1
|
Seregina T, Shelomentsev I, Krivoborodov E, Vaniushenkova A, Toropygin I, Dyatlov A, Lukashov N, Dyatlov V. Physicochemical and Biological Properties of Vancomycin-Containing Antibacterial Polysaccharide Gels for Biocomposite Bone Implant Impregnation. Biomacromolecules 2024; 25:4156-4167. [PMID: 38922325 DOI: 10.1021/acs.biomac.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Polymeric drugs containing up to 60% by weight of the antibiotic vancomycin were synthesized based on dextran carriers activated with epichlorohydrin. Vancomycin was covalently bound, involving the primary amino group of the molecule through the hydroxypropyl radical to the C6 position of the anhydroglucose units of the dextran main chain. Covalent binding is necessary to prevent spontaneous release of the antibiotic from the gel, thereby reducing the risk of bacterial multiresistance. Antibacterial depot gels were obtained from those polymers, containing up to 17.5% by weight of polysaccharide with a cross-linking density of q = 3-5 nodes per macromolecule for the deposition of another type of drugs not covalently bound to the polymer gel. They were used to coat the surface of the internal pores of biocomposite bone implants based on bovine cancellous bone used in orthopedics. The chemical structure of the polymer was studied using 13C NMR spectroscopy and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The stiffness of the gels was evaluated by the values of the accumulation modulus G' = 170-270 kPa and the loss modulus G″ = 3.7-4.2 kPa determined on a rheometer. Their values are close to those typical for materials used to replace soft tissue in plastic surgery. The minimum inhibitory concentration of the gels against Staphylococcus aureus P209 depends on the antibiotic content in the polymer. It equals 2.5 mg/L for vancomycin we used and 100 mg/L for a polymer containing 50% by weight of covalently bound antibiotic. The cytotoxic concentration measured with cell culture HEK 293T exceeds 1200 mg/L in 24 h exposure. The release dynamics of drugs not covalently bound to dextran from the depot gel were studied using fluorescein as a model. The release time is independent of the gel density and lasts up to 6 days for a 2 mm thick layer. Both the gel and the bone implants impregnated with it maintained consistently high antibacterial activity throughout the experiment, up to its completion after 168 h, with the local concentration of the released antibiotic at the site of bacterial attack exceeding the therapeutic level by 200 times.
Collapse
Affiliation(s)
- Tatiana Seregina
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Ilya Shelomentsev
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Efrem Krivoborodov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Anna Vaniushenkova
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Ilya Toropygin
- V. N. Orekhovich Institute of Biomedical Chemistry, Pogodinskaya str., 10, p. 8, 119121 Moscow, Russia
| | - Alexander Dyatlov
- The Hebrew University of Jerusalem, POB 12272, Jerusalem 9112000, Israel
| | - Nikolay Lukashov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Valerie Dyatlov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| |
Collapse
|
2
|
Soto-Cruz J, Mukwaya V, Naz M, Zhang P, López-Brenes MJ, Sáenz-Arce G, Rojas-Carrillo O, Dou H. Polysaccharide/Lipid Nanoconjugates as Alternative Building Blocks for Highly Biocompatible Microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9556-9566. [PMID: 35880575 DOI: 10.1021/acs.langmuir.2c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saccharide/lipid nanoconjugates are attractive building blocks for the construction of micro- and nanosized structures because of the roles of glycolipids in human body, courtesy of their intrinsic and functional properties. Herein, nanoconjugates based on dextran and oleic acid (Dex-OA) were synthesized via facile amide-linkage chemistry. The resultant Dex-OA micelles could self-assemble into spherical water-filled microcapsules via a water-in-oil emulsification process. By cross-linking, the microcapsules could be transferred to aqueous media, forming a stable microcapsule dispersion. According to optical and fluorescence microscopy, the microcapsules displayed a spherical morphology, and their synthesis is dependent on the concentration of Dex-OA nanoconjugates. Furthermore, the microcapsules could easily encapsulate and retain fluorescently labeled dextran. This strategy offers a robust and efficient method for the construction of microcapsules from fully natural amphiphilic building blocks with the potential for application in diverse fields such as biomedicine, protocell research, and microreactors.
Collapse
Affiliation(s)
- Jackeline Soto-Cruz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Laboratorio de Polímeros (POLIUNA), School of Chemistry, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
- National Center for Biotechnological Innovations (CENIBiot), CeNAT-CONARE, Avenue 35, Street 100, Pavas, San José 10109, Costa Rica
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | - Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | - Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | | | - Giovanni Sáenz-Arce
- Departamento de Física, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
| | - Oscar Rojas-Carrillo
- Laboratorio de Polímeros (POLIUNA), School of Chemistry, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| |
Collapse
|
3
|
Sizova S, Shakurov R, Mitko T, Shirshikov F, Solovyeva D, Konopsky V, Alieva E, Klinov D, Bespyatykh J, Basmanov D. The Elaboration of Effective Coatings for Photonic Crystal Chips in Optical Biosensors. Polymers (Basel) 2021; 14:polym14010152. [PMID: 35012173 PMCID: PMC8747551 DOI: 10.3390/polym14010152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/09/2023] Open
Abstract
Here, we propose and study several types of quartz surface coatings designed for the high-performance sorption of biomolecules and their subsequent detection by a photonic crystal surface mode (PC SM) biosensor. The deposition and sorption of biomolecules are revealed by analyzing changes in the propagation parameters of optical modes on the surface of a photonic crystal (PC). The method makes it possible to measure molecular and cellular affinity interactions in real time by independently recording the values of the angle of total internal reflection and the angle of excitation of the surface wave on the surface of the PC. A series of dextrans with various anchor groups (aldehyde, carboxy, epoxy) suitable for binding with bioligands have been studied. We have carried out comparative experiments with dextrans with other molecular weights. The results confirmed that dextran with a Mw of 500 kDa and anchor epoxy groups have a promising potential as a matrix for the detection of proteins in optical biosensors. The proposed approach would make it possible to enhance the sensitivity of the PC SM biosensor and also permit studying the binding process of low molecular weight molecules in real time.
Collapse
Affiliation(s)
- Svetlana Sizova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (R.S.); (T.M.); (F.S.); (D.K.); (J.B.); (D.B.)
- Department of Biomaterials and Bionanotechnology, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia;
- Correspondence: ; Tel.: +7-916-204-17-10
| | - Ruslan Shakurov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (R.S.); (T.M.); (F.S.); (D.K.); (J.B.); (D.B.)
| | - Tatiana Mitko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (R.S.); (T.M.); (F.S.); (D.K.); (J.B.); (D.B.)
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Fedor Shirshikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (R.S.); (T.M.); (F.S.); (D.K.); (J.B.); (D.B.)
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Sq., 125047 Moscow, Russia
| | - Daria Solovyeva
- Department of Biomaterials and Bionanotechnology, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia;
| | - Valery Konopsky
- Solid State Spectroscopy Department, Institute of Spectroscopy RAS, 5 Fizicheskaya St., 108840 Moscow, Russia; (V.K.); (E.A.)
| | - Elena Alieva
- Solid State Spectroscopy Department, Institute of Spectroscopy RAS, 5 Fizicheskaya St., 108840 Moscow, Russia; (V.K.); (E.A.)
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (R.S.); (T.M.); (F.S.); (D.K.); (J.B.); (D.B.)
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Julia Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (R.S.); (T.M.); (F.S.); (D.K.); (J.B.); (D.B.)
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Sq., 125047 Moscow, Russia
| | - Dmitry Basmanov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (R.S.); (T.M.); (F.S.); (D.K.); (J.B.); (D.B.)
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| |
Collapse
|
4
|
Immobilization of amikacin on dextran: biocomposite materials that release an antibiotic in the presence of bacterial dextranase. POLYM INT 2021. [DOI: 10.1002/pi.6171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Two dimensional porous frameworks of graphyne family as therapeutic delivery vehicles for Idarubicin biomolecule in silico: Density functional theory and molecular dynamics simulation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Chen J, Guo Z, Jiao Z, Lin L, Xu C, Tian H, Chen X. Poly(l-glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for Gene Therapy of Malignant Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19295-19306. [PMID: 32239907 DOI: 10.1021/acsami.0c02769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, pH-sensitive polymers have received extensive attention in tumor therapy. However, the rapid response to pH changes is the key to achieving efficient treatment. Here, a novel shielding system with a rapidly pH-responsive polymer (PAMT) is synthesized by click reaction between poly(γ-allyl-l-glutamate) and thioglycolic acid or 2-(Boc-amino)ethanethiol. The zwitterionic biodegradable polymer PAMT, which is negatively charged at physiological pH, can be used to shield positively charged nanoparticles. PAMT is electrostatically attached to the surface of the positively charged PEI/pDNA complex to form a ternary complex. The zwitterionic PAMT-shielded complex exhibits rapid charge conversion when the pH decreases from 7.4 to 6.8. For the in vivo tumor inhibition experiment, PAMT/PEI/shVEGF injected intravenously shows a more significant inhibitory effect on tumor growth. The excellent results are mainly attributed to introduction of the zwitterionic copolymer PAMT, which can shield the positively charged PEI/shVEGF complex in physiological conditions, while the surface potential of the shielded complexes changes to a positive charge in the acidic tumor environment.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
7
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
8
|
Abstract
Dextran has become a hot research topic in drug vehicle material because of its biodegradable, nonspecific cell adhesion, resistance to protein adsorption, low price and ease of structural modification. The fate and changes of dextran in vivo are not fully understood. It is helpful to guide the design and modification of dextran drug vehicles to clarify the changes in the morphology, metabolism and function of drug targets. With the deep understanding of dextran and the emergence of new functional dextran derivatives, its application in nanodrug delivery systems will be more and more, clinically applicable delivery systems may also be available.
Collapse
|
9
|
Yue J, He L, Tang Y, Yang L, Wu B, Ni J. Facile design and development of photoluminescent graphene quantum dots grafted dextran/glycol-polymeric hydrogel for thermoresponsive triggered delivery of buprenorphine on pain management in tissue implantation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111530. [PMID: 31279287 DOI: 10.1016/j.jphotobiol.2019.111530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
A novel nano-formulations of biocompatible, biodegradable and thermo-responsive graphene quantum dots (GQDs) loaded dextran/poly(N-isopropylacrylamide) (Dex/PNIPAM) copolymeric matrix was synthesized and analyzed the materials characterization, sustained drug delivery system, tissue feasibility in the tissue implantation site. This research report was aimed to grafting and functionalizing thermo-responsive (Dex/PNIPAM) copolymeric composite with presence of graphene quantum dots to achieve thermal responsive drug delivery (TrDD) with no harm effect in the implantation site. The synthesized GQD by using ionic liquid were evaluated by spectroscopic (DLS, PL, XRD and Raman spectroscopy) and Transmission electron microscopic analysis (TEM). The ultra-small GQDs loaded Dex/PNIPAM and was appeared to be asymmetric and open uniform porous structure, which can be significantly favorable for cell uptake and greatly influenced to be an effective drug carrier into the cellular compartment with good fluid flow. The PNIPAM polymeric composite were exhibited sustained and enhanced drug release percentages with increasing temperature at above low critical solution temperature (LCST) is 39 °C comparable to the cumulative drug release profile of below LCST (32 °C), which demonstrated that thermo-responsive polymer was played a significant role in the delivery system. The treated group of GQDs-Dex/PNIPAM was observed that no inflammation and shows noteworthy stromal cell infiltration, demonstrating that the synthesized drug carriers did not harm to the nerves and tissues and only was responsible for the pain management.
Collapse
Affiliation(s)
- Jianning Yue
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng, Beijing 100053, China.
| | - Liangliang He
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng, Beijing 100053, China
| | - Yuanzhang Tang
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng, Beijing 100053, China
| | - Liqiang Yang
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng, Beijing 100053, China
| | - Baishan Wu
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng, Beijing 100053, China
| | - Jiaxiang Ni
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng, Beijing 100053, China
| |
Collapse
|
10
|
Monolithic cellulose supported metal nanoparticles as green flow reactor with high catalytic efficiency. Carbohydr Polym 2019; 214:195-203. [PMID: 30925989 DOI: 10.1016/j.carbpol.2019.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
A highly effective, stable and reusable flow microreactor was developed by utilizing the environmentally sustainable porous monolithic cellulose based on a facile temperature induced phase separation (TIPS) method. The obtained microreator could be applied to efficiently and continuously catalysing the reduction reaction of 4-nitrophenol (an important reaction in water treatment) without any post-treatment or regeneration of catalysts. Moreover, the monolith overcame the brittleness of the crystalline cellulose and showed a good mechanical resilience, suggesting a great potential for the practical application in severe environment. Compared with previous reported Pd supported catalytic systems, this microreactor exhibited extremely high catalytic efficiency (turnover frequency, TOF = 4660 h-1, almost 4 times higher than that of cellulose nanocrystals supported catalyst) and long-term stability. This work provided a new strategy to construct highly effective and reusable metal NPs involved catalytic system by utilizing biodegradable cellulose materials.
Collapse
|
11
|
Huang G, Huang H. Application of dextran as nanoscale drug carriers. Nanomedicine (Lond) 2018; 13:3149-3158. [DOI: 10.2217/nnm-2018-0331] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dextran is a kind of biocompatible, nontoxic and nonimmunogenic biological substance that has been widely used in drug-delivery systems. With further research and understanding of dextran and its derivatives, people can more precisely control the sequence of dextran by chemical and biosynthetic methods as needed, and modify various structures to improve the properties of dextran, such as hydrophilicity, hydrophobicity, temperature sensitivity, pH sensitivity and ionic strength sensitivity, which will further expand the application of dextran and its derivatives in drug-delivery systems. Herein, the application of dextran and its derivatives in gene transfection and drug delivery was summarized and analyzed, and the problems were studied. At the same time, its application prospects are forecasted.
Collapse
Affiliation(s)
- Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Hualiang Huang
- School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
12
|
Shi X, Bai S, Yang C, Ma X, Hou M, Chen J, Xue P, Li CM, Kang Y, Xu Z. Improving the carrier stability and drug loading of unimolecular micelle-based nanotherapeutics for acid-activated drug delivery and enhanced antitumor therapy. J Mater Chem B 2018; 6:5549-5561. [PMID: 32254965 DOI: 10.1039/c8tb01384e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanomedicines based on unimolecular micelles (UMs) have shown unique advantages such as high micellar stability, programmed cargo delivery and enhanced therapeutic efficiency. Herein, we report an acid-activated amphiphilic prodrug based on a dextran (DEX) polymeric framework (DEX-PDOX-b-POEGMA, labelled DMO@DOX), which conjugates a diblock copolymer of a hydrophobic doxorubicin (DOX) prodrug block and a hydrophilic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) block by atom transfer radical polymerization. The DMO@DOX prodrug can form nano-sized UMs in aqueous media attributed to its amphiphilic structure and achieve a very high drug loading rate of 80.4 wt%. In the presence of an acidic medium resembling a tumor microenvironment, the hydrazone bond embedded in the prodrug is broken, which releases the loaded drug of DOX. The DMO@DOX prodrug shows a notable and preferential inhibition effect on the growth of tumor cells in vitro compared to healthy cells, leading to advantageous biocompatibility and effective antitumor activity. For verification, the DMO@DOX prodrug was applied in the treatment of a mouse model bearing xenograft tumors and showed a remarkable therapeutic performance. This study demonstrates an effective design of UM-based nanoagents to improve the micellar stability of polymeric prodrug micelles with enhanced performance in cancer therapy.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang Y, Jiang Q, Wojnilowicz M, Pan S, Ju Y, Zhang W, Liu J, Zhuo R, Jiang X. Acid-sensitive poly(β-cyclodextrin)-based multifunctional supramolecular gene vector. Polym Chem 2018. [DOI: 10.1039/c7py01847a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multifunctional host–guest supramolecular PCD-acetal-PGEA/Ad-PEG-FA polyplexes showing FA-targeting and acid-triggered intracellular gene release resulted in good transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Yunti Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Qimin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Marcin Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Wenjie Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
14
|
Sun Y, Yang Z, Wang C, Yang T, Cai C, Zhao X, Yang L, Ding P. Exploring the role of peptides in polymer-based gene delivery. Acta Biomater 2017; 60:23-37. [PMID: 28778533 DOI: 10.1016/j.actbio.2017.07.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Abstract
Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. STATEMENT OF SIGNIFICANCE Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency.
Collapse
Affiliation(s)
- Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunxi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
15
|
Shahabi M, Raissi H. Screening of the structural, topological, and electronic properties of the functionalized Graphene nanosheets as potential Tegafur anticancer drug carriers using DFT method. J Biomol Struct Dyn 2017; 36:2517-2529. [DOI: 10.1080/07391102.2017.1360209] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahnaz Shahabi
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
16
|
Tan J, Wang H, Xu F, Chen Y, Zhang M, Peng H, Sun X, Shen Y, Huang Y. Poly-γ-glutamic acid-based GGT-targeting and surface camouflage strategy for improving cervical cancer gene therapy. J Mater Chem B 2017; 5:1315-1327. [PMID: 32263599 DOI: 10.1039/c6tb02990f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A γ-PGA-based GGT-targeting and surface camouflage strategy for constructing a ternary layer-by-layer self-assembly gene delivery system.
Collapse
Affiliation(s)
- Jiao Tan
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
- West China School of Pharmacy
- Sichuan University
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Fan Xu
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
- Nano Sci-Tech Institute
- University of Science and Technology of China
| | - Yingzhi Chen
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Meng Zhang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Huige Peng
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Xun Sun
- West China School of Pharmacy
- Sichuan University
- China
| | - Youqing Shen
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| |
Collapse
|
17
|
Bae JY, Lee HJ, Choi WS. Cube sugar-like sponge/polymer brush composites for portable and user-friendly heavy metal ion adsorbents. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:133-142. [PMID: 27526279 DOI: 10.1016/j.jhazmat.2016.07.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Portable, non-toxic, and user-friendly sponge composites decorated with polyelectrolyte (PE) brushes were developed for the fast and efficient removal of heavy metal ions from waste water or drinking water. The polyacrylamide (PAM) and polyacrylic acid (PAA) brushes were grafted onto the sponge via "grafting-from" polymerization. For the polyethyleneimine (PEI) brush, "grafting-to" polymerization was used. A polydopamine (Pdop) layer was first coated on the sponge. Then, PEI was grafted onto the Pdop-coated sponge via a Michael addition reaction. The PEI-grafted sponge exhibited the best adsorption capacity and the fastest reaction rate of all the brushes due to the numerous adsorption sites of the PEI. The adsorption performance of two different PEI-grafted sponges depended on the molecular weight (MW) of the PEI. Simply by being dipped into a glass of water, non-toxic PEI-grafted sponge instantly removed the low concentration heavy metal ions, demonstrating a practical application for individual users.
Collapse
Affiliation(s)
- Ji Young Bae
- Department of Chemical and Biological Engineering, Hanbat National University, San 16-1, Dukmyoung dong, Yuseong-gu, Daejeon, 305-719, Republic of Korea
| | - Ha-Jin Lee
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyun-ro, Seoudaemun-gu, Seoul, 120-140, Republic of Korea.
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, San 16-1, Dukmyoung dong, Yuseong-gu, Daejeon, 305-719, Republic of Korea.
| |
Collapse
|
18
|
Liu J, Feng M, Liang D, Yang J, Tang X. Vitamin E-Labeled Polyethylenimine for in vitro and in vivo Gene Delivery. Biomacromolecules 2016; 17:3153-3161. [DOI: 10.1021/acs.biomac.6b00776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinxing Liu
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Mengke Feng
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Duanwei Liang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Jiali Yang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| |
Collapse
|
19
|
Graphene in therapeutics delivery: Problems, solutions and future opportunities. Eur J Pharm Biopharm 2016; 104:235-50. [DOI: 10.1016/j.ejpb.2016.04.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
|
20
|
Sun Y, Xian L, Xing H, Yu J, Yang Z, Yang T, Yang L, Ding P. Factors influencing the nuclear targeting ability of nuclear localization signals. J Drug Target 2016; 24:927-933. [DOI: 10.1080/1061186x.2016.1184273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Liu X, Mo Y, Liu X, Guo R, Zhang Y, Xue W, Zhang Y, Wang C, Ramakrishna S. Synthesis, characterisation and preliminary investigation of the haemocompatibility of polyethyleneimine-grafted carboxymethyl chitosan for gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:173-82. [PMID: 26952412 DOI: 10.1016/j.msec.2016.01.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 12/24/2022]
Abstract
The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. In the present study, carboxymethyl chitosan (CMCS) was prepared by chitosan (CS) alkalisation and carboxymethylation reactions. Then polyethyleneimine (PEI) was grafted to the backbone of CMCS by an amidation reaction. The CMCS-PEI copolymer showed strong complexation capability with DNA to form nanoparticles, and achieved lower cytotoxicity and higher transfection efficiency compared with PEI (25 kDa) towards 293T and 3T3 cells. Moreover, the haemocompatibility of the CMCS-PEI copolymer was investigated through the aggregation, morphology and lysis of human red blood cells (RBCs), along with the impact on the clotting function with activated partial thromboplastin time (APTT), prothrombin time (PT) and thromboelastographic (TEG) assays. The results demonstrated that the CMCS-PEI copolymer with a concentration lower than 0.05 mg/mL had little impact on the aggregation, morphology or lysis of RBCs, or on blood coagulation. Therefore, the copolymer may be a strong alternative candidate as an effective and safe non-viral vector.
Collapse
Affiliation(s)
- Xuan Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China; Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yunfei Mo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China; Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaoyu Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China; Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China; Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China; Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China; Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuanming Zhang
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Seeram Ramakrishna
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Ghobadi AF, Letteri R, Parelkar SS, Zhao Y, Chan-Seng D, Emrick T, Jayaraman A. Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation. Biomacromolecules 2016; 17:546-57. [DOI: 10.1021/acs.biomac.5b01462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmadreza F. Ghobadi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716 United States
| | - Rachel Letteri
- Department
of Polymer Science and Engineering, University of Massachusetts, 120
Governors Drive, Amherst, Massachusetts 01003, United States
| | - Sangram S. Parelkar
- Department
of Polymer Science and Engineering, University of Massachusetts, 120
Governors Drive, Amherst, Massachusetts 01003, United States
| | - Yue Zhao
- Quantum
Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Delphine Chan-Seng
- Institut Charles
Sadron UPR22-CNRS, 23 rue du Loess, 67034 Strasbourg, France
| | - Todd Emrick
- Department
of Polymer Science and Engineering, University of Massachusetts, 120
Governors Drive, Amherst, Massachusetts 01003, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716 United States
- Department
of Materials Science and Engineering, University of Delaware, 201 DuPont
Hall, Newark, Delaware 19716 United States
| |
Collapse
|
23
|
Tang M, Dong H, Li Y, Ren T. Harnessing the PEG-cleavable strategy to balance cytotoxicity, intracellular release and the therapeutic effect of dendrigraft poly-l-lysine for cancer gene therapy. J Mater Chem B 2016; 4:1284-1295. [DOI: 10.1039/c5tb02224j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The disulfide-bridged PEG-cleavable strategy was developed to balance cytotoxicity, cellular release and the therapeutic effect of dendrigraft poly-l-lysine for gene therapy.
Collapse
Affiliation(s)
- Min Tang
- School of Material Science and Engineering and Institute for Biomedical Engineering & Nano Science
- Tongji University
- Shanghai
- P. R. China
| | - Haiqing Dong
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- P. R. China
| | - Yongyong Li
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- P. R. China
| | - Tianbin Ren
- School of Material Science and Engineering and Institute for Biomedical Engineering & Nano Science
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
24
|
Li W, Liu Y, Du J, Ren K, Wang Y. Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection. NANOSCALE 2015; 7:8476-8484. [PMID: 25893559 DOI: 10.1039/c4nr07037b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell-penetrating peptides (CPP) have been widely developed as a strategy to enhance cell penetrating ability and transfection. In this work, octa-arginine modified dextran gene vector with pH-sensitivity was developed via host-guest interactions. α-Cyclodextrin was modified with octa-arginine (CDR), which had excellent cell penetrating ability. Dextran was selected as a backbone and modified with azobenzene as guest units by acid-labile imine bonds (Az-I-Dex). The supramolecular polymer CDR/Az-I-Dex with high a C/A molar ratio (molar ratio of CD on CDR to Az on Az-I-Dex) was unfavorable for DNA condensation. The dextran shell of CDR/Az-I-Dex/DNA polyplexes improved the stability under physiological conditions. However, once treated with acetate buffer (pH 5.4) for 3 h, large aggregates formed rapidly due to the cleavage of the dextran shell. As expected, the vector had cell viability of 80% even when the CDR concentration increased to 100 μg mL(-1). Moreover, due to the effective cellular uptake efficiency, CDR/Az-I-Dex/DNA polyplexes had 6-300 times higher transfection efficiency than CDR/DNA polyplexes. It was even higher than high molecular weight PLL-based polyplexes of HEK293 T cells. Importantly, chloroquine as an endosomal escape agent could not improve the transfection of CDR/Az-I-Dex/DNA polyplexes, which indicated that the CDR/Az-I-Dex supramolecular polymer had its own ability for endosomal escape. These results suggested that the CPP-based polyplexes shelled with polysaccharide can be promising non-viral gene delivery carriers.
Collapse
Affiliation(s)
- Wenyu Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Ren DN, Chen J, Li Z, Yan H, Yin Y, Wo D, Zhang J, Ao L, Chen B, Ito TK, Chen Y, Liu Z, Li Y, Yang J, Lu X, Peng Y, Pan L, Zhao Y, Liu S, Zhu W. LRP5/6 directly bind to Frizzled and prevent Frizzled-regulated tumour metastasis. Nat Commun 2015; 6:6906. [PMID: 25902418 DOI: 10.1038/ncomms7906] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 01/07/2023] Open
Abstract
How Wnt signalling including canonical and non-canonical pathways are initiated at the cell surface is not completely understood. Here we report that Wnt receptor Frizzled (Frz) and theco-receptors LRP5 and LRP6 (LRP5/6) directly interact with each other and this interaction is regulated by the LRP6 ectodomain. Importantly, through direct binding to Frz, LRP5/6 are able to prevent Frz-regulated non-canonical pathway activation and further non-canonical pathway-mediated tumour metastasis. Knockdown of endogenous LRP5/6 promotes otherwise-nonaggressive tumour cells to migrate in vitro, whereas a soluble recombinant protein of LRP6 ectodomain suppresses migration and metastasis of otherwise-aggressive tumour cells in vitro and in vivo. Furthermore, the expression level of membrane LRP5/6 correlates inversely with metastasis in mouse and human breast cancer. Our study suggests a previously unrecognized mode of receptor interaction, revealing the mechanism of LRP5/6 in inhibition of non-canonical pathway, and a possible clinical use of the LRP6 ectodomain to impede metastasis.
Collapse
Affiliation(s)
- Dan-Ni Ren
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China
| | - Jinxiao Chen
- Tongji University School of Medicine, Shanghai, China
| | - Zhi Li
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hongwei Yan
- Tongji University School of Medicine, Shanghai, China
| | - Yan Yin
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China
| | - Da Wo
- Tongji University School of Medicine, Shanghai, China
| | | | - Luoquan Ao
- Tongji University School of Medicine, Shanghai, China
| | - Bo Chen
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China
| | - Takashi K Ito
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yihan Chen
- 1] Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China [2] Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China
| | - Yongyong Li
- Tongji University School of Medicine, Shanghai, China
| | - Jianhua Yang
- Tongji University School of Medicine, Shanghai, China
| | - Xiaoling Lu
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Peng
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Linghui Pan
- Department of Oncology Research, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongxiang Zhao
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Shangfeng Liu
- 1] Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China [2] Tongji University School of Medicine, Shanghai, China
| | - Weidong Zhu
- 1] Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China [2] Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Polylysine-modified polyethylenimines as siRNA carriers for effective tumor treatment. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1632-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Yang W, Guo W, Zhang T, Yang W, Su L, Fang L, Wang H, Gong X, Chang J. Synthesis of aqueous AgInS/ZnS@PEI as a self-indicating nonviral vector for plasmid DNA self-tracking delivery. J Mater Chem B 2015; 3:8518-8527. [DOI: 10.1039/c5tb01333j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of aqueous ZAIS@PEI QDs as versatile self-tracking gene vectors, allowing the real-time monitoring of gene transfection behavior in live cells without external fluorescence labeling.
Collapse
Affiliation(s)
- Wentao Yang
- School of Materials Science and Engineering
- School of Life Sciences
- Tianjin University
- Tianjin 300072
- China
| | - Weisheng Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety National Center for Nanoscience and Technology
- Beijing
- China
| | - Tingbin Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety National Center for Nanoscience and Technology
- Beijing
- China
| | - Weitao Yang
- School of Materials Science and Engineering
- School of Life Sciences
- Tianjin University
- Tianjin 300072
- China
| | - Lin Su
- School of Materials Science and Engineering
- School of Life Sciences
- Tianjin University
- Tianjin 300072
- China
| | - Lei Fang
- School of Materials Science and Engineering
- School of Life Sciences
- Tianjin University
- Tianjin 300072
- China
| | - Hanjie Wang
- School of Materials Science and Engineering
- School of Life Sciences
- Tianjin University
- Tianjin 300072
- China
| | - Xiaoqun Gong
- School of Materials Science and Engineering
- School of Life Sciences
- Tianjin University
- Tianjin 300072
- China
| | - Jin Chang
- School of Materials Science and Engineering
- School of Life Sciences
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
28
|
Kapoor M, Burgess DJ. Targeted Delivery of Nucleic Acid Therapeutics via Nonviral Vectors. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Dextran-graft-linear poly(ethylene imine)s for gene delivery: Importance of the linking strategy. Carbohydr Polym 2014; 113:597-606. [DOI: 10.1016/j.carbpol.2014.07.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022]
|
30
|
Galactomannan-PEI based non-viral vectors for targeted delivery of plasmid to macrophages and hepatocytes. Eur J Pharm Biopharm 2014; 87:461-71. [DOI: 10.1016/j.ejpb.2014.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/22/2022]
|
31
|
Zhu H, Dong C, Dong H, Ren T, Wen X, Su J, Li Y. Cleavable PEGylation and hydrophobic histidylation of polylysine for siRNA delivery and tumor gene therapy. ACS APPLIED MATERIALS & INTERFACES 2014; 6:10393-10407. [PMID: 24892498 DOI: 10.1021/am501928p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polylysine with cleavable PEGylation and hydrophobic histidylation (mPEG-SS-Lysn-r-Hism) was designed and developed for efficient siRNA delivery and tumor therapy. mPEG-SS-Lysn-r-Hism was used to carry and deliver small interfering RNA (siRNA) for silencing endogenous vascular endothelial growth factor (VEGF) expression and inhibiting tumor growth in HepG2 tumor-bearing mice. In this gene vector, histidine(Bzl) was selected for hydrophobic histidylation for the proton sponge ability of the imidazole ring and hydrophobic benzyl group. Cleavable PEGylation was introduced for in vivo circulation as well as selective PEG detachment in response to intracellular reduction condition in order to release the genetic payload. PEG detachment induced gene release was supported by agarose gel electrophoresis retardation assay, undertaken in the intracellular relevant reduction condition. In vitro transfection evaluation of histidylated copolymers, using pEGFP as genetic model, indicated significantly higher GFP expression than unmodified counterparts, comparable to the gold standard PEI. The efficacy of hydrophobic histidylation was found to be pronounced in mesenchymal stem cells (MSCs). In vivo application of the VEGF-siRNA package by tailored mPEG-SS-Lysn-r-Hism showed distinct tumor suppression in terms of macroscopic tumor volume and molecular analysis.
Collapse
Affiliation(s)
- Haiyan Zhu
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Prosthodontics, School of Stomatology, Tongji University , Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Li Y, Tian H, Ding J, Dong X, Chen J, Chen X. Thiourea modified polyethylenimine for efficient gene delivery mediated by the combination of electrostatic interactions and hydrogen bonds. Polym Chem 2014. [DOI: 10.1039/c3py01781h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Ren T, Wu W, Jia M, Dong H, Li Y, Ou Z. Reduction-cleavable polymeric vesicles with efficient glutathione-mediated drug release behavior for reversing drug resistance. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10721-10730. [PMID: 24083448 DOI: 10.1021/am402860v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the treatment of cancer, multidrug resistance (MDR) has been the major obstacle to the success of chemotherapy. The underlying mechanism relies on the overexpression of drug-efflux transporters that prevent the intracellular transport of the drug. In this study, reduction-cleavable vesicles were designed and developed with efficient glutathione-mediated drug-release behavior for reversing drug resistance. Polymeric vesicles were self-assembled from triblock copolymers with disulfide-bond-linked poly(ethylene glycol) (PEG) and poly(ε-benzyloxycarbonyl-L-lysine) (PzLL). Observations from transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) outline an obvious hollow structure surrounded by a thin outer layer, indicating the successful formation of the vesicles. Using fluorescently detectable doxorubicin hydrochloride (DOX·HCl) as the model drug, a significant acceleration of drug release regulated by glutathione (GSH) was found (>3-fold difference). Upon incubation of the DOX·HCl-loaded polymeric vesicles with the HeLa cervical cancer cell line exposed to glutathione, an enhanced nuclear accumulation of DOX·HCl was observed, elicited by the preferred disassembly of the vesicle structure under reducing conditions. Importantly, by using the gemcitabine hydrochloride (GC·HCl)-resistant breast cancer cell line MDA-MB-231, it was found that cell viability was significantly reduced after treatment with GC·HCl-loaded polymeric vesicles, indicating that these vesicles can help to reverse the drug resistance.
Collapse
Affiliation(s)
- Tianbin Ren
- The Institute for Biomedical Engineering and Nano Science, School of Materials and Engineering, Tongji University , Shanghai 200092, P. R. China
| | | | | | | | | | | |
Collapse
|
34
|
Gharavi J, Marks P, Moran K, Kingsborough B, Verma R, Chen Y, Deng R, Levine M. Chiral cationic polyamines for chiral microcapsules and siRNA delivery. Bioorg Med Chem Lett 2013; 23:5919-22. [PMID: 24035095 PMCID: PMC3853371 DOI: 10.1016/j.bmcl.2013.08.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 12/11/2022]
Abstract
Reported herein is the use of chiral cationic polyamines for two intriguing applications: fabrication of chiral covalently-linked microcapsules, and enantiospecific delivery of siRNA to Huh 7 cells. The microcapsules are easily fabricated from homochiral polymers, and the resulting architectures can be used for supramolecular chiral catalysis and many other potential applications. Enantiospecific delivery of siRNA to Huh 7 cells is seen by one 'enantiomer' of the polymers delivering siRNA with significantly improved transfection efficiency and reduced toxicity compared to the 'enantiomeric' polymer and commercially available transfection reagents. Taken together, the use of these easily accessible polyamine structures for diverse applications is highlighted in this Letter herein and can lead to numerous future research efforts.
Collapse
Affiliation(s)
- Justin Gharavi
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881
| | - Patrick Marks
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881
| | - Kelly Moran
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881
| | - Brett Kingsborough
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881
| | - Ruchi Verma
- College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Yuan Chen
- College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Ruitang Deng
- College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881
| |
Collapse
|
35
|
Sun J, Zeng F, Jian H, Wu S. Grafting zwitterionic polymer chains onto PEI as a convenient strategy to enhance gene delivery performance. Polym Chem 2013. [DOI: 10.1039/c3py00752a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|