1
|
Rush KW, Eastman KAS, Welch EF, Bandarian V, Blackburn NJ. Capturing the Binuclear Copper State of Peptidylglycine Monooxygenase Using a Peptidyl-Homocysteine Lure. J Am Chem Soc 2024; 146:5074-5080. [PMID: 38363651 PMCID: PMC11096088 DOI: 10.1021/jacs.3c14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Peptidylglycine monooxygenase is a copper-dependent enzyme that catalyzes C-alpha hydroxylation of glycine extended pro-peptides, a critical post-translational step in peptide hormone processing. The canonical mechanism posits that dioxygen binds at the mononuclear M-center to generate a Cu(II)-superoxo species capable of H atom abstraction from the peptidyl substrate, followed by long-range electron tunneling from the CuH center. Recent crystallographic and biochemical data have challenged this mechanism, suggesting instead that an "open-to-closed" transition brings the copper centers closer, allowing reactivity within a binuclear intermediate. Here we present the first direct observation of an enzyme-bound binuclear copper species, captured by the use of an Ala-Ala-Phe-hCys inhibitor complex. This molecule reacts with the fully reduced enzyme to form a thiolate-bridged binuclear species characterized by EXAFS of the WT and its M314H variant and with the oxidized enzyme to form a novel mixed valence entity characterized by UV/vis and EPR. Mechanistic implications are discussed.
Collapse
Affiliation(s)
- Katherine W. Rush
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Evan F. Welch
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ninian J. Blackburn
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Guo J, Fisher OS. Orchestrating copper binding: structure and variations on the cupredoxin fold. J Biol Inorg Chem 2022; 27:529-540. [PMID: 35994119 DOI: 10.1007/s00775-022-01955-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
A large number of copper binding proteins coordinate metal ions using a shared three-dimensional fold called the cupredoxin domain. This domain was originally identified in Type 1 "blue copper" centers but has since proven to be a common domain architecture within an increasingly large and diverse group of copper binding domains. The cupredoxin fold has a number of qualities that make it ideal for coordinating Cu ions for purposes including electron transfer, enzyme catalysis, assembly of other copper sites, and copper sequestration. The structural core does not undergo major conformational changes upon metal binding, but variations within the coordination environment of the metal site confer a range of Cu-binding affinities, reduction potentials, and spectroscopic properties. Here, we discuss these proteins from a structural perspective, examining how variations within the overall cupredoxin fold and metal binding sites are linked to distinct spectroscopic properties and biological functions. Expanding far beyond the blue copper proteins, cupredoxin domains are used by a growing number of proteins and enzymes as a means of binding copper ions, with many more likely remaining to be identified.
Collapse
Affiliation(s)
- Jing Guo
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Oriana S Fisher
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
3
|
Hasan MM, Shahriar I, Ali MA, Halim M, Ehsan MQ. Experimental and computational studies on Transition metals Interaction with Leucine and Isoleucine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Mitra S, Ainavarapu SRK, Dasgupta J. Long-Range Charge Delocalization Mediates the Ultrafast Ligand-to-Metal Charge Transfer Dynamics at the Cu 2+-Active Site in Azurin. J Phys Chem B 2022; 126:5390-5399. [PMID: 35797135 DOI: 10.1021/acs.jpcb.2c01427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blue color metalloprotein in azurin has traditionally been attributed to the intense cysteine-to-Cu2+ ligand-to-metal charge transfer transition centered at 628 nm. Although resonance Raman measurements of the Cu2+ active site have implied that the LMCT transition electronically couples to the protein scaffold well beyond its primary metal-ligand coordination shell, the structural extent of this electronic coupling and visualization of the protein-mediated charge transfer dynamics have remained elusive. Here, using femtosecond broadband transient absorption and impulsive Raman spectroscopy, we provide direct evidence for a rapid relaxation between two distinct charge transfer states, having different spatial delocalization, within ∼300 fs followed by recombination of charges in subpicosecond time scales. We invoke the formation of a protein-centered radical cation, possibly Trp48 or a Phe residue, within 100 fs substantiating the long-range electronic coupling for the first time beyond the traditional copper active site. The Raman spectra of the excited CT state show the presence of protein-centric vibrations along with the vibrational modes assigned to the copper active site. Our results demonstrate a large delocalization length scale of the initially populated CT state, thereby highlighting the possibility of exploiting azurin photochemistry for energy conversion techniques.
Collapse
Affiliation(s)
- Soumyajit Mitra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
5
|
Yu Y, Marshall NM, Garner DK, Nilges MJ, Lu Y. Tuning reduction potentials of type 1 copper center in azurin by replacing a histidine ligand with its isostructural analogues. J Inorg Biochem 2022; 234:111863. [DOI: 10.1016/j.jinorgbio.2022.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
|
6
|
Yu SS, Li JJ, Cui C, Tian S, Chen JJ, Yu HQ, Hou C, Nilges MJ, Lu Y. Structural Basis for a Quadratic Relationship between Electronic Absorption and Electronic Paramagnetic Resonance Parameters of Type 1 Copper Proteins. Inorg Chem 2020; 59:10620-10627. [PMID: 32689800 DOI: 10.1021/acs.inorgchem.0c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type 1 copper (T1Cu) proteins play important roles in electron transfer in biology, largely due to the unique structure of the T1Cu center, which is reflected by its spectroscopic properties. Previous reports have suggested a correlation between a high ratio of electronic absorbance at ∼450 nm to that at ∼600 nm (R = A450/A600) and a large copper(II) hyperfine coupling in the z direction (Az) in electron paramagnetic resonance (EPR). However, this correlation does not have a clear physical meaning, nor does it hold for many proteins with a perturbed T1Cu center. To address this issue, a new parameter of R' [A450/(A450 + A600)] with a better physical meaning of a fractional SCys pseudo-σ to Cu(II) charge transfer transition intensity is defined and a quadratic relationship between R' and Az is found on the basis of a comprehensive analysis of ultraviolet-visible absorption, EPR, and structural parameters of T1Cu proteins. We are able to find good correlations between R' and the displacement of copper from the trigonal plane defined by the His2Cys ligands and the angle between the NHis1-Cu-NHis2 plane and the SCys-Cu-axial ligand plane, providing a structural basis for the observed correlation. These findings and analyses provide a new framework for a deeper understanding of the spectroscopic and electronic properties of T1Cu proteins, which may allow better design and applications of this important class of proteins for redox and electron transfer functions.
Collapse
Affiliation(s)
- Sheng-Song Yu
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jun-Jie Li
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chang Cui
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jie-Jie Chen
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Han-Qing Yu
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changjun Hou
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Mark J Nilges
- School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Mirts EN, Bhagi-Damodaran A, Lu Y. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors. Acc Chem Res 2019; 52:935-944. [PMID: 30912643 DOI: 10.1021/acs.accounts.9b00011] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metalloproteins set the gold standard for performing important functions, including catalyzing demanding reactions under mild conditions. Designing artificial metalloenzymes (ArMs) to catalyze abiological reactions has been a major endeavor for many years, but most ArM activities are far below those of native enzymes, making them unsuitable for most pratical applications. A critical step to advance the field is to fundamentally understand what it takes to not only confer but also fine-tune ArM activities so they match those of native enzymes. Indeed, only once we can freely modulate ArM activity to rival (or surpass!) natural enzymes can the potential of ArMs be fully realized. A key to unlocking ArM potential is the observation that one metal primary coordination sphere can display a range of functions and levels of activity, leading to the realization that secondary coordination sphere (SCS) interactions are critically important. However, SCS interactions are numerous, long-range, and weak, making them very difficult to reproduce in ArMs. Furthermore, natural enzymes are tied to a small set of biologically available functional moieties from canonical amino acids and physiologically available metal ions and metallocofactors, severely limiting the chemical space available to probe and tune ArMs. In this Account, we summarize the use of unnatural amino acids (UAAs) and non-native metal ions and metallocofactors by our group and our collaborators to probe and modulate ArM functions. We incorporated isostructural UAAs in a type 1 copper (T1Cu) protein azurin to provide conclusive evidence that axial ligand hydrophobicity is a major determinant of T1Cu redunction potential ( E°'). Closely related work from other groups are also discussed. We also probed the role of protein backbone interactions that cannot be altered by standard mutagenesis by replacing the peptide bond with an ester linkage. We used insight gained from these studies to tune the E°' of azurin across the entire physiological range, the broadest range ever achieved in a single metalloprotein. Introducing UAA analogues of Tyr into ArM models of heme-copper oxidase (HCO) revealed a linear relationship between p Ka, E°', and activity. We also substituted non-native hemes and non-native metal ions for their native equivalents in these models to resolve several issues that were intractable in native HCOs and the closely related nitric oxide reductases, such as their roles in modulating substrate affinity, electron transfer rate, and activity. We incorporated abiological cofactors such as ferrocene and Mn(salen) into azurin and myoglobin, respectively, to stabilize these inorganic and organometallic compounds in water, confer abiological functions, tune their E°' and activity through SCS interactions, and show that the approach to metallocofactor anchoring and orientation can tune enantioselectivity and alter function. Replacing Cu in azurin with non-native Fe or Ni can impart novel activities, such as superoxide reduction and C-C bond formation. While progress was made, we have identified only a small fraction of the interactions that can be generally applied to ArMs to fine-tune their functions. Because SCS interactions are subtle and heavily interconnected, it has been difficult to characterize their effects quantitatively. It is vital to develop spectroscopic and computational techniques to detect and quantify their effects in both resting states and catalytic intermediates.
Collapse
Affiliation(s)
- Evan N. Mirts
- Department of Chemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Liu C, Liu C, Ren Z, Lang J. Silver(I)‐Based Complexes Used as High‐Performance Photocatalysts for the Degradation of Organic Dyes in Water. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Chao‐Fan Liu
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123, Jiangsu Suzhou P. R. China
| | - Chun‐Yu Liu
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123, Jiangsu Suzhou P. R. China
| | - Zhi‐Gang Ren
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123, Jiangsu Suzhou P. R. China
| | - Jian‐Ping Lang
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123, Jiangsu Suzhou P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 200032 Shanghai P. R. China
| |
Collapse
|
9
|
Hosseini nasr AS, Akbarzadeh H, Tayebee R. Adsorption mechanism of different acyclovir concentrations on 1–2 nm sized magnetite nanoparticles: A molecular dynamics study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Solomon LA, Kronenberg JB, Fry HC. Control of Heme Coordination and Catalytic Activity by Conformational Changes in Peptide-Amphiphile Assemblies. J Am Chem Soc 2017; 139:8497-8507. [PMID: 28505436 DOI: 10.1021/jacs.7b01588] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling peptide materials have gained significant attention, due to well-demonstrated applications, but they are functionally underutilized. To advance their utility, we use noncovalent interactions to incorporate the biological cofactor heme-B for catalysis. Heme-proteins achieve differing functions through structural and coordinative variations. Here, we replicate this phenomenon by highlighting changes in heme reactivity as a function of coordination, sequence, and morphology (micelles versus fibers) in a series of simple peptide amphiphiles with the sequence c16-xyL3K3-CO2H where c16 is a palmitoyl moiety and xy represents the heme binding region: AA, AH, HH, and MH. The morphology of this peptide series is characterized using transmission electron and atomic force microscopies as well as dynamic light scattering. Within this small library of peptide constructs, we show that three spectroscopically (UV/visible and electron paramagnetic resonance) distinct heme environments were generated: noncoordinated/embedded high-spin, five-coordinate high-spin, and six-coordinate low-spin. The resulting material's functional dependence on sequence and supramolecular morphology is highlighted 2-fold. First, the heme active site binds carbon monoxide in both micelles and fibers, demonstrating that the heme active site in both morphologies is accessible to small molecules for catalysis. Second, peroxidase activity was observed in heme-containing micelles yet was significantly reduced in heme-containing fibers. We briefly discuss the implications these findings have in the production of functional, self-assembling peptide materials.
Collapse
Affiliation(s)
- Lee A Solomon
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jacob B Kronenberg
- Illinois Math and Science Academy , 1500 West Sullivan Road, Aurora, Illinois 60506, United States
| | - H Christopher Fry
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
11
|
Ruckthong L, Peacock AFA, Pascoe CE, Hemmingsen L, Stuckey JA, Pecoraro VL. d-Cysteine Ligands Control Metal Geometries within De Novo Designed Three-Stranded Coiled Coils. Chemistry 2017; 23:8232-8243. [PMID: 28384393 DOI: 10.1002/chem.201700660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Indexed: 12/31/2022]
Abstract
Although metal ion binding to naturally occurring l-amino acid proteins is well documented, understanding the impact of the opposite chirality (d-)amino acids on the structure and stereochemistry of metals is in its infancy. We examine the effect of a d-configuration cysteine within a designed l-amino acid three-stranded coiled coil in order to enforce a precise coordination number on a metal center. The d chirality does not alter the native fold, but the side-chain re-orientation modifies the sterics of the metal binding pocket. l-Cys side chains within the coiled-coil structure have previously been shown to rotate substantially from their preferred positions in the apo structure to create a binding site for a tetra-coordinate metal ion. However, here we show by X-ray crystallography that d-Cys side chains are preorganized within a suitable geometry to bind such a ligand. This is confirmed by comparison of the structure of ZnII Cl(CSL16D C)32- to the published structure of ZnII (H2 O)(GRAND-CSL12AL16L C)3- . Moreover, spectroscopic analysis indicates that the CdII geometry observed by using l-Cys ligands (a mixture of three- and four-coordinate CdII ) is altered to a single four-coordinate species when d-Cys is present. This work opens a new avenue for the control of the metal site environment in man-made proteins, by simply altering the binding ligand with its mirror-imaged d configuration. Thus, the use of non-coded amino acids in the coordination sphere of a metal promises to be a powerful tool for controlling the properties of future metalloproteins.
Collapse
Affiliation(s)
- Leela Ruckthong
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Present address: Department Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bang Mod, ThungKhru, Bangkok, 10140, Thailand
| | - Anna F A Peacock
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Present address: School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cherilyn E Pascoe
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Lars Hemmingsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
12
|
Yu Y, Petrik ID, Chacón KN, Hosseinzadeh P, Chen H, Blackburn NJ, Lu Y. Effect of circular permutation on the structure and function of type 1 blue copper center in azurin. Protein Sci 2017; 26:218-226. [PMID: 27759897 PMCID: PMC5275729 DOI: 10.1002/pro.3071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022]
Abstract
Type 1 copper (T1Cu) proteins are electron transfer (ET) proteins involved in many important biological processes. While the effects of changing primary and secondary coordination spheres in the T1Cu ET function have been extensively studied, few report has explored the effect of the overall protein structural perturbation on active site configuration or reduction potential of the protein, even though the protein scaffold has been proposed to play a critical role in enforcing the entatic or "rack-induced" state for ET functions. We herein report circular permutation of azurin by linking the N- and C-termini and creating new termini in the loops between 1st and 2nd β strands or between 3rd and 4th β strands. Characterization by electronic absorption, electron paramagnetic spectroscopies, as well as crystallography and cyclic voltammetry revealed that, while the overall structure and the primary coordination sphere of the circular permutated azurins remain the same as those of native azurin, their reduction potentials increased by 18 and 124 mV over that of WTAz. Such increases in reduction potentials can be attributed to subtle differences in the hydrogen-bonding network in secondary coordination sphere around the T1Cu center.
Collapse
Affiliation(s)
- Yang Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjin300308China
| | - Igor D. Petrik
- Department of Chemistry, University of Illinois at Urbana‐ChampaignUrbanaIllinois61801
| | | | - Parisa Hosseinzadeh
- Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois61801
| | - Honghui Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjin300308China
- Tianjin University of Science and TechnologyTianjin300457China
| | - Ninian J. Blackburn
- Institute of Environmental Health, Oregon Health and Science UniversityPortlandOregon97239
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana‐ChampaignUrbanaIllinois61801
- Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois61801
| |
Collapse
|
13
|
Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0343-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 2016; 45:5020-54. [PMID: 27341693 PMCID: PMC5021598 DOI: 10.1039/c5cs00923e] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.
Collapse
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
15
|
Hosseinzadeh P, Tian S, Marshall NM, Hemp J, Mullen T, Nilges MJ, Gao YG, Robinson H, Stahl DA, Gennis RB, Lu Y. A Purple Cupredoxin from Nitrosopumilus maritimus Containing a Mononuclear Type 1 Copper Center with an Open Binding Site. J Am Chem Soc 2016; 138:6324-7. [DOI: 10.1021/jacs.5b13128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Howard Robinson
- Biology
Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David A. Stahl
- Department
of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
16
|
Hosseinzadeh P, Lu Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:557-581. [PMID: 26301482 PMCID: PMC4761536 DOI: 10.1016/j.bbabio.2015.08.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022]
Abstract
Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Parisa Hosseinzadeh
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Elius Hossain M, Mahmudul Hasan M, Halim ME, Ehsan MQ, Halim MA. Interaction between transition metals and phenylalanine: a combined experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:499-508. [PMID: 25528509 DOI: 10.1016/j.saa.2014.11.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/30/2014] [Accepted: 11/23/2014] [Indexed: 06/04/2023]
Abstract
Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic.
Collapse
Affiliation(s)
- Md Elius Hossain
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Md Mahmudul Hasan
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - M E Halim
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Q Ehsan
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Mohammad A Halim
- Bangladesh Institute of Computational Chemistry and Biochemistry, 38 Green Road West, Dhaka 1205, Bangladesh.
| |
Collapse
|