1
|
Yon M, Esmangard L, Enel M, Desmoulin F, Pestourie C, Leygue N, Mingotaud C, Galaup C, Marty JD. Simple hybrid polymeric nanostructures encapsulating macro-cyclic Gd/Eu based complexes: luminescence properties and application as MRI contrast agent. NANOSCALE 2024; 16:3729-3737. [PMID: 38294340 DOI: 10.1039/d3nr06162k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Lanthanide-based macrocycles are successfully incorporated into hybrid polyionic complexes, formed by adding a mixture of zirconium ions to a solution of a double-hydrophilic block copolymer. The resulting nanoobjects with an average radius of approximately 10-15 nm present good colloidal and chemical stability in physiological media even in the presence of competing ions such as phosphate or calcium ions. The final optical and magnetic properties of these objects benefit from both their colloidal nature and the specific properties of the complexes. Hence these new nanocarriers exhibit enhanced T1 MRI contrast, when administered intravenously to mice.
Collapse
Affiliation(s)
- Marjorie Yon
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Lucie Esmangard
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Morgane Enel
- Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062, Toulouse Cedex 9, France.
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse - Paul Sabatier, Toulouse, France
- CREFRE-Anexplo, University of Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Carine Pestourie
- CREFRE-Anexplo, University of Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Nadine Leygue
- Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062, Toulouse Cedex 9, France.
| | - Christophe Mingotaud
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Chantal Galaup
- Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062, Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
2
|
Pokhrel DR, Sah MK, Gautam B, Basak HK, Bhattarai A, Chatterjee A. A recent overview of surfactant-drug interactions and their importance. RSC Adv 2023; 13:17685-17704. [PMID: 37312992 PMCID: PMC10258811 DOI: 10.1039/d3ra02883f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
This review focuses on the self-aggregation properties of different drugs, as well as on their interaction with anionic, cationic, and gemini surfactants. The interaction of drugs with surfactants has been reviewed concerning conductivity, surface tension, viscosity, density, and UV-Vis spectrophotometric measurements, and their relation with critical micelle concentration (CMC), cloud point, and binding constant. The conductivity measurement technique is used for the micellization of ionic surfactants. Cloud point studies can be used for the non-ionic, and also for certain ionic surfactants. Usually, surface tension studies are mostly employed for non-ionic surfactants. The degree of dissociation that is determined is used to evaluate thermodynamic parameters of micellization at various temperatures. The effect of external parameters like temperature, salt, solvent, pH, etc., is discussed for thermodynamics parameters using recent experimental works on drug-surfactant interactions. Consequences of drug-surfactant interaction, condition of drugs during interaction with surfactants, and applications of drug-surfactant interaction are being generalized which reflects current and future potential uses of drug-surfactant interactions.
Collapse
Affiliation(s)
- Dilli Ram Pokhrel
- Department of Chemistry, Damak Multiple Campus Damak Jhapa 57217 Nepal
- Department of Chemistry, Raiganj University Uttar Dinajpur West Bengal-733134 India
| | - Manish Kumar Sah
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar 56613 Nepal
| | - Bibaran Gautam
- Department of Chemistry, Damak Multiple Campus Damak Jhapa 57217 Nepal
| | - Hriday Kumar Basak
- Department of Chemistry, Government General Degree College at Kushmandi Dakshin Dinajpur West Bengal-733121 India
- Department of Chemistry, Raiganj University Uttar Dinajpur West Bengal-733134 India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar 56613 Nepal
- Department of Chemistry, Indian Institute of Technology Madras 600036 India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University Uttar Dinajpur West Bengal-733134 India
| |
Collapse
|
3
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
4
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol Rapid Commun 2021; 42:e2100498. [PMID: 34418199 DOI: 10.1002/marc.202100498] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
5
|
Abbot V, Sharma P. Investigating thermodynamic, acoustic and spectroscopic parameters of rutin trihydrate with cationic surfactant CTAB in hydro-ethanolic solvent systems. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Berki TR, Martinelli J, Tei L, Willcock H, Butler SJ. Polymerizable Gd(iii) building blocks for the synthesis of high relaxivity macromolecular MRI contrast agents. Chem Sci 2021; 12:3999-4013. [PMID: 34163670 PMCID: PMC8179470 DOI: 10.1039/d0sc04750c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
A new synthetic strategy for the preparation of macromolecular MRI contrast agents (CAs) is reported. Four gadolinium(iii) complexes bearing either one or two polymerizable methacrylamide groups were synthesized, serving as monomers or crosslinkers for the preparation of water-soluble, polymeric CAs using Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization. Using this approach, macromolecular CAs were synthesized with different architectures, including linear, hyperbranched polymers and gels. The relaxivities of the polymeric CAs were determined by NMR relaxometry, revealing an up to 5-fold increase in relaxivity (60 MHz, 310 K) for the linear polymers compared with the clinically used CA, Gd-DOTA. Moreover, hyperbranched polymers obtained from Gd(iii) crosslinkers, displayed even higher relaxivities up to 22.8 mM-1 s-1, approximately 8 times higher than that of Gd-DOTA (60 MHz, 310 K). A detailed NMRD study revealed that the enhanced relaxivities of the hyperbranched polymers were obtained by limiting the local motion of the crosslinked Gd(iii) chelate. The versatility of RAFT polymerization of Gd(iii) monomers and crosslinkers opens the doors to more advanced polymeric CAs capable of multimodal, bioresponsive or targeting properties.
Collapse
Affiliation(s)
- Thomas R Berki
- Department of Chemistry, Loughborough University Leicestershire LE11 3TU UK
- Department of Materials, Loughborough University Leicestershire LE11 3TU UK
| | - Jonathan Martinelli
- Department of Science and Technological Innovation, Università del Piemonte Orientale I15121 Alessandria Italy
| | - Lorenzo Tei
- Department of Science and Technological Innovation, Università del Piemonte Orientale I15121 Alessandria Italy
| | - Helen Willcock
- Department of Materials, Loughborough University Leicestershire LE11 3TU UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Leicestershire LE11 3TU UK
| |
Collapse
|
7
|
Moon JD, Sujanani R, Geng Z, Freeman BD, Segalman RA, Hawker CJ. Versatile Synthetic Platform for Polymer Membrane Libraries Using Functional Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua D. Moon
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Rahul Sujanani
- John J. McKetta Jr. Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhishuai Geng
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Benny D. Freeman
- John J. McKetta Jr. Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rachel A. Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Liu D, Chen Y, Zhang L, Tan J. Efficient Preparation of Branched Block Copolymer Assemblies by Photoinitiated RAFT Self-Condensing Vinyl Dispersion Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
9
|
Kim JH, Koppolu S, Akturk E, Roth E, Walters MA. Formation of a lanthanoid complex shell on a nanoparticulate wax core. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Goos JACM, Davydova M, Dilling TR, Cho A, Cornejo MA, Gupta A, Price WS, Puttick S, Whittaker MR, Quinn JF, Davis TP, Lewis JS. Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nucl Med Biol 2020; 84-85:63-72. [PMID: 32135473 PMCID: PMC7253331 DOI: 10.1016/j.nucmedbio.2020.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pretargeting strategies that do not rely on the expression of molecular targets have expanded imaging and therapy options for cancer patients. Nanostars with designed multivalency and which highly accumulate in tumor tissue via the enhanced permeability and retention (EPR) effect may therefore be the ideal vectors for the development of a passive pretargeting approach. METHODS Nanostars were synthesized, consisting of 7-8 center-cross-linked arms that were modified with trans-cyclooctene (TCO) using poly(ethylene glycol) (PEG) linkers of 12 or 106 monomer units or without linker. The bioorthogonal click reaction with radiofluorinated 2,2'-(7-(2-(tetrazine-poly(ethyleneglycol)11-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-PEG11-NODA) or 2,2'-(7-(2-(tetrazine-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-NODA) was measured by ex vivo biodistribution studies and positron emission tomography (PET) in mice bearing tumors with high EPR characteristics. Bioorthogonal masking was performed using a tetrazine-functionalized dextran polymer (Tz-DP). RESULTS Highest tumor accumulation of [18F]F-Tz-PEG11-NODA was observed for nanostars functionalized with TCO without linker, with a tumor uptake of 3.2 ± 0.4%ID/g and a tumor-to-muscle ratio of 12.8 ± 4.2, tumor-to-large intestine ratio of 0.5 ± 0.3 and tumor-to-kidney ratio of 2.0 ± 0.3, being significantly higher than for nanostars functionalized with TCO-PEG12 (P < 0.05) or TCO-PEG106 (P < 0.05). Tumor uptake and tumor-to-tissue ratios did not improve upon bioorthogonal masking with Tz-DP or when using a smaller, more lipophilic tetrazine([18F]F-Tz-NODA). CONCLUSIONS A pretargeting strategy was developed based on the passive delivery of TCO-functionalized nanostars. Such a strategy would allow for the imaging and treatment of tumors with apparent EPR characteristics, with high radioactive tumor doses and minimal doses to off-target tissues.
Collapse
Affiliation(s)
- Jeroen A C M Goos
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; MedTechLabs, Stockholm, Sweden.
| | - Maria Davydova
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Andrew Cho
- Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, USA
| | - Mike A Cornejo
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - William S Price
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - Simon Puttick
- Probing Biosystems Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Herston, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; Department of Radiology, the Molecular Pharmacology Program and the Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Radiology, Weill Cornell Medical College, New York, USA; Department Pharmacology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
11
|
Li H, Luo Q, Zhu H, Li Z, Wang X, Roberts N, Zhang H, Gong Q, Gu Z, Luo K. An advanced micelle-based biodegradable HPMA polymer-gadolinium contrast agent for MR imaging of murine vasculatures and tumors. Polym Chem 2020. [DOI: 10.1039/d0py01133a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A biodegradable HPMA polymeric micelle-based MR contrast agent containing gadolinium (Gd3+) for imaging murine vascular structures and tumors.
Collapse
|
12
|
Huang X, Hu J, Li Y, Xin F, Qiao R, Davis TP. Engineering Organic/Inorganic Nanohybrids through RAFT Polymerization for Biomedical Applications. Biomacromolecules 2019; 20:4243-4257. [DOI: 10.1021/acs.biomac.9b01158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fangyun Xin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
A new type of gadodiamide-conjugated amphiphilic chitosan nanoparticle and its use for MR imaging with significantly enhanced contrastability. Carbohydr Polym 2018; 203:256-264. [PMID: 30318211 DOI: 10.1016/j.carbpol.2018.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/27/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
Magnetic resonance imaging (MRI) has been one of the most frequently-used diagnostic tools with high dimensional precision and positioning accuracy in clinical practices. To achieve contrast enhancement, utilization of high-efficient MR imaging contrast agents becomes a prime consideration and is indispensably reinforced the diagnosis precision, especially for the emerging precision medicine. Gadolinium (Gd)-based complexes has been widely used in current clinical MRI operations, however, numerous side effects were reported and highlighted in clinic. Those drawbacks render specific unmet needs to be clinically and technically improved with a new version of Gd-based compound. Here we report a newly-synthesized amphiphilic Gadodiamide-conjugated carboxymethyl-hexanoyl chitosan (termed as CHC-Gd) hybrid. The gadodiamide was selected is due to its smallest molecular size among other Gd-based complexes reported in literature, which assumed to give least influence on the resulting physicochemical properties such as colloidal stability, nanostructural evolution, and cytocompability, particularly self-assembly capability, of the resulting hybrid upon practical uses. Experimental outcomes showed a successful synthesis of the CHC-Gd hybrid using a one-pot synthesis protocol, where the gadodiamide complexes were covalently attached to the carboxyl groups along the CHC backbone. Self-assembly behavior can be observed to form a sphere-like nanoparticle of 100-200 nm in size as of amphiphilic native CHC macromolecule. Experimental outcomes indicated a largely improved cytocompatibility of the hybrid, compared with free Gd, suggesting the Gd+3 ions were well stabilized in the CHC nanostructure. Excellent contrastability in-vitro and in particular in vivo were measured, where for in-vivo test, a 10-40-folded reduction in dosage, compared with clinical Gd dose, was used and demonstrated a comparative-to-better imaging resolution and brightness. Therefore, from this preliminary investigation, a potential translation to clinical practice through the use of newly-synthesized amphiphilic CHC-Gd hybrid appears to be relatively promising.
Collapse
|
14
|
Mu B, Liu T, Tian W. Long‐Chain Hyperbranched Polymers: Synthesis, Properties, and Applications. Macromol Rapid Commun 2018; 40:e1800471. [DOI: 10.1002/marc.201800471] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Bin Mu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of ScienceNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Tingting Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of ScienceNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of ScienceNorthwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
15
|
Ly J, Li Y, Vu MN, Moffat BA, Jack KS, Quinn JF, Whittaker MR, Davis TP. Nano-assemblies of cationic mPEG brush block copolymers with gadolinium polyoxotungstate [Gd(W 5O 18) 2] 9- form stable, high relaxivity MRI contrast agents. NANOSCALE 2018; 10:7270-7280. [PMID: 29632934 DOI: 10.1039/c8nr01544a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.
Collapse
Affiliation(s)
- Joanne Ly
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018; 6:210-235. [DOI: 10.1039/c7tb02239e] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanogels are water-soluble crosslinked polymer networks with tremendous potential in targeted imaging and controlled drug and gene delivery.
Collapse
Affiliation(s)
- Antonie E. Ekkelenkamp
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology
- Faculty of Science and Technology
- University of Twente
- Enschede
| | - M. Rachèl Elzes
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology
- Faculty of Science and Technology
- University of Twente
- Enschede
| | - Johan F. J. Engbersen
- Department of Controlled Drug Delivery
- MIRA Institute for Biomedical Technology and Technical Medicine
- Faculty of Science and Technology
- University of Twente
- Enschede
| | - Jos M. J. Paulusse
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology
- Faculty of Science and Technology
- University of Twente
- Enschede
| |
Collapse
|
17
|
Esser L, Lengkeek NA, Moffat BA, Vu MN, Greguric I, Quinn JF, Davis TP, Whittaker MR. A tunable one-pot three-component synthesis of an125I and Gd-labelled star polymer nanoparticle for hybrid imaging with MRI and nuclear medicine. Polym Chem 2018. [DOI: 10.1039/c8py00621k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bimodal radioiodine/Gd labelled polymeric nanoparticles prepared using a versatile one-step three-component click reaction.
Collapse
Affiliation(s)
- Lars Esser
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Nigel A. Lengkeek
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee DC
- Australia
| | | | - Mai N. Vu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Ivan Greguric
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee DC
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
18
|
Shamsutdinova N, Zairov R, Nizameev I, Gubaidullin A, Mukhametshina A, Podyachev S, Ismayev I, Kadirov M, Voloshina A, Mukhametzyanov T, Mustafina A. Tuning magnetic relaxation properties of "hard cores" in core-shell colloids by modification of "soft shell". Colloids Surf B Biointerfaces 2017; 162:52-59. [PMID: 29149728 DOI: 10.1016/j.colsurfb.2017.10.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023]
Abstract
The present work introduces an impact of polyelectrolyte-based hydrophilic shell on magnetic relaxivity and luminescence of hard cores built from isostructural complexes of Tb(III) and Gd(III) in the core-shell aqueous colloids. Microscopic and scattering techniques reveal "plum pudding" morphology of the colloids, where polyelectrolyte-coated ultrasmall (<5nm) hard cores form aggregates in aqueous solutions. Interaction of bovine serum albumin (BSA) with the colloids provides a tool to modify the polyelectrolyte-based shell, which is the reason for the improvement in both aggregation behavior of the colloids and their relaxivity. The modification of the hydrophilic polyelectrolyte-based shell enables to tune the longitudinal relaxivity from 5.9 to 23.3mM-1s-1 at 0.47T. This tendency is the reason for significant improvement of contrasting effect of the colloids in T1- and T2-weighted images obtained by whole body scanner at 1.5T. High contrasting effect of the colloids, together with low cytotoxicity towards Wi-38 diploid human cells makes them promising MRI contrast agents.
Collapse
Affiliation(s)
- Nataliya Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Rustem Zairov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation.
| | - Irek Nizameev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Aidar Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Alsu Mukhametshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Sergey Podyachev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Ildus Ismayev
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx St., Kazan, 420111, Russian Federation
| | - Marsil Kadirov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Alexandra Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| | - Timur Mukhametzyanov
- Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russian Federation
| | - Asiya Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, Kazan, 420088, Russian Federation
| |
Collapse
|
19
|
Yang DP, Oo MNNL, Deen GR, Li Z, Loh XJ. Nano-Star-Shaped Polymers for Drug Delivery Applications. Macromol Rapid Commun 2017; 38. [PMID: 28895248 DOI: 10.1002/marc.201700410] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 06/28/2017] [Indexed: 12/19/2022]
Abstract
With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates.
Collapse
Affiliation(s)
- Da-Peng Yang
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ma Nwe Nwe Linn Oo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive Singapore, Singapore, 637459, Singapore
| | - Gulam Roshan Deen
- Soft Materials Laboratory, Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637459, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
20
|
Dong L, Qian J, Hai Z, Xu J, Du W, Zhong K, Liang G. Alkaline Phosphatase-Instructed Self-Assembly of Gadolinium Nanofibers for Enhanced T 2-Weighted Magnetic Resonance Imaging of Tumor. Anal Chem 2017. [PMID: 28627868 DOI: 10.1021/acs.analchem.7b00621] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alkaline phosphatase (ALP) is an important enzyme but using ALP-instructed self-assembly of gadolinium nanofibers for enhanced T2-weighted magnetic resonance imaging (MRI) of tumor has not been reported. In this work, we rationally designed a hydrogelator Nap-FFFYp-EDA-DOTA(Gd) (1P) which, under the catalysis of ALP, was able to self-assemble into gadolinium nanofibers to form hydrogel Gel I for enhanced T2-weighted MR imaging of ALP activity in vitro and in tumor. T2 phantom MR imaging indicated that the transverse relaxivity (r2) value of Gel I was 33.9% higher than that of 1P and both of them were 1 order of magnitude higher than that of Gd-DTPA. In vivo T2-weighted MR imaging showed that, at 9.4 T, ALP-overexpressing HeLa tumors of 1P-injected mice showed obviously enhanced T2 contrast. We anticipate that, by replacing ALP with other enzymes, our approach could be applied for MR diagnosis of other diseases in the future.
Collapse
Affiliation(s)
- Ling Dong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China.,Department of Chemistry and Chemical Engineering, Hefei Normal University , 1688 Lianhua Road, Hefei, Anhui 230601, China
| | - Junchao Qian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences , 350 Shushanhu Road, Hefei, Anhui 230031, China
| | - Zijuan Hai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jinyong Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences , 350 Shushanhu Road, Hefei, Anhui 230031, China
| | - Wei Du
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Kai Zhong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences , 350 Shushanhu Road, Hefei, Anhui 230031, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
Recent Progress on Hyperbranched Polymers Synthesized via Radical-Based Self-Condensing Vinyl Polymerization. Polymers (Basel) 2017; 9:polym9060188. [PMID: 30970866 PMCID: PMC6431861 DOI: 10.3390/polym9060188] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/27/2023] Open
|
22
|
Craciun I, Gunkel-Grabole G, Belluati A, Palivan CG, Meier W. Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers. Nanomedicine (Lond) 2017; 12:811-817. [PMID: 28322116 DOI: 10.2217/nnm-2016-0413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MRI is a sought-after, noninvasive tool in medical diagnostics, yet the direct application of contrast agents to tissue suffers from several drawbacks. Hosting the contrast agents in polymeric nanocarriers can solve many of these issues while creating additional benefit through exploitation of the intrinsic characteristics of the polymeric carriers. In this report, the versatility is highlighted with recent examples of dendritic and hyperbranched polymers, polymer nanoparticles and micelles, and polymersomes as multifunctional bioresponsive nanocarriers for MRI contrast agents.
Collapse
Affiliation(s)
- Ioana Craciun
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Gesine Gunkel-Grabole
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
23
|
Dzhardimalieva GI, Uflyand IE. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers. Dalton Trans 2017; 46:10139-10176. [DOI: 10.1039/c7dt01916e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic methodologies, physico-chemical peculiarities, properties, and structure of metal chelate dendrimers and star and hyperbranched polymers are considered.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
24
|
Hu J, Qiao R, Whittaker MR, Quinn JF, Davis TP. Synthesis of Star Polymers by RAFT Polymerization as Versatile Nanoparticles for Biomedical Applications. Aust J Chem 2017. [DOI: 10.1071/ch17391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The precise control of polymer chain architecture has been made possible by developments in polymer synthesis and conjugation chemistry. In particular, the synthesis of polymers in which at least three linear polymeric chains (or arms) are tethered to a central core has yielded a useful category of branched architecture, so-called star polymers. Fabrication of star polymers has traditionally been achieved using either a core-first technique or an arm-first approach. Recently, the ability to couple polymeric chain precursors onto a functionalized core via highly efficient coupling chemistry has provided a powerful new methodology for star synthesis. Star syntheses can be implemented using any of the living polymerization techniques using ionic or living radical intermediates. Consequently, there are innumerable routes to fabricate star polymers with varying chemical composition and arm numbers. In comparison with their linear counterparts, star polymers have unique characteristics such as low viscosity in solution, prolonged blood circulation, and high accumulation in tumour regions. These advantages mean that, far beyond their traditional application as rheology control agents, star polymers may also be useful in the medical and pharmaceutical sciences. In this account, we discuss recent advances made in our laboratory focused on star polymer research ranging from improvements in synthesis through to novel applications of the product materials. Specifically, we examine the core-first and arm-first preparation of stars using reversible addition–fragmentation chain transfer (RAFT) polymerization. Further, we also discuss several biomedical applications of the resulting star polymers, particularly those made by the arm-first protocol. Emphasis is given to applications in the emerging area of nanomedicine, in particular to the use of star polymers for controlled delivery of chemotherapeutic agents, protein inhibitors, signalling molecules, and siRNA. Finally, we examine possible future developments for the technology and suggest the further work required to enable clinical applications of these interesting materials.
Collapse
|
25
|
Pal S, Brooks WLA, Dobbins DJ, Sumerlin BS. Employing a Sugar-Derived Dimethacrylate to Evaluate Controlled Branch Growth during Polymerization with Multiolefinic Compounds. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunirmal Pal
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - William L. A. Brooks
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Daniel J. Dobbins
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
26
|
Cao Y, Liu M, Zhang K, Zu G, Kuang Y, Tong X, Xiong D, Pei R. Poly(glycerol) Used for Constructing Mixed Polymeric Micelles as T1 MRI Contrast Agent for Tumor-Targeted Imaging. Biomacromolecules 2016; 18:150-158. [DOI: 10.1021/acs.biomac.6b01437] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yi Cao
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School
of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Min Liu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kunchi Zhang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guangyue Zu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Kuang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaoyan Tong
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Dangsheng Xiong
- School
of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Renjun Pei
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
27
|
Jackson AW, Chandrasekharan P, Ramasamy B, Goggi J, Chuang KH, He T, Robins EG. Octreotide Functionalized Nano-Contrast Agent for Targeted Magnetic Resonance Imaging. Biomacromolecules 2016; 17:3902-3910. [PMID: 27936729 DOI: 10.1021/acs.biomac.6b01256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization has been employed to synthesize branched block copolymer nanoparticles possessing 1,4,7,10-tetraazacyclododecane-N,N,'N,″N,‴-tetraacetic acid (DO3A) macrocycles within their cores and octreotide (somatostatin mimic) cyclic peptides at their periphery. These polymeric nanoparticles have been chelated with Gd3+ and applied as magnetic resonance imaging (MRI) nanocontrast agents. This nanoparticle system has an r1 relaxivity of 8.3 mM-1 s-1, which is 3 times the r1 of commercial gadolinium-based contrast agents (GBCAs). The in vitro targeted binding efficiency of these nanoparticles shows 5 times greater affinity to somatostatin receptor type 2 (SSTR2) with Ki = 77 pM (compared to somatostatin with Ki = 0.385 nM). We have also evaluated the tumor targeting molecular imaging ability of these branched copolymer nanoparticle in vivo using nude/NCr mice bearing AR42J rat pancreatic tumor (SSTR2 positive) and A549 human lung carcinoma tumor (SSTR2 negative) xenografts.
Collapse
Affiliation(s)
- Alexander W Jackson
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A* Star), 1 Pesek Road, Jurong Island, Singapore , 627833
| | - Prashant Chandrasekharan
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667
| | - Boominathan Ramasamy
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667
| | - Julian Goggi
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , 117456
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , 117456.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , 117599
| | - Tao He
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A* Star), 1 Pesek Road, Jurong Island, Singapore , 627833
| | - Edward G Robins
- Singapore Bioimaging Consortium , Agency for Science, Technology and Research (A* Star), 11 Biopolis Way, Helios, Singapore , 138667.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , 117599
| |
Collapse
|
28
|
Frangville C, Li Y, Billotey C, Talham DR, Taleb J, Roux P, Marty JD, Mingotaud C. Assembly of Double-Hydrophilic Block Copolymers Triggered by Gadolinium Ions: New Colloidal MRI Contrast Agents. NANO LETTERS 2016; 16:4069-4073. [PMID: 27224089 DOI: 10.1021/acs.nanolett.6b00664] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mixing double-hydrophilic block copolymers containing a poly(acrylic acid) block with gadolinium ions in water leads to the spontaneous formation of polymeric nanoparticles. With an average diameter near 20 nm, the nanoparticles are exceptionally stable, even after dilution and over a large range of pH and ionic strength. High magnetic relaxivities were measured in vitro for these biocompatible colloids, and in vivo magnetic resonance imaging on rats demonstrates the potential utility of such polymeric assemblies.
Collapse
Affiliation(s)
- Camille Frangville
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier , 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Yichen Li
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Claire Billotey
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet , Hospices Civils de Lyon, 42023 Saint-Etienne Cedex 2, France
| | - Daniel R Talham
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Jacqueline Taleb
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet , Hospices Civils de Lyon, 42023 Saint-Etienne Cedex 2, France
| | - Patrick Roux
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet , Hospices Civils de Lyon, 42023 Saint-Etienne Cedex 2, France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier , 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier , 118, route de Narbonne 31062 Toulouse Cedex 9, France
| |
Collapse
|
29
|
Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chem Rev 2016; 116:6743-836. [PMID: 27299693 DOI: 10.1021/acs.chemrev.6b00008] [Citation(s) in RCA: 528] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.
Collapse
Affiliation(s)
- Jing M Ren
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 2000444, People's Republic of China
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
30
|
Gossuin Y, Serhan Z, Sandiford L, Henrard D, Marquardsen T, de Rosales RTM, Sakellariou D, Ferrage F. Sample Shuttling Relaxometry of Contrast Agents: NMRD Profiles above 1 T with a Single Device. APPLIED MAGNETIC RESONANCE 2016; 47:237-246. [PMID: 26941480 PMCID: PMC4761365 DOI: 10.1007/s00723-015-0751-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 06/05/2023]
Abstract
Nuclear magnetic relaxation dispersion (NMRD) profiles are essential tools to evaluate the efficiency and investigate the properties of magnetic compounds used as contrast agents for magnetic resonance imaging (MRI), namely gadolinium chelates and superparamagnetic iron oxide particles. These curves represent the evolution of proton relaxation rates with the magnetic field. NMRD profiles are unparalleled to probe extensively the spectral density function involved in the relaxation of water in the presence of the paramagnetic ion or the magnetic nanoparticles. This makes such profiles an excellent test of the adequacy of a theoretical relaxation model and allow for a predictive approach to the development and optimization of contrast agents. From a practical point of view they also allow to evaluate the efficiency of a contrast agent in a certain range of magnetic fields. Nowadays, these curves are recorded with commercial fast field cycling devices, often limited to a maximum Larmor frequency of 40 MHz (0.94 T). In this article, relaxation data were acquired on a wide range of magnetic fields, from 3.5 × 10-4 to 14 T, for a gadolinium-based contrast agent and for PEGylated iron oxide nanoparticles. We show that the low-field NMRD curves can be completed with high-field data obtained on a shuttle apparatus device using the superconductive magnet of a high-field spectrometer. This allows a better characterization of the contrast agents at relevant magnetic fields for clinical and preclinical MRI, but also refines the experimental data that could be used for the validation of relaxation models.
Collapse
Affiliation(s)
- Yves Gossuin
- />Biomedical Physics Department, University of Mons, 24, Avenue du Champ de Mars, 7000 Mons, Belgium
| | - Zeinab Serhan
- />Département de Chimie, École Normale Supérieure - PSL Research University, 24 rue Lhomond, 75005 Paris, France
- />Sorbonne Universités UPMC Univ Paris 06, LBM, 4 place Jussieu, 75005 Paris, France
- />UMR 7203 LBM, CNRS, 75005 Paris, France
| | - Lydia Sandiford
- />Division of Imaging Sciences and Biomedical Engineering, St. Thomas’ Hospital, King’s College London, London, SE1 7EH UK
| | - Daniel Henrard
- />Biomedical Physics Department, University of Mons, 24, Avenue du Champ de Mars, 7000 Mons, Belgium
| | | | - Rafael T. M. de Rosales
- />Division of Imaging Sciences and Biomedical Engineering, St. Thomas’ Hospital, King’s College London, London, SE1 7EH UK
| | - Dimitrios Sakellariou
- />Laboratoire Structure et Dynamique par Résonance Magnétique, CEA Saclay, DSM, IRAMIS, UMR CEA/CNRS 3685, NIMBE, 91191 Gif-sur-Yvette Cedex, France
| | - Fabien Ferrage
- />Département de Chimie, École Normale Supérieure - PSL Research University, 24 rue Lhomond, 75005 Paris, France
- />Sorbonne Universités UPMC Univ Paris 06, LBM, 4 place Jussieu, 75005 Paris, France
- />UMR 7203 LBM, CNRS, 75005 Paris, France
| |
Collapse
|
31
|
Alfurhood JA, Bachler PR, Sumerlin BS. Hyperbranched polymers via RAFT self-condensing vinyl polymerization. Polym Chem 2016. [DOI: 10.1039/c6py00571c] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RAFT-mediated self-condensing vinyl polymerization is a promising synthetic tool to create well-defined hyperbranched polymers.
Collapse
Affiliation(s)
- Jawaher A. Alfurhood
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Patricia R. Bachler
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| |
Collapse
|
32
|
Yang CT, Padmanabhan P, Gulyás BZ. Gadolinium(iii) based nanoparticles for T1-weighted magnetic resonance imaging probes. RSC Adv 2016. [DOI: 10.1039/c6ra07782j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review summarized the recent progress on Gd(iii)-based nanoparticles asT1-weighted MRI contrast agents and multimodal contrast agents.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| | | | - Balázs Z. Gulyás
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| |
Collapse
|
33
|
Khor SY, Hu J, McLeod VM, Quinn JF, Porter CJ, Whittaker MR, Kaminskas LM, Davis TP. The Pharmacokinetics and Biodistribution of a 64 kDa PolyPEG Star Polymer After Subcutaneous and Pulmonary Administration to Rats. J Pharm Sci 2016; 105:293-300. [DOI: 10.1016/j.xphs.2015.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022]
|
34
|
Esser L, Truong NP, Karagoz B, Moffat BA, Boyer C, Quinn JF, Whittaker MR, Davis TP. Gadolinium-functionalized nanoparticles for application as magnetic resonance imaging contrast agents via polymerization-induced self-assembly. Polym Chem 2016. [DOI: 10.1039/c6py01797e] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymerization-induced self-assembly (PISA) is an easily applied synthetic technique for the preparation of polymer nanoparticles with various shapes and at high concentrations.
Collapse
Affiliation(s)
- Lars Esser
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Bunyamin Karagoz
- Istanbul Technical University
- Department of Chemistry
- Istanbul
- Turkey
| | | | - Cyrille Boyer
- Australian Centre for Nanomedicine
- The University of New South Wales
- Sydney
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
35
|
Wang X, Tu M, Yan K, Li P, Pang L, Gong Y, Li Q, Liu R, Xu Z, Xu H, Chu PK. Trifunctional Polymeric Nanocomposites Incorporated with Fe₃O₄/Iodine-Containing Rare Earth Complex for Computed X-ray Tomography, Magnetic Resonance, and Optical Imaging. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24523-24532. [PMID: 26484385 DOI: 10.1021/acsami.5b08802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, a novel polymerizable CT contrast agent integrating iodine with europium(III) has been developed by a facile and universal coordination chemistry method. The Fe3O4 nanoparticles are then incorporated into this iodine-containing europium complex by seed-emulsifier-free polymerization. The nanocomposites combining the difunctional complex and superparamagnetic Fe3O4 nanoparticles, which have uniform size dispersion and high encapsulation rate, are suitable for computed X-ray tomography (CT), magnetic resonance imaging (MRI), and optical imaging. They possess good paramagnetic properties with a maximum saturation magnetization of 2.16 emu/g and a transverse relaxivity rate of 260 mM(-1) s(-1), and they exhibit obvious contrast effects with an iodine payload less than 4.8 mg I/mL. In the in vivo optical imaging assessment, vivid fluorescent dots can be observed in the liver and spleen by two-photon confocal scanning laser microscopy (CLSM). All the results showed that nanocomposites as polymeric trifunctional contrast agents have great clinical potential in CT, MR, and optical imaging.
Collapse
Affiliation(s)
- Xin Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Mengqi Tu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei 430030, China
| | - Kai Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Penghui Li
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Long Pang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Ying Gong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Qing Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Ruiqing Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Haibo Xu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei 430030, China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
36
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
37
|
Khor SY, Hu J, McLeod VM, Quinn JF, Williamson M, Porter CJ, Whittaker MR, Kaminskas LM, Davis TP. Molecular weight (hydrodynamic volume) dictates the systemic pharmacokinetics and tumour disposition of PolyPEG star polymers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2099-108. [DOI: 10.1016/j.nano.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
38
|
Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm 2015; 97:350-70. [DOI: 10.1016/j.ejpb.2015.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
|
39
|
|
40
|
Liu Q, Chen S, Chen J, Du J. An Asymmetrical Polymer Vesicle Strategy for Significantly Improving T1 MRI Sensitivity and Cancer-Targeted Drug Delivery. Macromolecules 2015. [DOI: 10.1021/ma502255s] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiuming Liu
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Shuai Chen
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jing Chen
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
41
|
Boase NRB, Blakey I, Rolfe BE, Mardon K, Thurecht KJ. Synthesis of a multimodal molecular imaging probe based on a hyperbranched polymer architecture. Polym Chem 2014. [DOI: 10.1039/c4py00513a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|