1
|
Yan Y, Zhu F, Su H, Liu X, Ren Q, Huang F, Ye W, Zhao M, Zhao Y, Zhao J, Shuai Q. Construction of Degradable and Amphiphilic Triblock Polymer Carriers for Effective Delivery of siRNA. Macromol Biosci 2022; 22:e2200232. [PMID: 36086889 DOI: 10.1002/mabi.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/17/2022] [Indexed: 01/15/2023]
Abstract
The development of effective and safe delivery carriers is one of the prerequisites for the clinical translation of siRNA-based therapeutics. In this study, a library of 144 functional triblock polymers using ring-opening polymerization (ROP) and thiol-ene click reaction is constructed. These triblock polymers are composed of hydrophilic poly (ethylene oxide) (PEO), hydrophobic poly (ε-caprolactone) (PCL), and cationic amine blocks. Three effective carriers are discovered by high-throughput screening of these polymers for siRNA delivery to HeLa-Luc cells. In vitro evaluation shows that siLuc-loaded nanoparticles (NPs) fabricated with leading polymer carriers exhibit sufficient knockdown of luciferase genes and relatively low cytotoxicity. The chemical structure of polymers significantly affects the physicochemical properties of the resulting siRNA-loaded NPs, which leads to different cellular uptake of NPs and endosomal escape of loaded siRNA and thus the overall in vitro siRNA delivery efficacy. After systemic administration to mice with xenograft tumors, siRNA NPs based on P2-4.5A8 are substantially accumulated at tumor sites, suggesting that PEO and PCL blocks are beneficial for improving blood circulation and biodistribution of siRNA NPs. This functional triblock polymer platform may have great potential in the development of siRNA-based therapies for the treatment of cancers.
Collapse
Affiliation(s)
- Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fangtao Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huahui Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Xiaomin Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fangqian Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Mengdan Zhao
- Women's Hospital, School of Medicine, Zhejiang University and Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Yunchun Zhao
- Women's Hospital, School of Medicine, Zhejiang University and Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Junpeng Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
2
|
Fallah D, Fareghi-Alamdari R, Tavangar S. Unsaturated oligoesters containing internal triple and double bonds based on DL-malic acid: synthesis, characterization and study of crosslinking via click reaction. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Li P, Tu C, Xun MM, Wu WX. Enzymatic synthesis, post-polymerization modification and cross-linking of functionalized poly(β-thioether ester) with pendant vinyl group. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Yu X, Liu S, Cheng Q, Lee SM, Wei T, Zhang D, Farbiak L, Johnson LT, Wang X, Siegwart DJ. Hydrophobic Optimization of Functional Poly(TPAE-co-suberoyl chloride) for Extrahepatic mRNA Delivery following Intravenous Administration. Pharmaceutics 2021; 13:pharmaceutics13111914. [PMID: 34834329 PMCID: PMC8624493 DOI: 10.3390/pharmaceutics13111914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Messenger RNA (mRNA) has generated great attention due to its broad potential therapeutic applications, including vaccines, protein replacement therapy, and immunotherapy. Compared to other nucleic acids (e.g., siRNA and pDNA), there are more opportunities to improve the delivery efficacy of mRNA through systematic optimization. In this report, we studied a high-throughput library of 1200 functional polyesters for systemic mRNA delivery. We focused on the chemical investigation of hydrophobic optimization as a method to adjust mRNA polyplex stability, diameter, pKa, and efficacy. Focusing on a region of the library heatmap (PE4K-A17), we further explored the delivery of luciferase mRNA to IGROV1 ovarian cancer cells in vitro and to C57BL/6 mice in vivo following intravenous administration. PE4K-A17-0.2C8 was identified as an efficacious carrier for delivering mRNA to mouse lungs. The delivery selectivity between organs (lungs versus spleen) was found to be tunable through chemical modification of polyesters (both alkyl chain length and molar ratio in the formulation). Cre recombinase mRNA was delivered to the Lox-stop-lox tdTomato mouse model to study potential application in gene editing. Overall, we identified a series of polymer-mRNA polyplexes stabilized with Pluronic F-127 for safe and effective delivery to mouse lungs and spleens. Structure–activity relationships between alkyl side chains and in vivo delivery were elucidated, which may be informative for the continued development of polymer-based mRNA delivery.
Collapse
|
5
|
Responsive Polyesters with Alkene and Carboxylic Acid Side-Groups for Tissue Engineering Applications. Polymers (Basel) 2021; 13:polym13101636. [PMID: 34070123 PMCID: PMC8158382 DOI: 10.3390/polym13101636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022] Open
Abstract
Main chain polyesters have been extensively used in the biomedical field. Despite their many advantages, including biocompatibility, biodegradability, and others, these materials are rather inert and lack specific functionalities which will endow them with additional biological and responsive properties. In this work, novel pH-responsive main chain polyesters have been prepared by a conventional condensation polymerization of a vinyl functionalized diol with a diacid chloride, followed by a photo-induced thiol-ene click reaction to attach functional carboxylic acid side-groups along the polymer chains. Two different mercaptocarboxylic acids were employed, allowing to vary the alkyl chain length of the polymer pendant groups. Moreover, the degree of modification, and as a result, the carboxylic acid content of the polymers, was easily tuned by varying the irradiation time during the click reaction. Both these parameters, were shown to strongly influence the responsive behavior of the polyesters, which presented adjustable pKα values and water solubilities. Finally, the difunctional polyesters bearing the alkene and carboxylic acid functionalities enabled the preparation of cross-linked polyester films by chemically linking the pendant vinyl bonds on the polymer side groups. The biocompatibility of the cross-linked polymers films was assessed in L929 fibroblast cultures and showed that the cell viability, proliferation, and attachment were greatly promoted on the polyester surface, bearing the shorter alkyl chain length side groups and the higher fraction of carboxylic acid functionalities.
Collapse
|
6
|
Jiang X, Abedi K, Shi J. Polymeric nanoparticles for RNA delivery. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2021. [PMCID: PMC8568333 DOI: 10.1016/b978-0-12-822425-0.00017-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As exemplified by recent clinical approval of RNA drugs including the latest COVID-19 mRNA vaccines, RNA therapy has demonstrated great promise as an emerging medicine. Central to the success of RNA therapy is the delivery of RNA molecules into the right cells at the right location. While the clinical success of nanotechnology in RNA therapy has been limited to lipid-based nanoparticles currently, polymers, due to their tunability and robustness, have also evolved as a class of promising material for the delivery of various therapeutics including RNAs. This article overviews different types of polymers used in RNA delivery and the methods for the formulation of polymeric nanoparticles and highlights recent progress of polymeric nanoparticle-based RNA therapy.
Collapse
|
7
|
Yang H, Zhang J, Song Y, Jiang L, Jiang Q, Xue X, Huang W, Jiang B. Copolymerize Conventional Vinyl Monomers to Degradable and Water‐Soluble Copolymers with a Fluorescence Property. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu 213164 P. R. China
| | - Jiadong Zhang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu 213164 P. R. China
| | - Yiye Song
- Changzhou University Huaide College Changzhou University Jingjiang Jiangsu 214500 P. R. China
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu 213164 P. R. China
| | - Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu 213164 P. R. China
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu 213164 P. R. China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu 213164 P. R. China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu 213164 P. R. China
| |
Collapse
|
8
|
Zhao C, Huang C, Chen Q, Ingram IDV, Zeng X, Ren T, Xie H. Sustainable Aromatic Aliphatic Polyesters and Polyurethanes Prepared from Vanillin-Derived Diols via Green Catalysis. Polymers (Basel) 2020; 12:E586. [PMID: 32150892 PMCID: PMC7182816 DOI: 10.3390/polym12030586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 11/28/2022] Open
Abstract
The design and preparation of polymers by using biobased chemicals is regarded as an important strategy towards a sustainable polymer chemistry. Herein, two aromatic diols, 4-(hydroxymethyl)-2-methoxyphenol and 2-(4-(hydroxymethyl)-2-methoxyphenoxy)ethanol, have been prepared in good yields through the direct reduction of vanillin and hydroxyethylated vanillin (4-(2-hydroxyethoxy)-3-methoxybenzaldehyde) using NaBH4, respectively. The diols were submitted to traditional polycondensation and polyaddition with acyl chlorides and diisocyanatos, and serials of new polyesters and polyurethanes were prepared in high yields with moderate molecular weight ranging from 17,000 to 40,000 g mol-1. Their structures were characterized by 1H NMR, 13C NMR and FTIR, and their thermal properties were studied by TGA and differential scanning calorimetry (DSC), indicating that the as-prepared polyesters and polyurethanes have Tg in the range of 16.2 to 81.2 °C and 11.6 to 80.4 °C, respectively.
Collapse
Affiliation(s)
- Changbo Zhao
- Department of Polymer Materials &Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China (Q.C.)
| | - Caijuan Huang
- Department of Polymer Materials &Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China (Q.C.)
| | - Qin Chen
- Department of Polymer Materials &Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China (Q.C.)
| | - Ian D. V. Ingram
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5DG, UK;
| | - Xiankui Zeng
- Department of Polymer Materials &Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China (Q.C.)
| | - Tianhua Ren
- Department of Polymer Materials &Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China (Q.C.)
| | - Haibo Xie
- Department of Polymer Materials &Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang 550025, China (Q.C.)
| |
Collapse
|
9
|
Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019; 16:1149-1167. [PMID: 31498013 DOI: 10.1080/17425247.2019.1663822] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The delivery of nucleic acid therapeutics through non-viral carriers face multiple biological barriers that reduce their therapeutic efficiency. Despite great progress, there remains a significant technological gap that continues to limit clinical translation of these nanocarriers. A number of polymeric materials are being exploited to efficiently deliver nucleic acids and achieve therapeutic effects. Areas covered: We discuss the recent advances in the polymeric materials for the delivery of nucleic acid therapeutics. We examine the use of common polymer architectures and highlight the challenges that exist for their development from bench side to clinic. We also provide an overview of the most notable improvements made to circumvent such challenges, including structural modification and stimuli-responsive approaches, for safe and effective nucleic acid delivery. Expert opinion: It has become apparent that a universal carrier that follows 'one-size' fits all model cannot be expected for delivery of all nucleic acid therapeutics. Carriers need to be designed to exhibit sensitivity and specificity toward individual targets diseases/indications, and relevant subcellular compartments, each of which possess their own unique challenges. The ability to devise synthetic methods that control the molecular architecture enables the future development that allow for the construction of 'intelligent' designs.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Boston , USA
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Gothenburg , Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville , TN , USA
| | | |
Collapse
|
10
|
Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Ther Deliv 2019; 9:731-749. [PMID: 30277138 DOI: 10.4155/tde-2018-0029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With recent advances in the field of RNAi-based therapeutics, it is possible to make any target gene 'druggable', at least in principle. The present review focuses on aspects critical for pulmonary delivery of formulations of nucleic acid-based drugs. The first part introduces the therapeutic potential of RNAi-based drugs for the treatment of lung diseases. Subsequently, we discuss opportunities for formulation-enabled pulmonary delivery of RNAi drugs in light of key physicochemical properties and physiological barriers. In the following section, an overview is included of methodologies for imparting inhalable characteristics to nucleic acid formulations. Finally, we review one of the bottlenecks in the early preclinical testing of inhalable nucleic acid-based formulations, in other words, devices suitable for pulmonary administration of powder-based formulations in rodents.
Collapse
|
11
|
Fuoco T, Finne-Wistrand A. Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1625059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tiziana Fuoco
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Finne-Wistrand
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
12
|
Ma X, Wang Y, Yao K, Ali Z, Han Y, Pinnau I. Pristine and Carboxyl-Functionalized Tetraphenylethylene-Based Ladder Networks for Gas Separation and Volatile Organic Vapor Adsorption. ACS OMEGA 2018; 3:15966-15974. [PMID: 31458237 PMCID: PMC6643563 DOI: 10.1021/acsomega.8b02544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/09/2018] [Indexed: 06/10/2023]
Abstract
A novel tetraphenylethylene-based ladder network (MP1) made by polycondensation reaction from 4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetrakis(benzene-1,2-diol) and 2,3,5,6-tetrafluoroterephthalonitrile and its COOH-functionalized analogue (MP2) were synthesized for the first time. Their structures were confirmed by solid-state nuclear magnetic resonance (13C cross-polarization magic angle spinning), Fourier transform infrared spectroscopy, and elementary analysis. MP1 exhibited a high Brunauer-Emmett-Teller surface area (1020 m2 g-1), whereas the COOH-functionalized MP2 showed a much smaller surface area (150 m2 g-1) but displayed a more uniform pore size distribution. Because of the high density of nitrile groups in the network polymers of intrinsic microporosity (PIMs) and strong interaction with quadrupole CO2 molecules, MP1 exhibited a high CO2 adsorption capacity of 4.2 mmol g-1 at 273 K, combined with an isosteric heat of adsorption (Q st) of 29.6 kJ mol-1. The COOH-functionalized MP2 showed higher Q st of 34.2 kJ mol-1 coupled with a modest CO2 adsorption capacity of 2.2 mmol g-1. Both network PIMs displayed high theoretical ideal adsorbed solution theory CO2/N2 selectivities (51 and 94 at 273 K vs 34 and 84 at 298 K for MP1 and MP2, respectively). The high selectivities of MP1 and MP2 were confirmed by experimental column breakthrough experiments with CO2/N2 selectivity values of 23 and 45, respectively. Besides the promising CO2 capture and CO2/N2 selectivity properties, MP1 also demonstrated high sorption capacity for toxic volatile organic vapors. At 298 K and a relative pressure of 0.95, benzene and toluene sorption uptakes reached 765 and 1041 mg g-1, respectively. Moreover, MP1 also demonstrated some potential for adsorptive separation of xylene isomers with adsorptive selectivity of 1.75 for m-xylene/o-xylene.
Collapse
Affiliation(s)
- Xiaohua Ma
- Functional
Polymer Membranes Group and Advanced Membranes and Porous Materials
Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yingge Wang
- Functional
Polymer Membranes Group and Advanced Membranes and Porous Materials
Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kexin Yao
- Functional
Polymer Membranes Group and Advanced Membranes and Porous Materials
Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zain Ali
- Functional
Polymer Membranes Group and Advanced Membranes and Porous Materials
Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yu Han
- Functional
Polymer Membranes Group and Advanced Membranes and Porous Materials
Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ingo Pinnau
- Functional
Polymer Membranes Group and Advanced Membranes and Porous Materials
Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Valverde C, Lligadas G, Ronda JC, Galià M, Cádiz V. Hydroxyl functionalized renewable polyesters derived from 10-undecenoic acid: Polymer structure and post-polymerization modification. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Bai D, Chen Q, Chai Y, Ren T, Huang C, Ingram ID, North M, Zheng Q, Xie H. Vanillin derived a carbonate dialdehyde and a carbonate diol: novel platform monomers for sustainable polymers synthesis. RSC Adv 2018; 8:34297-34303. [PMID: 35548608 PMCID: PMC9087012 DOI: 10.1039/c8ra07185c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/29/2018] [Indexed: 12/03/2022] Open
Abstract
Vanillin has been regarded as one of the important biomass-based platform chemicals for aromatic polymers synthesis. Herein, novel symmetric bis(4-formyl-2-methoxyphenyl)carbonate (BFMC) and bis(4-(hydroxymethyl)-2-methoxyphenyl)carbonate (BHMC) polymeric monomers have been synthesized in high yields using vanillin as a raw chemical, which have been submitted for polymer synthesis via well-established polymeric strategies. A new class of poly(carbonate ester)s oligomers with amide moieties in their side chain can be prepared by using the BFMC as one of monomers via the Passerini three compound reaction (3CR). A new class of poly(carbonate ester)s oligomers and poly(carbonate urethane)s can be prepared via reactions between BHMC with dicarboxylic acid chlorides and diisocyanates, respectively. Their structure have been confirmed by 1H NMR, 13C NMR and FTIR, and the gel permeation chromatograph (GPC) analysis shows that the Mn of poly(carbonate ester)s oligomers ranges from 3100 to 7900 with PDI between 1.31 and 1.65, and the Mn of poly(carbonate urethane)s ranges from 16 400 to 24 400 with PDI ranging from 1.36 to 2.17. The DSC analysis shows that the poly(carbonate ester)s oligomers have relative low Tg ranging from 37.4 to 74.1 °C, and the poly(carbonate urethane)s have Tg ranging from 97.3 to 138.3 °C, mainly correlating to the structure of dicarboxylic acid chlorides and diisocyanates used. Novel classes of lignin-derived poly(carbonate ester)s, poly(carbonate ester)s pending amide moiety oligomers, and poly(carbonate urethane)s have been designed and synthesized.![]()
Collapse
Affiliation(s)
- De Bai
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Qin Chen
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Yang Chai
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Tianhua Ren
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Caijuan Huang
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Ian D. V. Ingram
- Green Chemistry Centre of Excellence
- Department of Chemistry
- University of York
- York
- UK
| | - Michael North
- Green Chemistry Centre of Excellence
- Department of Chemistry
- University of York
- York
- UK
| | - Qiang Zheng
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| | - Haibo Xie
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- Guiyang
- P. R. China
| |
Collapse
|
15
|
Yan Y, Xiong H, Zhang X, Cheng Q, Siegwart DJ. Systemic mRNA Delivery to the Lungs by Functional Polyester-based Carriers. Biomacromolecules 2017; 18:4307-4315. [DOI: 10.1021/acs.biomac.7b01356] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunfeng Yan
- College
of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hu Xiong
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xinyi Zhang
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Qiang Cheng
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Daniel J. Siegwart
- Simmons
Comprehensive Cancer Center, Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
16
|
Yan Y, Zhou K, Xiong H, Miller JB, Motea EA, Boothman DA, Liu L, Siegwart DJ. Aerosol delivery of stabilized polyester-siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials 2017; 118:84-93. [PMID: 27974266 PMCID: PMC11164181 DOI: 10.1016/j.biomaterials.2016.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the development of delivery carriers for small RNA therapeutics. However, most achievements have focused on the treatment of liver-associated diseases because conventional lipid and lipidoid nanoparticles (LNPs) readily accumulate in the liver after intravenous (i.v.) administration. Delivering RNAs to other organs and tumor tissues remains an ongoing challenge. Here, we utilized a 540-member combinatorial functional polyester library to discover nanoparticles (NPs) that enable efficacious siRNA delivery to A549 lung cancer cells in vitro and in vivo. PE4K-A13-0.33C6 and PE4K-A13-0.33C10 NPs were efficiently internalized into A549-Luc cells within 4 h. The addition of PEG 2000 DMG lipid or Pluronic F-127 onto the surface of the polyplexes reduced the surface charge of NPs, resulting in an increase of serum stability. We then explored aerosol delivery of stabilized PE4K-A13-0.33C6 and PE4K-A13-0.33C10 NPs to implanted orthotopic lung tumors. We found that by altering the administration route from i.v. to aerosol, the NPs could avoid liver accumulation and instead be specifically localized only in the lungs. This resulted in significant gene silencing in the A549 orthotopic lung tumors. Due to the ability to deliver siRNA to non-liver targets, this approach provides a privileged route for gene silencing in the lungs.
Collapse
Affiliation(s)
- Yunfeng Yan
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kejin Zhou
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Hu Xiong
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Jason B Miller
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Edward A Motea
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - David A Boothman
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
17
|
Muzammil E, Khan A, Stuparu MC. Post-polymerization modification reactions of poly(glycidyl methacrylate)s. RSC Adv 2017. [DOI: 10.1039/c7ra11093f] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single and multiple post-polymerization modifications of poly(glycidyl methacrylate) scaffold through the nucleophilic ring-opening reactions of the pendent epoxide groups are described.
Collapse
Affiliation(s)
- Ezzah M. Muzammil
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371-Singapore
| | - Anzar Khan
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Korea
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371-Singapore
- School of Materials Science and Engineering
| |
Collapse
|
18
|
Raycraft BM, MacDonald JP, McIntosh JT, Shaver MP, Gillies ER. Post-polymerization functionalization of poly(ethylene oxide)–poly(β-6-heptenolactone) diblock copolymers to tune properties and self-assembly. Polym Chem 2017. [DOI: 10.1039/c6py01785a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Copolymers were synthesized and functionalized with a variety of moieties to tune self-assembly and install drugs or fluorescent dyes.
Collapse
Affiliation(s)
- Brooke M. Raycraft
- Department of Chemistry and Center for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada N6A 5B7
| | - Jarret P. MacDonald
- Department of Chemistry and Center for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada N6A 5B7
- School of Chemistry
| | - James T. McIntosh
- Department of Chemistry and Center for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada N6A 5B7
| | | | - Elizabeth R. Gillies
- Department of Chemistry and Center for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada N6A 5B7
- Department of Chemical and Biochemical Engineering
| |
Collapse
|
19
|
Park NH, Fevre M, Voo ZX, Ono RJ, Yang YY, Hedrick JL. Expanding the Cationic Polycarbonate Platform: Attachment of Sulfonium Moieties by Postpolymerization Ring Opening of Epoxides. ACS Macro Lett 2016; 5:1247-1252. [PMID: 35614734 DOI: 10.1021/acsmacrolett.6b00705] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Postpolymerization modification is a critical strategy for the development of functional polycarbonate scaffolds for medicinal applications. To expand the scope of available postpolymerization functionalization methods, polycarbonates containing pendant thioether groups were synthesized by organocatalyzed ring-opening polymerization. The thioether group allowed for the postpolymerization ring-opening of functional epoxides, affording a wide variety of sulfonium-functionalized A-B diblock and A-B-A triblock polycarbonate copolymers. The pendant thioether groups were found to be compatible with previously developed postsynthesis functionalization methods allowing for selective and orthogonal modifications of the polycarbonates.
Collapse
Affiliation(s)
- Nathaniel H. Park
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Mareva Fevre
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Zhi Xiang Voo
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Robert J. Ono
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - James L. Hedrick
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
20
|
Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc Natl Acad Sci U S A 2016; 113:E5702-10. [PMID: 27621434 DOI: 10.1073/pnas.1606886113] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conventional chemotherapeutics nonselectively kill all rapidly dividing cells, which produces numerous side effects. To address this challenge, we report the discovery of functional polyesters that are capable of delivering siRNA drugs selectively to lung cancer cells and not to normal lung cells. Selective polyplex nanoparticles (NPs) were identified by high-throughput library screening on a unique pair of matched cancer/normal cell lines obtained from a single patient. Selective NPs promoted rapid endocytosis into HCC4017 cancer cells, but were arrested at the membrane of HBEC30-KT normal cells during the initial transfection period. When injected into tumor xenografts in mice, cancer-selective NPs were retained in tumors for over 1 wk, whereas nonselective NPs were cleared within hours. This translated to improved siRNA-mediated cancer cell apoptosis and significant suppression of tumor growth. Selective NPs were also able to mediate gene silencing in xenograft and orthotopic tumors via i.v. injection or aerosol inhalation, respectively. Importantly, this work highlights that different cells respond differentially to the same drug carrier, an important factor that should be considered in the design and evaluation of all NP carriers. Because no targeting ligands are required, these functional polyester NPs provide an exciting alternative approach for selective drug delivery to tumor cells that may improve efficacy and reduce adverse side effects of cancer therapies.
Collapse
|
21
|
Kuroishi PK, Bennison MJ, Dove AP. Synthesis and post-polymerisation modification of an epoxy-functional polycarbonate. Polym Chem 2016. [DOI: 10.1039/c6py01636g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and post-polymerisation functionalisation of an epoxide-functional polycarbonate via the selective carbonate ring-opening polymerisation (ROP) of trimethylenepropane oxirane ether carbonate (TMOC) monomer was investigated using a range of organocatalysts.
Collapse
|
22
|
Beyazkilic Z, Lligadas G, Ronda JC, Galià M, Cádiz V. Synthesis and functionalization of vinylsulfide and ketone-containing aliphatic copolyesters from fatty acids. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Yang H, Bai T, Xue X, Huang W, Chen J, Jiang B. Synthesis of metal-free poly(p-dioxanone) by phosphazene base catalyzed ring-opening polymerization. J Appl Polym Sci 2015. [DOI: 10.1002/app.43030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongjun Yang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Tao Bai
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Xiaoqiang Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Wenyan Huang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Jianhai Chen
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Bibiao Jiang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| |
Collapse
|
24
|
Yan Y, Xue L, Miller JB, Zhou K, Kos P, Elkassih S, Liu L, Nagai A, Xiong H, Siegwart DJ. One-pot Synthesis of Functional Poly(amino ester sulfide)s and Utility in Delivering pDNA and siRNA. POLYMER 2015; 72:271-280. [PMID: 26726270 PMCID: PMC4695292 DOI: 10.1016/j.polymer.2015.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of efficacious carriers is an important long-standing challenge in gene therapy. In the past few decades, tremendous progress has been made toward non-viral vectors for gene delivery including cationic lipids and polymers. However, there continues to be a need for clinically translatable polymer-based delivery carriers because they offer tunable degradation profiles and functional groups, diverse structures/morphologies, and scalability in preparation. Herein, we developed a library of 144 degradable polymers with varying amine and hydrophobic content via a facile method that involves thiobutyrolactone aminolysis and consequent thiol-(meth)acrylate or acrylamide addition in one-pot. The polymer platform was evaluated for pDNA and siRNA delivery to HeLa cells in vitro. Hydrophobically modified 5S, 2E1, 6CY1, 5CY2, and 2M1 grafted HEMATL polymers are capable of delivering pDNA depending on the chemical composition and the size of the polyplexes. Hydrophobically modified 5S and 2B grafted HEMATL and 5S grafted ATL polymers exhibit capability for siRNA delivery that approaches the efficacy of commercially available transfection reagents. Due to tunable functionality and scalable preparation, this synthetic approach may have broad applicability in the design of delivery materials for gene therapy.
Collapse
Affiliation(s)
- Yunfeng Yan
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Lian Xue
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Jason B. Miller
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Kejin Zhou
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Petra Kos
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Sussana Elkassih
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Li Liu
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Atsushi Nagai
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Hu Xiong
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Daniel J. Siegwart
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| |
Collapse
|
25
|
Hao J, Kos P, Zhou K, Miller JB, Xue L, Yan Y, Xiong H, Elkassih S, Siegwart DJ. Rapid Synthesis of a Lipocationic Polyester Library via Ring-Opening Polymerization of Functional Valerolactones for Efficacious siRNA Delivery. J Am Chem Soc 2015; 137:9206-9. [PMID: 26166403 DOI: 10.1021/jacs.5b03429] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to control chemical functionality is an exciting feature of modern polymer science that enables precise design of drug delivery systems. Ring-opening polymerization of functional monomers has emerged as a versatile method to prepare clinically translatable degradable polyesters.1 A variety of functional groups have been introduced into lactones; however, the direct polymerization of tertiary amine functionalized cyclic esters has remained elusive. We report a strategy that enabled the rapid synthesis of >130 lipocationic polyesters directly from functional monomers without protecting groups. These polymers are highly effective for siRNA delivery at low doses in vitro and in vivo.
Collapse
Affiliation(s)
- Jing Hao
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Petra Kos
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Kejin Zhou
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Jason B Miller
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Lian Xue
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Yunfeng Yan
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Hu Xiong
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Sussana Elkassih
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Daniel J Siegwart
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| |
Collapse
|