1
|
He Y, Luscombe CK. Quantitative comparison of the copolymerisation kinetics in catalyst-transfer copolymerisation to synthesise polythiophenes. Polym Chem 2024; 15:2598-2605. [PMID: 38933685 PMCID: PMC11197037 DOI: 10.1039/d4py00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Polythiophenes are one of the most widely studied conjugated polymers. With the discovery of the chain mechanism of Kumada catalyst-transfer polymerisation (KCTP), various polythiophene copolymer structures, such as random, block, and gradient copolymers, have been synthesized via batch or semi-batch (sequential addition) methods. However, the lack of quantitative kinetic data for thiophene monomers brings challenges to experimental design and structure prediction when synthesizing the copolymers. In this study, the reactivity ratios and the polymerisation rate constants of 3-hexylthiophene with 4 thiophene comonomers in KCTP are measured by adapting the Mayo-Lewis equation and the first-order kinetic behaviour of chain polymerisation. The obtained kinetic information highlights the impact of the monomer structure on the reactivity in the copolymerisations. The kinetic data are used to predict the copolymer structure of equimolar batch copolymerisations of the 4 thiophene derivatives with 3-hexylthiophene, with the experimental data agreeing well with the predictions. 3-Dodecylthiophene and 3-(6-bromo)hexylthiophene, which have higher structural similarity to 3-hexylthiophene, show nearly equivalent reactivity to 3-hexylthiophene and give random copolymers in the batch copolymerisation. 3-(2-Ethylhexyl)thiophene with a branched side chain is less reactive compared to 3-hexylthiophene and failed to homopolymerize at room temperature, but produced gradient copolymers with 3-hexylthiophene. Finally, the bulkiest 3-(4-octylphenyl)thiophene, despite its ability to homopolymerize, failed to maintain chain polymerisation in the copolymerisation with 3-hexylthiophene, possibly due to the large steric hindrance caused by the phenyl ring directly attached to the thiophene center. This study highlights the importance of monomer structures in copolymerisations and the need for accurate kinetic data.
Collapse
Affiliation(s)
- Yifei He
- Department of Materials Science and Engineering, University of Washington Seattle USA
| | - Christine K Luscombe
- Pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Okinawa Japan
| |
Collapse
|
2
|
Schmitt A, Thompson BC. Relating Structure to Properties in Non-Conjugated Pendant Electroactive Polymers. Macromol Rapid Commun 2024; 45:e2300219. [PMID: 37277618 DOI: 10.1002/marc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Non-conjugated pendant electroactive polymers (NCPEPs) are an emerging class of polymers that offer the potential of combining the desirable optoelectronic properties of conjugated polymers with the superior synthetic methodologies and stability of traditional non-conjugated polymers. Despite an increasing number of studies focused on NCPEPs, particularly on understanding fundamental structure-property relationships, no attempts have been made to provide an overview on established relationships to date. This review showcases selected reports on NCPEP homopolymers and copolymers that demonstrate how optical, electronic, and physical properties of the polymers are affected by tuning of key structural variables such as the chemical structure of the polymer backbone, molecular weight, tacticity, spacer length, the nature of the pendant group, and in the case of copolymers the ratios between different comonomers and between individual polymer blocks. Correlation of structural features with improved π-stacking and enhanced charge carrier mobility serve as the primary figures of merit in evaluating impact on NCPEP properties. While this review is not intended to serve as a comprehensive summary of all reports on tuning of structural parameters in NCPEPs, it highlights relevant established structure-property relationships that can serve as a guideline for more targeted design of novel NCPEPs in the future.
Collapse
Affiliation(s)
- Alexander Schmitt
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| | - Barry C Thompson
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| |
Collapse
|
3
|
Xu H, Ye S, Zhao R, Seferos DS. Homogeneous Synthesis of Monodisperse Sequence‐Defined Conjugated Oligomers by Temperature Cycling. Angew Chem Int Ed Engl 2022; 61:e202210340. [DOI: 10.1002/anie.202210340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Hao Xu
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Shuyang Ye
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Ruyan Zhao
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Dwight S. Seferos
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
4
|
Chernikova EV, Mineeva KO. Reversible Deactivation Radical Copolymerization: Synthesis of Copolymers with Controlled Unit Sequence. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Xu H, Ye S, Zhao R, Seferos DS. Homogeneous Synthesis of Monodisperse Sequence‐Defined Conjugated Oligomers by Temperature Cycling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Xu
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | - Shuyang Ye
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | - Ruyan Zhao
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | - Dwight S. Seferos
- University of Toronto Chemistry 80 St. George Street M5S 3H6 Toronto CANADA
| |
Collapse
|
6
|
Roy SS, Chowdhury SR, Mishra S, Patra SK. Role of Substituents at 3-position of Thienylethynyl Spacer on Electronic Properties in Diruthenium(II) Organometallic Wire-like Complexes. Chem Asian J 2020; 15:3304-3313. [PMID: 32790947 DOI: 10.1002/asia.202000755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Abstract
A series of organometallic complexes [Cl(dppe)2 Ru-C≡C-(3-R-C4 H2 S)-C≡C-Ru(dppe)2 Cl] (3-R-C4 H2 S=3-substituted thienyl moiety; R=-H, -C2 H5 , -C3 H7 , -C4 H9 , -C6 H13 , -OMe, -CN in 5 a-5 g respectively) have been synthesized by systematic variation of 3-substituents at the thienylethynyl bridging unit. The diruthenum(II) wire-like complexes (5 a-5 g) have been achieved by the reaction of thienylethynyl bridging units, HC≡C-(3-R-C4 H2 S)-C≡CH (4 a-4 g) with cis-[Ru(dppe)2 Cl2 ]. The wire-like diruthenium(II) complexes undergo two consecutive electrochemical oxidation processes in the potential range of 0.0 - 0.8 V. Interestingly, the wave separation between the two redox waves is greatly influenced by the substituents at the 3-position of the thienylethynyl. Thus, the substitution on 3-position of the thienylethynyl bridging unit plays a pivotal role for tuning the electronic properties. To understand the electronic behavior, density functional theory (DFT) calculations of the selected diruthenium wire-like complexes (5 a-5 e) with different alkyl appendages are performed. The theoretical data demonstrate that incorporation of alkyl groups to the thienylethynyl entity leaves unsymmetrical spin densities, thus affecting the electronic properties. The voltammetric features of the other two Ru(II) alkynyl complexes 5 f and 5 g (with -OMe and -CN group respectively) show an apparent dependence on the electronic properties. The electronic properties in the redox conjugate, (5 a+ ) with Kc of 3.9×106 are further examined by UV-Vis-NIR and FTIR studies, showing optical responses in NIR region along with changes in "-Ru-C≡C-" vibrational stretching frequency. The origin of the observed electronic transition has been assigned based on time-dependent DFT (TDDFT) calculations.
Collapse
Affiliation(s)
- Sourav Saha Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | | | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| |
Collapse
|
7
|
Synthesis of 4-acetoxystyrene – t-butyl acrylate statistical, block and gradient copolymers, and the effect of the structure of copolymers on their properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Schmode P, Schötz K, Dolynchuk O, Panzer F, Köhler A, Thurn-Albrecht T, Thelakkat M. Influence of ω-Bromo Substitution on Structure and Optoelectronic Properties of Homopolymers and Gradient Copolymers of 3-Hexylthiophene. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Philip Schmode
- Applied Functional Polymers, Department of Macromolecular Chemistry I, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Konstantin Schötz
- Experimental Physics II, University of Bayreuth, 95440 Bayreuth, Germany
| | - Oleksandr Dolynchuk
- Experimental Polymer Physics, Martin Luther University Halle−Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Fabian Panzer
- Experimental Physics II, University of Bayreuth, 95440 Bayreuth, Germany
| | - Anna Köhler
- Experimental Physics II, University of Bayreuth, 95440 Bayreuth, Germany
| | - Thomas Thurn-Albrecht
- Experimental Polymer Physics, Martin Luther University Halle−Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Mukundan Thelakkat
- Applied Functional Polymers, Department of Macromolecular Chemistry I, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
9
|
Sabury S, Collier GS, Ericson MN, Kilbey SM. Synthesis of a soluble adenine-functionalized polythiophene through direct arylation polymerization and its fluorescence responsive behavior. Polym Chem 2020. [DOI: 10.1039/c9py01142k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An adenine-functionalized polythiophene is synthesized via direct arylation polymerization using Boc-protection to overcome catalyst deactivation. The resulting copolymer is highly soluble and shows reversible fluorescence quenching.
Collapse
Affiliation(s)
- Sina Sabury
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | - Graham S. Collier
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
- School of Chemistry and Biochemistry
| | - M. Nance Ericson
- Electrical and Electronics Systems Research Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - S. Michael Kilbey
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
- Department of Chemical and Biomolecular Engineering
| |
Collapse
|
10
|
Park H, Ma BS, Kim JS, Kim Y, Kim HJ, Kim D, Yun H, Han J, Kim FS, Kim TS, Kim BJ. Regioregular-block-Regiorandom Poly(3-hexylthiophene) Copolymers for Mechanically Robust and High-Performance Thin-Film Transistors. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01540] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | - Hyeong Jun Kim
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst 01002, United States
| | | | | | | | - Felix Sunjoo Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul 06974, Korea
| | | | | |
Collapse
|
11
|
Zheng C. Gradient copolymer micelles: an introduction to structures as well as structural transitions. SOFT MATTER 2019; 15:5357-5370. [PMID: 31210242 DOI: 10.1039/c9sm00880b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exhibiting variation of the composition along a chain, gradient copolymers bring new blood to the old story of polymeric micelles. The gradient chain structure results in some special features in micellar structures and leads to unique structural transitions, potentially leading to new properties and applications. Henceforth, gradient copolymer micellar structures and their transitions from the viewpoint of soft matter physics will be reviewed. Concepts such as a diffuse interface, shrinkage-stretching of micelles, and intrinsic temperature responsiveness are summarized from current research, which highlight new characteristic structures, relaxation modes and novel properties of micelles, respectively.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Applied Chemistry, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
12
|
Alam MM, Jack KS, Hill DJ, Whittaker AK, Peng H. Gradient copolymers – Preparation, properties and practice. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Lutz JP, Hannigan MD, McNeil AJ. Polymers synthesized via catalyst-transfer polymerization and their applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Zhang J, Farias-Mancilla B, Destarac M, Schubert US, Keddie DJ, Guerrero-Sanchez C, Harrisson S. Asymmetric Copolymers: Synthesis, Properties, and Applications of Gradient and Other Partially Segregated Copolymers. Macromol Rapid Commun 2018; 39:e1800357. [DOI: 10.1002/marc.201800357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Junliang Zhang
- MOE Key Laboratory; of Material Physics and Chemistry under Extraordinary Conditions; Shaanxi Key Laboratory of Macromolecular Science and Technology; Department of Applied Chemistry; School of Science; Northwestern Polytechnical University; Xi’an Shaanxi 710072 P. R. China
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Barbara Farias-Mancilla
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Mathias Destarac
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Ulrich S. Schubert
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Daniel J. Keddie
- Faculty of Science and Engineering; University of Wolverhampton; Wulfruna Street Wolverhampton WV1 1LY UK
| | - Carlos Guerrero-Sanchez
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Simon Harrisson
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| |
Collapse
|
15
|
Baker MA, Tsai C, Noonan KJT. Diversifying Cross‐Coupling Strategies, Catalysts and Monomers for the Controlled Synthesis of Conjugated Polymers. Chemistry 2018; 24:13078-13088. [DOI: 10.1002/chem.201706102] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Matthew A. Baker
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| | - Chia‐Hua Tsai
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| | - Kevin J. T. Noonan
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| |
Collapse
|
16
|
Obhi NK, Peda DM, Kynaston EL, Seferos DS. Exploring the Graft-To Synthesis of All-Conjugated Comb Copolymers Using Azide–Alkyne Click Chemistry. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00138] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nimrat K. Obhi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Denise M. Peda
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Emily L. Kynaston
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
17
|
Benatto L, Marchiori CFN, da Luz MGE, Koehler M. Electronic and structural properties of fluorene–thiophene copolymers as function of the composition ratio between the moieties: a theoretical study. Phys Chem Chem Phys 2018; 20:20447-20458. [DOI: 10.1039/c8cp02622j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through theoretical analysis, we study relevant properties of some molecular structures formed by oligothiophenes (T) and dioctylfluorenes (F) units, like the exciton binding energy (Eb) and dipole moment, important for the efficiency of different kinds of optical and electronic devices.
Collapse
Affiliation(s)
- L. Benatto
- Departamento de Física
- Universidade Federal do Paraná
- Curitiba
- Brazil
| | - C. F. N. Marchiori
- Departamento de Física
- Universidade Federal do Paraná
- Curitiba
- Brazil
- Department of Physics and Astronomy
| | - M. G. E. da Luz
- Departamento de Física
- Universidade Federal do Paraná
- Curitiba
- Brazil
| | - M. Koehler
- Departamento de Física
- Universidade Federal do Paraná
- Curitiba
- Brazil
| |
Collapse
|
18
|
Leone AK, Souther KD, Vitek AK, LaPointe AM, Coates GW, Zimmerman PM, McNeil AJ. Mechanistic Insight into Thiophene Catalyst-Transfer Polymerization Mediated by Nickel Diimine Catalysts. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amanda K. Leone
- Department
of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kendra D. Souther
- Department
of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew K. Vitek
- Department
of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Anne M. LaPointe
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Paul M. Zimmerman
- Department
of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Anne J. McNeil
- Department
of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
19
|
Hall AO, Lee SR, Bootsma AN, Bloom JWG, Wheeler SE, McNeil AJ. Reactive ligand influence on initiation in phenylene catalyst-transfer polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ariana O. Hall
- Department of Chemistry and Macromolecular Science and Engineering Program; University of Michigan; 930 North University Avenue Ann Arbor Michigan 48109-1055
| | - Se Ryeon Lee
- Department of Chemistry and Macromolecular Science and Engineering Program; University of Michigan; 930 North University Avenue Ann Arbor Michigan 48109-1055
| | - Andrea N. Bootsma
- Department of Chemistry; Texas A&M University; PO Box 30012 College Station Texas 77842-3012
| | - Jacob W. G. Bloom
- Department of Chemistry; Texas A&M University; PO Box 30012 College Station Texas 77842-3012
| | - Steven E. Wheeler
- Department of Chemistry; Texas A&M University; PO Box 30012 College Station Texas 77842-3012
| | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program; University of Michigan; 930 North University Avenue Ann Arbor Michigan 48109-1055
| |
Collapse
|
20
|
Verheyen L, Leysen P, Van Den Eede MP, Ceunen W, Hardeman T, Koeckelberghs G. Advances in the controlled polymerization of conjugated polymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.09.085] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Hardeman T, Koeckelberghs G. Synthesis of conjugated copolymers by combining different coupling reactions. Polym Chem 2017. [DOI: 10.1039/c7py00624a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different coupling reactions are combined in the same copolymerization to tune the structure of the resulting conjugated copolymer.
Collapse
Affiliation(s)
- T. Hardeman
- Laboratory for Polymer Synthesis
- KU Leuven
- B-3001 Heverlee
- Belgium
| | | |
Collapse
|
22
|
Leone AK, McNeil AJ. Matchmaking in Catalyst-Transfer Polycondensation: Optimizing Catalysts based on Mechanistic Insight. Acc Chem Res 2016; 49:2822-2831. [PMID: 27936580 DOI: 10.1021/acs.accounts.6b00488] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catalyst-transfer polycondensation (CTP) has emerged as a useful living, chain-growth polymerization method for synthesizing conjugated (hetero)arene-based polymers with targetable molecular weights, narrow dispersities, and controllable copolymer sequences-all properties that significantly influence their performance in devices. Over the past decade, several phosphine- and carbene-ligated Ni- and Pd-based precatalysts have been shown to be effective in CTP. One current limitation is that these traditional CTP catalysts lead to nonliving, non-chain-growth behavior when complex monomer scaffolds are utilized. Because these monomers are often found in the highest-performing materials, there is a significant need to identify alternative CTP catalysts. Recent mechanistic insight into CTP has laid the foundation for designing new catalysts to expand the CTP monomer scope. Building off this insight, we have designed and implemented model systems to identify effective catalysts by understanding their underlying mechanistic behaviors and systematically modifying catalyst structures to improve their chain-growth behavior. In this Account, we describe how each catalyst parameter-the ancillary ligand(s), reactive ligand(s), and transition metal-influences CTP. As an example, ancillary ligands often dictate the turnover-limiting step of the catalytic cycle, and perhaps more importantly, they can be used to promote the formation of the key intermediate (a metal-arene associative complex) and its subsequent reactivity. The fidelity of this intermediate is central to the mechanism for the living, chain-growth polymerization. Reactive ligands, on the other hand, can be used to improve catalyst solubility and accelerate initiation. Additional advantages of the reactive ligand include providing access points for postpolymerization modification and synthesizing polymers directly off surfaces. While the most frequently used CTP catalysts contain nickel, palladium-based catalysts exhibit a higher functional group tolerance and broader substrate scope (e.g., monomers with boron, magnesium, tin, and gold transmetalating agents). Overall, we anticipate that applying the tools and lessons detailed in this Account to other monomers should facilitate a better "matchmaking" process that will lead to new catalyst-transfer polycondensations.
Collapse
Affiliation(s)
- Amanda K. Leone
- Department of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Anne J. McNeil
- Department of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
23
|
Hardeman T, De Becker J, Koeckelberghs G. Influence of the halogen and organometallic function in a KCTP (Co)polymerization. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tine Hardeman
- Division of Polymer Chemistry & Materials; Laboratory for Polymer Synthesis; KU Leuven, Celestijnenlaan 200F Heverlee Leuven 3001 Belgium
| | - Jasmine De Becker
- Division of Polymer Chemistry & Materials; Laboratory for Polymer Synthesis; KU Leuven, Celestijnenlaan 200F Heverlee Leuven 3001 Belgium
| | - Guy Koeckelberghs
- Division of Polymer Chemistry & Materials; Laboratory for Polymer Synthesis; KU Leuven, Celestijnenlaan 200F Heverlee Leuven 3001 Belgium
| |
Collapse
|
24
|
Bryan ZJ, Hall AO, Zhao CT, Chen J, McNeil AJ. Limitations of Using Small Molecules to Identify Catalyst-Transfer Polycondensation Reactions. ACS Macro Lett 2016; 5:69-72. [PMID: 35668581 DOI: 10.1021/acsmacrolett.5b00746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalyst-transfer polycondensation (CTP) is a relatively new method for synthesizing conjugated polymers in a chain-growth fashion using transition metal catalysis. Recent research has focused on screening catalysts to broaden the monomer scope. In this effort, small molecule reactions have played an important role. Specifically, when selective difunctionalization occurs, even with limiting quantities of reaction partner, it suggests an associative intermediate similar to CTP. Several new chain-growth polymerizations have been discovered using this approach. We report herein an attempt to use this method to develop chain-growth conditions for synthesizing poly(2,5-bis(hexyloxy)phenylene ethynylene) via Sonogashira cross-coupling. Hundreds of small molecule experiments were performed and selective difunctionalization was observed with a Buchwald-type precatalyst. Unexpectedly, these same reaction conditions led to a step-growth polymerization. Further investigation revealed that the product ratios in the small molecule reactions were dictated by reactivity differences rather than an associative intermediate. The lessons learned from these studies have broad implications on other small molecule reactions being used to identify new catalysts for CTP.
Collapse
Affiliation(s)
- Zachary J. Bryan
- Department
of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ariana O. Hall
- Department
of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Carolyn T. Zhao
- Department
of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Jing Chen
- Department
of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Anne J. McNeil
- Department
of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
25
|
Hardeman T, Koeckelberghs G. The Synthesis of Poly(thiophene-co-fluorene) Gradient Copolymers. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01384] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tine Hardeman
- Laboratory for Polymer Synthesis, Division of Polymer Chemistry & Materials, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee (Leuven), Belgium
| | - Guy Koeckelberghs
- Laboratory for Polymer Synthesis, Division of Polymer Chemistry & Materials, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee (Leuven), Belgium
| |
Collapse
|
26
|
Chen Y, Cui H, Li L, Tian Z, Tang Z. Controlling micro-phase separation in semi-crystalline/amorphous conjugated block copolymers. Polym Chem 2014. [DOI: 10.1039/c4py00498a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bromine-functionalized polythiophene (P3BrHT) block copolymers with different block ratios were synthesized and their micro-phase separation features in the solid state were experimentally confirmed.
Collapse
Affiliation(s)
- Ying Chen
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences (UCAS)
- Beijing 100049, P. R. China
- Laboratory for Nanomaterials
- National Center for Nanoscience and Technology
| | - Haijun Cui
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences (UCAS)
- Beijing 100049, P. R. China
- Laboratory for Nanomaterials
- National Center for Nanoscience and Technology
| | - Lianshan Li
- Laboratory for Nanomaterials
- National Center for Nanoscience and Technology
- Beijing 100190, P. R. China
| | - Zhiyuan Tian
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences (UCAS)
- Beijing 100049, P. R. China
| | - Zhiyong Tang
- Laboratory for Nanomaterials
- National Center for Nanoscience and Technology
- Beijing 100190, P. R. China
| |
Collapse
|