1
|
Basak S, Chatterjee R, Bandyopadhyay A. Beyond Traditional Stimuli: Exploring Salt-Responsive Bottlebrush Polymers-Trends, Applications, and Perspectives. ACS OMEGA 2024; 9:33365-33385. [PMID: 39130571 PMCID: PMC11308035 DOI: 10.1021/acsomega.4c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Bottlebrush polymers represent an important class of high-density side-chain-grafted polymers traditionally with high molecular weights, in which one or more polymeric side chains are tethered to each repeating unit of a linear polymer backbone, such that these macromolecules look like "bottlebrushes". The arrangement of molecular brushes is determined by side chains located at a distance considerably smaller than their unperturbed dimensions, leading to substantial monomer congestion and entropically unfavorable extension of both the backbone and the side chains. Traditionally, the conformation and physical properties of polymers are influenced by external stimuli such as solvent, temperature, pH, and light. However, a unique stimulus, salt, has recently gained attention as a means to induce shape changes in these molecular brushes. While the stimulus has been less researched to date, we see that these systems, when stimulated with salts, have the potential to be used in various engineering applications. This potential stems from the unique properties and behaviors these systems show when exposed to different salts, which could lead to new solutions and improvements in engineering processes, thus serving as the primary motivation for this narrative, as we aim to explore and highlight the various ways these systems can be utilized and the benefits they could bring to the field of engineering. This Review aims to introduce the concept of stimuli-responsive bottlebrush polymers, explore the evolutionary trajectory, delve into current trends in salt-responsive bottlebrush polymers, and elucidate how these polymers are addressing a variety of engineering challenges.
Collapse
Affiliation(s)
- Sayan Basak
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Rahul Chatterjee
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| |
Collapse
|
2
|
Mesoscale Modeling of Agglomeration of Molecular Bottlebrushes: Focus on Conformations and Clustering Criteria. Polymers (Basel) 2022; 14:polym14122339. [PMID: 35745920 PMCID: PMC9227207 DOI: 10.3390/polym14122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Using dissipative particle dynamics, we characterize dynamics of aggregation of molecular bottlebrushes in solvents of various qualities by tracking the number of clusters, the size of the largest cluster, and an average aggregation number. We focus on a low volume fraction of bottlebrushes in a range of solvents and probe three different cutoff criteria to identify bottlebrushes belonging to the same cluster. We demonstrate that the cutoff criteria which depend on both the coordination number and the length of the side chain allows one to correlate the agglomeration status with the structural characteristics of bottlebrushes in solvents of various qualities. We characterize conformational changes of the bottlebrush within the agglomerates with respect to those of an isolated bottlebrush in the same solvents. The characterization of bottlebrush conformations within the agglomerates is an important step in understanding the relationship between the bottlebrush architecture and material properties. An analysis of three distinct cutoff criteria to identify bottlebrushes belonging to the same cluster introduces a framework to identify both short-lived transient and long-lived agglomerates; the same approach could be further extended to characterize agglomerates of various macromolecules with complex architectures beyond the specific bottlebrush architecture considered herein.
Collapse
|
3
|
Kelly MT, Kent EW, Zhao B. Stepwise Conformational Transitions of Stimuli-Responsive Linear Ternary Heterografted Bottlebrush Polymers in Aqueous Solution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Michael T. Kelly
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ethan W. Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Lewoczko EM, Kelly MT, Kent EW, Zhao B. Effects of temperature on chaotropic anion-induced shape transitions of star molecular bottlebrushes with heterografted poly(ethylene oxide) and poly( N, N-dialkylaminoethyl methacrylate) side chains in acidic water. SOFT MATTER 2021; 17:6566-6579. [PMID: 34151928 DOI: 10.1039/d1sm00728a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article reports a study of the effects of temperature on chaotropic anion (CA)-induced star-globule shape transitions in acidic water of three-arm star bottlebrushes composed of heterografted poly(ethylene oxide) (PEO) and either poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMAEMA) or poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEAEMA) (the brushes denoted as SMB-11 and -22, respectively). The brush polymers were synthesized by grafting alkyne-end-functionalized PEO and PDMAEMA or PDEAEMA onto an azide-bearing three-arm star backbone polymer using the copper(i)-catalyzed alkyne-azide cycloaddition reaction. Six anions were studied for their effects on the conformations of SMB-11 and -22 in acidic water: super CAs [Fe(CN)6]3- and [Fe(CN)6]4-, moderate CAs PF6- and ClO4-, weak CA I-, and for comparison, kosmotropic anion SO42-. At 25 °C, the addition of super and moderate CAs induced shape transitions of SMB-11 and -22 in pH 4.50 water from a starlike to a collapsed globular state stabilized by PEO side chains, which was driven by the ion pairing of protonated tertiary amine groups with CAs and the chaotropic effect. The shape changes occurred at much lower salt concentrations for super CAs than moderate CAs. Upon heating from near room temperature to 70 °C, the super CA-collapsed brushes remained in the globular state, whereas the moderate CA-collapsed brushes underwent reversible globule-to-star shape transitions. The transition temperature increased with increasing salt concentration and was found to be higher for SMB-22 at the same salt concentration, presumably caused by the chaotropic effect. In contrast, I- and SO42- had small effects on the conformations of SMB-11 and -22 at 25 °C in the studied salt concentration range, and only small and gradual size variations were observed upon heating to 70 °C. The results reported here may have potential uses in the design of stimuli-responsive systems for substance encapsulation and release.
Collapse
Affiliation(s)
- Evan M Lewoczko
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Ethan W Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
5
|
Abstract
Bottlebrush polymers (BBPs), composed of relatively short polymeric side chains densely grafted on a polymer backbone, exhibit many unique characteristics and hold promise for a variety of applications. This Perspective focuses on environmentally induced shape-changing behavior of BBPs at interface and in solution, particularly worm/star-globule shape transitions. While BBPs with a single type of homopolymer or random copolymer side chains have been shown to undergo pronounced worm-to-globule shape changes in response to external stimuli, the collapsed brushes are unstable and prone to aggregation. By introducing a second, solvophilic polymer into the side chains, either as a distinct type of side chain or as the outer block of block copolymer side chains, the collapsed brushes not only are stabilized but also create unimolecular micellar nanostructures, which can be used for, e.g., encapsulation and delivery of substances. The current challenges in the design, synthesis, and characterization of stimuli-responsive shape-changing BBPs are discussed.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
6
|
|
7
|
Kent EW, Lewoczko EM, Zhao B. pH- and chaotropic anion-induced conformational changes of tertiary amine-containing binary heterografted star molecular bottlebrushes in aqueous solution. Polym Chem 2021. [DOI: 10.1039/d0py01466d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three-arm star-shaped, tertiary-amine-containing bottlebrushes exhibit star-globule shape transitions in response to pH changes and addition of sufficiently strong chaotropic anions.
Collapse
Affiliation(s)
- Ethan W. Kent
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | | | - Bin Zhao
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
8
|
Lin X, Xie W, Lin Q, Cai Y, Hua Y, Lin J, He G, Chen J. NIR-responsive metal-containing polymer hydrogel for light-controlled microvalve. Polym Chem 2021. [DOI: 10.1039/d1py00404b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
NIR-responsive metal-containing polymer hydrogel was prepared via the radical copolymerization of N-isopropylacrylamide and an osmium aromatic complex. It has excellent photothermal property and can be used as a light-controlled microvalve.
Collapse
Affiliation(s)
- Xusheng Lin
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Weiwei Xie
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Qin Lin
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Yuanting Cai
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Yuhui Hua
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Jianfeng Lin
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Guomei He
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| |
Collapse
|
9
|
Kent EW, Lewoczko EM, Zhao B. Effect of Buffer Anions on Pearl-Necklace Morphology of Tertiary Amine-Containing Binary Heterografted Linear Molecular Bottlebrushes in Acidic Aqueous Buffers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13320-13330. [PMID: 33135416 DOI: 10.1021/acs.langmuir.0c02435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular bottlebrushes can exhibit a multitude of distinct conformations under different conditions, and precise control of their morphology can facilitate better use of such materials in potential applications. Herein, we report a study on the effect of buffer anions on the pearl-necklace morphology of linear binary heterografted molecular brushes consisting of pH-responsive poly(2-N,N-diethylamino)ethyl methacrylate) (PDEAEMA) with a pKa of 7.40 and thermoresponsive poly(ethoxydi(ethylene glycol) acrylate) (PDEGEA) with a lower critical solution temperature of 9 °C as side chains in various acidic aqueous buffers at 0 °C. The molecular brushes, denotated as BMB, were prepared by a grafting-to approach using copper(I)-catalyzed azide-alkyne cycloaddition reaction. Dynamic light scattering studies showed that the apparent hydrodynamic size of BMB in aqueous buffers with a pH of 6.50 at 1 °C decreased with increasing valency of buffer anions, from acetate anions with a charge of 1-, to phosphate anions carrying charges of 2- and 1- and citrate anions bearing charges of 3- and 2- at pH = 6.50. Atomic force microscopy revealed that BMB exhibited a pearl-necklace morphology from all three aqueous buffers with a pH of 6.50 when spin-cast at 0 °C. Analysis of AFM images showed that the average length of BMB and the number of beads per brush molecule decreased with increasing valency of buffer anions while the size and height of the beads increased. The pearl-necklace morphology of BMB was believed to be the result of microphase separation of the neutral PDEGEA and the charged PDEAEMA side chains along the brush backbone. Multivalent kosmotropic buffer anions formed bridging linkages between protonated tertiary amine moieties and thus "crosslinked" the charged PDEAEMA side chains, resulting in the shrinkage of BMB and enhanced microphase separation of two side chain polymers.
Collapse
Affiliation(s)
- Ethan W Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Evan M Lewoczko
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
10
|
Tuan HNA, Nhu VTT. Synthesis and Properties of pH-Thermo Dual Responsive Semi-IPN Hydrogels Based on N, N'-Diethylacrylamide and Itaconamic Acid. Polymers (Basel) 2020; 12:E1139. [PMID: 32429371 PMCID: PMC7285170 DOI: 10.3390/polym12051139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
A series of semi-interpenetrating polymer network (semi-IPN) hydrogels based on N,N'-diethylacrylamide (DEA) and itaconamic acid (IAM) were synthesized by changing the molar ratio of linear copolymer P(DEA-co-IAM) and DEA monomer. Linear copolymer P(DEA-co-IAM) was introduced into a solution of DEA monomer to prepare pH-thermo dual responsive P(DEA-co-IAM)/PDEA semi-IPN hydrogels. The thermal gravimetric analysis (TGA) revealed that the semi-IPN hydrogel has a higher thermal stability than the conventional hydrogel, while the interior morphology by scanning electron microscopy (SEM) showed a porous structure with the pore sizes could be controlled by changing the ratio of linear copolymer in the obtained hydrogels. The oscillatory parallel-plate rheological measurements and compression tests demonstrated a viscoelastic behavior and superior mechanical properties of the semi-IPN hydrogels. Besides, the lower critical solution temperature (LCST) of the linear copolymers increased with the increase of IAM content in the feed, while the semi-IPN hydrogels increased LCSTs with the increase of linear copolymer content introduced. The pH-thermo dual responsive of the hydrogels was investigated using the swelling behavior in various pH and temperature conditions. Finally, the swelling and deswelling rate of the hydrogels were also studied. The results indicated that the pH-thermo dual responsive semi-IPN hydrogels were synthesized successfully and may be a potential material for biomedical, drug delivery or absorption applications. The further applications of semi-IPN hydrogels are being conducted.
Collapse
Affiliation(s)
- Huynh Nguyen Anh Tuan
- Faculty of Chemical and Food Technology, HCMC University of Technology and Education, #1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam;
| | | |
Collapse
|
11
|
Bejagam KK, Singh SK, Ahn R, Deshmukh SA. Unraveling the Conformations of Backbone and Side Chains in Thermosensitive Bottlebrush Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Karteek K. Bejagam
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Rebecca Ahn
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A. Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Kent EW, Zhao B. Stimuli-Induced Star-Globule Shape Transitions of Dually Responsive Binary Heterografted Three-Arm Star Molecular Brushes in Aqueous Solution. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ethan W. Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
13
|
Henn DM, Holmes JA, Kent EW, Zhao B. Worm-to-Sphere Shape Transition of Thermoresponsive Linear Molecular Bottlebrushes in Moderately Concentrated Aqueous Solution. J Phys Chem B 2018; 122:7015-7025. [DOI: 10.1021/acs.jpcb.8b04767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel M. Henn
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jessica A. Holmes
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ethan W. Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
14
|
Rwei SP, Tuan HNA, Chiang WY, Way TF. Synthesis and Characterization of pH and Thermo Dual-Responsive Hydrogels with a Semi-IPN Structure Based on N-Isopropylacrylamide and Itaconamic Acid. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E696. [PMID: 29710793 PMCID: PMC5978073 DOI: 10.3390/ma11050696] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 11/28/2022]
Abstract
A series of semi-interpenetrating polymer network (semi-IPN) hydrogels were synthesized and investigated in this study. Linear copolymer poly(N-isopropylacrylamide-co-itaconamic acid) p(NIPAM-co-IAM), which is formed by copolymerization of N-isopropylacrylamide (NIPAM) and itaconamic acid (IAM, 4-amino-2-ethylene-4-oxobutanoic acid), was introduced into a solution of NIPAM to form a series of pH and thermo dual-responsive p(NIPAM-co-IAM)/pNIPAM semi-IPN hydrogels by free radical polymerization. The structural, morphological, chemical, and physical properties of the linear copolymer and semi-IPN hydrogels were investigated. The semi-IPN hydrogel showed high thermal stability according to thermal gravimetric analyzer (TGA). Scanning electronic microscopy (SEM) images showed that the pore size was in the range of 119~297 µm and could be controlled by the addition ratio of the linear copolymer in the semi-IPN structure. The addition of linear copolymer increased the fracture strain from 57.5 ± 2.9% to 91.1 ± 4.9% depending on the added amount, while the compressive modulus decreased as the addition increased. Moreover, the pH and thermo dual-responsive properties were investigated using differential scanning calorimetry (DSC) and monitoring the swelling behavior of the hydrogels. In deionized (DI) water, the equilibrium swelling ratio of the hydrogels decreased as the temperature increased from 20 °C to 50 °C, while it varied in various pH buffer solutions. In addition, the swelling and deswelling rates of the hydrogels also significantly increased. The results indicate that the novel pH-thermo dual-responsive semi-IPN hydrogels were synthesized successfully and may be a potential material for biomedical, drug delivery, or absorption application.
Collapse
Affiliation(s)
- Syang-Peng Rwei
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, #1, Sec 3, Chung-Hsiao E. Rd, Taipei, Taiwan.
| | - Huynh Nguyen Anh Tuan
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, #1, Sec 3, Chung-Hsiao E. Rd, Taipei, Taiwan.
| | - Whe-Yi Chiang
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, #1, Sec 3, Chung-Hsiao E. Rd, Taipei, Taiwan.
| | - Tun-Fun Way
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, #1, Sec 3, Chung-Hsiao E. Rd, Taipei, Taiwan.
| |
Collapse
|
15
|
Kent EW, Henn DM, Zhao B. Shape-changing linear molecular bottlebrushes with dually pH- and thermo-responsive diblock copolymer side chains. Polym Chem 2018. [DOI: 10.1039/c8py01137k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The collapse of inner pH-responsive blocks drives cylindrical-to-globular shape transition while outer thermoresponsive blocks provide additional control of solution state.
Collapse
Affiliation(s)
- Ethan W. Kent
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | - Daniel M. Henn
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | - Bin Zhao
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
16
|
Kimizu K, Takasu A. Temperature-Responsive Electrophoretic Deposition of Sulfone-Containing Nonionic Poly(N
-isopropylacrylamide). MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ken Kimizu
- Department of Life Science and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Akinori Takasu
- Department of Life Science and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
17
|
Cheng Z, Cai L, Qiu Y, Chang X, Fan H, Ren B. Synthesis of redox-active dendronized poly(ferrocenylsilane) and application as high-performance supercapacitors. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Henn DM, Fu W, Mei S, Li CY, Zhao B. Temperature-Induced Shape Changing of Thermosensitive Binary Heterografted Linear Molecular Brushes between Extended Wormlike and Stable Globular Conformations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00150] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Daniel M. Henn
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wenxin Fu
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shan Mei
- Department
of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Christopher Y. Li
- Department
of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Bin Zhao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
19
|
Liu Y, Zhang K, Ma J, Vancso GJ. Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:901-908. [PMID: 28026935 DOI: 10.1021/acsami.6b13097] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hydrogels with rapid and strong response to external stimuli and possessing high elasticity and strength have been considered as platform materials for numerous applications, e.g., in biomaterials engineering. Thermoresponsive hydrogels based on semi-interpenetrating polymer networks (semi-IPN) featuring N-isopropylacrylamide with copolymers of poly(N-isopropylacrylamide-co-hydroxyethyl methacrylate) p(NIPAM-HEMA) chains are prepared and described. The copolymer was characterized by FTIR, NMR, and GPC. The semi-IPN structured hydrogel and its responsive properties were evaluated by dynamic mechanical measurements, SEM, DSC, equilibrium swelling ratio, and dynamic deswelling tests. The results illustrate that the semi-IPN structured hydrogels possess rapid response and high elasticity compared to conventional pNIPAM hydrogels. By using a microfluidic device with double coaxial laminar flow, we succeeded in fabricating temperature responsive ("smart") hydrogel microfibers with core-shell structures that exhibit typical diameters on the order of 100 μm. The diameter of the fibers can be tuned by changing the flow conditions. Such hydrogel fibers can be used to fabricate "smart" devices, and the core layer can be potentially loaded with cargos to incorporate biological function in the constructs. The platforms obtained by this approach hold promise as artificial "muscles", and also "smart" hydrogel carriers providing a unique biophysical and bioactive environment for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University , 201620 Shanghai, P. R. China
- Materials Science and Technology of Polymers, MESA+ Institute of Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Kaihuan Zhang
- Materials Science and Technology of Polymers, MESA+ Institute of Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jinghong Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University , 201620 Shanghai, P. R. China
| | - G Julius Vancso
- Materials Science and Technology of Polymers, MESA+ Institute of Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
20
|
Henn DM, Lau CM, Li CY, Zhao B. Light-triggered unfolding of single linear molecular bottlebrushes from compact globular to wormlike nano-objects in water. Polym Chem 2017. [DOI: 10.1039/c7py00279c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The photocleavage of o-nitrobenzyl moieties drives shape transitions from globular to wormlike in stimuli-responsive homografted and binary heterografted molecular bottlebrushes.
Collapse
Affiliation(s)
- Daniel M. Henn
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | - C. Maggie Lau
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | - Christopher Y. Li
- Department of Materials Science and Engineering
- Drexel University
- Philadelphia
- USA
| | - Bin Zhao
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
21
|
Zhang Y, Zhang Z, Liu C, Chen W, Li C, Wu W, Jiang X. Synthesis and biological properties of water-soluble polyphenylthiophene brushes with poly(ethylene glycol)/polyzwitterion side chains. Polym Chem 2017. [DOI: 10.1039/c6py01941b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two types of water-soluble polyphenylthiophene brushes with poly(ethylene glycol) and polyzwitterion side chains were synthesized and studied as bioprobes.
Collapse
Affiliation(s)
- Yajun Zhang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Zhengkui Zhang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Changren Liu
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Weizhi Chen
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Cheng Li
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Wei Wu
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| |
Collapse
|
22
|
Wang S, Liu C, Zhou H, Gao C, Zhang W. An efficient route to synthesize thermoresponsive molecular bottlebrushes of poly[o-aminobenzyl alcohol-graft-poly(N-isopropylacrylamide)]. Polym Chem 2017. [DOI: 10.1039/c6py02188c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The thermoresponsive molecular bottlebrushes of poly[o-aminobenzyl alcohol-graft-poly(N-isopropylacrylamide)] [P(oABA-g-PNIPAM)] were synthesized and their characteristic thermoresponse was demonstrated.
Collapse
Affiliation(s)
- Shuang Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chonggao Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Heng Zhou
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
23
|
Hailes RLN, Oliver AM, Gwyther J, Whittell GR, Manners I. Polyferrocenylsilanes: synthesis, properties, and applications. Chem Soc Rev 2016; 45:5358-407. [DOI: 10.1039/c6cs00155f] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This comprehensive review covers polyferrocenylsilanes (PFSs), a well-established, readily accessible class of main chain organosilicon metallopolymer. The focus is on the recent advances involving PFS homopolymers and block copolymers and the article covers the synthesis, properties, and applications of these fascinating materials.
Collapse
Affiliation(s)
| | | | | | | | - Ian Manners
- School of Chemistry
- University of Bristol
- Bristol
- UK
| |
Collapse
|
24
|
Wang K, Song Z, Liu C, Zhang W. RAFT synthesis of triply responsive poly[N-[2-(dialkylamino)ethyl]acrylamide]s and their N-substitute determined response. Polym Chem 2016. [DOI: 10.1039/c6py00526h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The thermo- and pH/CO2-responsive poly[N-[2-(dialkylamino)ethyl]acrylamide]s containing a polyacrylamide backbone but different N-substitutes of dialkylamine were synthesized and their solution properties were comparatively checked.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Zefeng Song
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chonggao Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
25
|
|
26
|
Verduzco R, Li X, Pesek SL, Stein GE. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem Soc Rev 2015; 44:2405-20. [PMID: 25688538 DOI: 10.1039/c4cs00329b] [Citation(s) in RCA: 441] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bottlebrush polymers are a type of branched or graft polymer with polymeric side-chains attached to a linear backbone, and the unusual architectures of bottlebrushes provide a number of unique and potentially useful properties. These include a high entanglement molecular weight, enabling rapid self-assembly of bottlebrush block copolymers into large domain structures, the self-assembly of bottlebrush block copolymer micelles in a selective solvent even at very low dilutions, and the functionalization of bottlebrush side-chains for recognition, imaging, or drug delivery in aqueous environments. This review article focuses on recent developments in the field of bottlebrush polymers with an emphasis on applications of bottlebrush copolymers. Bottlebrush copolymers contain two (or more) different types of polymeric side-chains. Recent work has explored the diverse properties and functions of bottlebrush polymers and copolymers in solutions, films, and melts, and applications explored include photonic materials, bottlebrush films for lithographic patterning, drug delivery, and tumor detection and imaging. We provide a brief introduction to bottlebrush synthesis and physical properties and then discuss work related to: (i) bottlebrush self-assembly in melts and bulk thin films, (ii) bottlebrushes for photonics and lithography, (iii) bottlebrushes for small molecule encapsulation and delivery in solution, and (iv) bottlebrush micelles and assemblies in solution. We briefly discuss three potential areas for future research, including developing a more quantitative model of bottlebrush self-assembly in the bulk, studying the properties of bottlebrushes at interfaces, and investigating the solution assembly of bottlebrush copolymers.
Collapse
Affiliation(s)
- Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, William Marsh Rice University, 6100 Main Street, MS-362, Houston, TX 77005, USA.
| | | | | | | |
Collapse
|
27
|
Zoetebier B, Hempenius MA, Vancso GJ. Redox-responsive organometallic hydrogels for in situ metal nanoparticle synthesis. Chem Commun (Camb) 2015; 51:636-9. [PMID: 25371054 DOI: 10.1039/c4cc06988a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of redox active hydrogels composed of poly(ferrocenylsilane) polyanion and poly(ethylene glycol) chains was assembled, using a copper-free azide-alkyne Huisgen cycloaddition reaction. These organometallic hydrogels displayed reversible collapse and reswelling upon chemical oxidation and reduction, respectively, and formed relatively well-defined, unaggregated Pd(0) nanoparticles (8.2 ± 2.2 nm) from K2PdCl4 salts.
Collapse
Affiliation(s)
- B Zoetebier
- Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | |
Collapse
|
28
|
Wu WC, Chen CY, Lee WY, Chen WC. Stimuli-responsive conjugated rod-coil block copolymers: Synthesis, morphology, and applications. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Zhou S, Zhou Y, Tian H, Zhu Y, Pan Y, Zhou F, Zhang Q, Shen Z, Fan X. Synthesis of comb polyphenylenes by Suzuki coupling from AB macromonomers. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sheng Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking UniversityBeijing100871 China
| | - Yu Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking UniversityBeijing100871 China
| | - Haijian Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking UniversityBeijing100871 China
| | - Yufeng Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking UniversityBeijing100871 China
| | - Yu Pan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking UniversityBeijing100871 China
| | - Feng Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking UniversityBeijing100871 China
| | - Qikai Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking UniversityBeijing100871 China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking UniversityBeijing100871 China
| | - Xinghe Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking UniversityBeijing100871 China
| |
Collapse
|
30
|
Plamper FA. Changing Polymer Solvation by Electrochemical Means: Basics and Applications. POROUS CARBONS – HYPERBRANCHED POLYMERS – POLYMER SOLVATION 2014. [DOI: 10.1007/12_2014_284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|