py00489j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reports the first synthesis of well-defined double hydrophilic graft copolymers with a PHEA backbone, by the combination of RAFT polymerization, SET-LRP, and a grafting-from strategy.
Collapse
Affiliation(s)
- Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiuyu Jiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guangxin Gu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Jie Xu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
46
|
Wang Y, Shi Y, Xu M, Wu L, Jia X, Wei T, Zhang S, Guo X. Smart flocculant with temperature and pH response derived from starch. RSC Adv 2016. [DOI: 10.1039/c6ra04060h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Smart flocculant derived from starch with temperature and pH dual response was prepared which can be easily regenerated and separated from contaminating dye solution by triggering the temperature and pH.
Collapse
Affiliation(s)
- Yu Wang
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832000
- China
| | - Yuling Shi
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832000
- China
| | - Mengyao Xu
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832000
- China
| | - Liang Wu
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832000
- China
| | - Xin Jia
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832000
- China
| | - Tingting Wei
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832000
- China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Xuhong Guo
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region
- Shihezi University
- Shihezi 832000
- China
| |
Collapse
|
47
|
Peng H, Xu W, Pich A. Temperature and pH dual-responsive poly(vinyl lactam) copolymers functionalized with amine side groups via RAFT polymerization. Polym Chem 2016. [DOI: 10.1039/c6py00885b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of statistical copolymers based on cyclic N-vinyl lactams and N-vinylformamide were synthesized via RAFT polymerization. Tempertaure/pH dual responsive polymers were obtained via hydrolysis the copolymers in alkaline conditions.
Collapse
Affiliation(s)
- Huan Peng
- Functional and Interactive Polymers
- Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| | - Wenjing Xu
- Functional and Interactive Polymers
- Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| | - Andrij Pich
- Functional and Interactive Polymers
- Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| |
Collapse
|
48
|
Jia F, Wang S, Zhang X, Xiao C, Tao Y, Wang X. Amino-functionalized poly(N-vinylcaprolactam) derived from lysine: a sustainable polymer with thermo and pH dual stimuli response. Polym Chem 2016. [DOI: 10.1039/c6py01487a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysine, a renewable feedstock with economic feasibility, was tactfully cyclized to its corresponding cyclic lysine and then subjected to a reaction with acetylenes to yield a sustainable N-vinylcaprolactam (VCL) derivative. Well-defined PVCL with pendent amino groups was prepared via MADIX/RAFT polymerization.
Collapse
Affiliation(s)
- Fan Jia
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Xiaojie Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
49
|
Kashyap S, Singh N, Surnar B, Jayakannan M. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Biomacromolecules 2015; 17:384-98. [PMID: 26652038 DOI: 10.1021/acs.biomac.5b01545] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dual responsive polymer nanoscaffolds for administering anticancer drugs both at the tumor site and intracellular compartments are made for improving treatment in cancers. The present work reports the design and development of new thermo- and enzyme-responsive amphiphilic copolymer core-shell nanoparticles for doxorubicin delivery at extracellular and intracellular compartments, respectively. A hydrophobic acrylate monomer was tailor-made from 3-pentadecylphenol (PDP, a natural resource) and copolymerized with oligoethylene glycol acrylate (as a hydrophilic monomer) to make new classes of thermo and enzyme dual responsive polymeric amphiphiles. Both radical and reversible addition-fragmentation chain transfer (RAFT) methodologies were adapted for making the amphiphilic copolymers. These amphiphilic copolymers were self-assembled to produce spherical core-shell nanoparticles in water. Upon heating, the core-shell nanoparticles underwent segregation to produce larger sized aggregates above the lower critical solution temperature (LCST). The dual responsive polymer scaffold was found to be capable of loading water insoluble drug, such as doxorubicin (DOX), and fluorescent probe-like Nile Red. The drug release kinetics revealed that DOX was preserved in the core-shell assemblies at normal body temperature (below LCST, ≤ 37 °C). At closer to cancer tissue temperature (above LCST, ∼43 °C), the polymeric scaffold underwent burst release to deliver 90% of loaded drugs within 2 h. At the intracellular environment (pH 7.4, 37 °C) in the presence of esterase enzyme, the amphiphilic copolymer ruptured in a slow and controlled manner to release >95% of the drugs in 12 h. Thus, both burst release of cargo at the tumor microenvironment and control delivery at intracellular compartments were accomplished in a single polymer scaffold. Cytotoxicity assays of the nascent and DOX-loaded polymer were carried out in breast cancer (MCF-7) and cervical cancer (HeLa) cells. Among the two cell lines, the DOX-loaded polymers showed enhanced killing in breast cancer cells. Furthermore, the cellular uptake of the DOX was studied by confocal and fluorescence microscopes. The present investigation opens a new enzyme and thermal-responsive polymer scaffold approach for DOX delivery in cancer cells.
Collapse
Affiliation(s)
- Smita Kashyap
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homo Bhabha Road, Pune 410008, Maharashtra, INDIA
| | - Nitesh Singh
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homo Bhabha Road, Pune 410008, Maharashtra, INDIA
| | - Bapurao Surnar
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homo Bhabha Road, Pune 410008, Maharashtra, INDIA
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homo Bhabha Road, Pune 410008, Maharashtra, INDIA
| |
Collapse
|
50
|
Jiang X, Liu Y, Ding M, Zhang L, Cheng Z, Zhu X. AGET ATRP of Methyl Methacrylate Based on Thermoregulated Phase Transfer Catalysis in Organic/Aqueous Biphasic System: Facile and Highly Efficient In Situ Catalyst/Ligand Separation and Recycling. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaowu Jiang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Yuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Mingqiang Ding
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| |
Collapse
|