1
|
Wahab A, Suhail M, Eggers T, Shehzad K, Akakuru OU, Ahmad Z, Sun Z, Iqbal MZ, Kong X. Innovative perspectives on metal free contrast agents for MRI: Enhancing imaging efficacy, and AI-driven future diagnostics. Acta Biomater 2025; 193:83-106. [PMID: 39793747 DOI: 10.1016/j.actbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects. This review explores recent advancements in CAs for MRI, highlighting four innovative probes: ORCAs, CEST CAs, 19F CAs, and HP 13C MRI. ORCAs offer a metal-free alternative that enhances imaging through nitroxides. CEST MRI facilitates the direct detection of specific molecules via proton exchange, aiding in disease diagnosis and metabolic assessment. 19F MRI CAs identify subtle biological changes, enabling earlier detection and tailored treatment approaches. HP 13C MRI improves visualization of metabolic processes, demonstrating potential in cancer diagnosis and monitoring. Finally, this review concludes by addressing the challenges facing the field and outlining future research directions, with a particular focus on leveraging artificial intelligence to enhance diagnostic capabilities and optimize both the performance and safety profiles of these innovative CAs. STATEMENT OF SIGNIFICANCE: The review addresses the urgent need for safer MRI contrast agents in light of FDA warnings about GBCAs. It highlights the key factors influencing the stability and functionality of metal-free CAs and recent advancements in designing ORCAs, CEST CAs, 19F CAs, and HP 13C probes and functionalization that enhance MRI contrast. It also explores the potential of these agents for multimodal imaging and targeted diagnostics while outlining future research directions and the integration of artificial intelligence to optimize their clinical application and safety. This contribution is pivotal for driving innovation in MRI technology and improving patient outcomes in disease detection and monitoring.
Collapse
Affiliation(s)
- Abdul Wahab
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Muhammad Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tatiana Eggers
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Khurram Shehzad
- Institute of Physics, Silesian University of Technology, Konarskiego 22B, Gliwice 44-100, Poland
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Zahoor Ahmad
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhichao Sun
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Luo T, Wang B, Chen R, Qi Q, Wu R, Xie S, Chen H, Han J, Wu D, Cao S. Research progress of nitroxide radical-based MRI contrast agents: from structure design to application. J Mater Chem B 2025; 13:372-398. [PMID: 39565110 DOI: 10.1039/d4tb02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) remains a cornerstone of diagnostic imaging, offering unparalleled insights into anatomical structures and pathological conditions. Gadolinium-based contrast agents have long been the standard in MRI enhancement, yet concerns over nephrogenic systemic fibrosis have spurred interest in metal-free alternatives. Nitroxide radical-based MRI contrast agents (NO-CAs) have emerged as promising candidates, leveraging their biocompatibility and imaging capabilities. This review summaries the latest advancements in NO-CAs, focusing on synthesis methodologies, influencing effects of structures of NO-CAs on relaxation efficiency and their applications across various clinical contexts. Comprehensive discussions encompass small molecular, polymeric, and nano-sized NO-CAs, detailing their unique properties and potential clinical utilities. Despite challenges, NO-CAs represent a dynamic area of research poised to revolutionize MRI diagnostics. This review serves as a critical resource for researchers and practitioners seeking to navigate the evolving landscape of MRI contrast agents.
Collapse
Affiliation(s)
- Tao Luo
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Runxin Chen
- Shenzhen University General Hospital, Shenzhen, China
| | - Qi Qi
- Shenzhen University General Hospital, Shenzhen, China
| | - Ruodai Wu
- Shenzhen University General Hospital, Shenzhen, China
| | - Shunzi Xie
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Hanbing Chen
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Shenzhen, China
| | | |
Collapse
|
3
|
Koi H, Takahashi N, Fuchi Y, Umeno T, Muramatsu Y, Seimiya H, Karasawa S, Oguri H. A fully synthetic 6-aza-artemisinin bearing an amphiphilic chain generates aggregates and exhibits anti-cancer activities. Org Biomol Chem 2021; 18:5339-5343. [PMID: 32618320 DOI: 10.1039/d0ob00919a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Installation of a nitrogen at the C6 position of artemisinin facilitates the addition of a functional unit on the cyclohexane moiety (C-ring). In this study, conjugation of an amphiphilic chain, composed of sequentially connected hydrophilic oligoethylene glycol, hydrophobic alkyl chain, urea, and 4,4'-disubstituted biphenyl linker, imparted self-assembling properties. The fully synthetic mid-molecular weight 6-aza-artemisinin 6 bearing the amphiphilic moiety formed aggregates (approx. 200 nm) at ambient temperature and exhibited increased in vitro anti-cancer activities compared to the N-benzylated aza-artemisinin 5.
Collapse
Affiliation(s)
- Hikari Koi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Norihito Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Yukiko Muramatsu
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Hiroki Oguri
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
|
5
|
Shiraishi R, Matsumoto S, Fuchi Y, Naganuma T, Yoshihara D, Usui K, Yamada KI, Karasawa S. Characterization and Water-Proton Longitudinal Relaxivities of Liposome-Type Radical Nanoparticles Prepared via a Supramolecular Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5280-5286. [PMID: 32321252 DOI: 10.1021/acs.langmuir.0c00610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For the construction of metal-free magnetic resonance imaging (MRI) contrast agents, radical-based nanoparticles (RNPs) are promising materials because they allow the water-proton longitudinal relaxivity (r1) to be enhanced not only by paramagnetic resonance effects but also by prolonging the rotational correlation times (τR). However, the τR effect is limited because the radical units are often located within the central hydrophobic core of oil-in-water (o/w) emulsions, resulting in a lack of water molecules surrounding the radical units. In this study, to construct supramolecular RNPs that have high r1 values, we designed a liposome-type RNP in which the radical units are located at positions with sufficient surrounding water molecules. Using this strategy, PRO1 with a PROXYL framework was prepared by introducing hydrophilic groups on both sides of the radical unit. The RNP composed of PRO1 formed spherical nanoparticles approximately 100 nm in size and yielded a higher r1 value (0.26 mM-1 s-1) compared to those of small radical species and similar supramolecular o/w emulsion-type nanoparticles (0.17 mM-1 s-1 in PRO2).
Collapse
Affiliation(s)
- Ryoma Shiraishi
- Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-0042, Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-0042, Japan
| | - Tatsuya Naganuma
- Development Department Director, Japan REDOX Limited, 4-29-49-805 Chiyo Hakata-ku, Fukuoka 812-0044, Japan
| | - Daisuke Yoshihara
- Materials Open Laboratory (BUNSEKI-NEXT), Institute of Systems Information Technologies and Nanotechnologies (ISIT), 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Kazuteru Usui
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-0042, Japan
| | - Ken-Ichi Yamada
- Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-0042, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| |
Collapse
|
6
|
Soikkeli M, Kettunen MI, Nivajärvi R, Olsson V, Rönkkö S, Laakkonen JP, Lehto VP, Kavakka J, Heikkinen S. Assessment of the Relaxation-Enhancing Properties of a Nitroxide-Based Contrast Agent TEEPO-Glc with In Vivo Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5629597. [PMID: 31920468 PMCID: PMC6942761 DOI: 10.1155/2019/5629597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 11/18/2022]
Abstract
Magnetic resonance imaging examinations are frequently carried out using contrast agents to improve the image quality. Practically all clinically used contrast agents are based on paramagnetic metals and lack in selectivity and specificity. A group of stable organic radicals, nitroxides, has raised interest as new metal-free contrast agents for MRI. Their structures can easily be modified to incorporate different functionalities. In the present study, a stable nitroxide TEEPO (2,2,6,6-tetraethylpiperidin-1-oxyl) was linked to a glucose moiety (Glc) to construct a water-soluble, potentially tumor-targeting compound with contrast-enhancing ability. The ability was assessed with in vivo MRI experiments. The constructed TEEPO-Glc agent proved to shorten the T 1 relaxation time in tumor, while the T 1 time in healthy brain tissue remained the same. The results indicate the potential of TEEPO-Glc as a valuable addition to the growing field of metal-free contrast enhancement in MRI-based diagnostics.
Collapse
Affiliation(s)
- Maiju Soikkeli
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko I. Kettunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Riikka Nivajärvi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Venla Olsson
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Seppo Rönkkö
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Jari Kavakka
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sami Heikkinen
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
7
|
Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019; 30:2264-2286. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,Department of Materials Engineering, College of Materials and Textiles , Zhejiang Sci-Tech University , No. 2 Road of Xiasha , Hangzhou 310018 , P.R. China
| | - Madiha Saeed
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Gayle Woloschak
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| |
Collapse
|
8
|
Morishita K, Okamoto Y, Murayama S, Usui K, Ohashi E, Hirai G, Aoki I, Karasawa S. Water-Proton Relaxivities of Radical Nanoparticles Self-Assembled via Hydration or Dehydration Processes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7810-7817. [PMID: 28678510 DOI: 10.1021/acs.langmuir.7b01126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanoparticles capable of accumulating in tumor tissues are promising materials for tumor imaging and therapy. In this study, two radical nanoparticles (RNPs), denoted as 1 and 2, composed of self-assembled ureabenzene derivatives possessing one or two amphiphilic side chains were demonstrated to be candidates for metal-free functional magnetic resonance imaging (MRI) contrast agents (CAs). Because of the self-assembly behavior of 1 and 2 in a saline solution, spherical RNPs of sizes ∼50-90 and ∼30-100 nm were detected. In a highly concentrated solution, RNP 1 showed considerably small water-proton relaxivity values (r1 and r2), whereas RNP 2 showed an r1 value that was around 5 times larger than that of RNP 1. These distinct r1 values might be caused by differences in the self-assembly behavior by a hydration or dehydration process. In vivo studies with RNP 2 demonstrated a slightly enhanced T1-weighted image in mice, suggesting that the RNPs can potentially be used as metal-free functional MRI CAs for T1-weighted imaging.
Collapse
Affiliation(s)
- Kosuke Morishita
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yuna Okamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Shuhei Murayama
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), Group of Quantum-State Controlled MRI, QST , Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Eriko Ohashi
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), Group of Quantum-State Controlled MRI, QST , Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
| | - Satoru Karasawa
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| |
Collapse
|
9
|
Morishita K, Murayama S, Araki T, Aoki I, Karasawa S. Thermal- and pH-Dependent Size Variable Radical Nanoparticles and Its Water Proton Relaxivity for Metal-Free MRI Functional Contrast Agents. J Org Chem 2016; 81:8351-62. [PMID: 27541011 DOI: 10.1021/acs.joc.6b01509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For development of the metal-free MRI contrast agents, we prepared the supra-molecular organic radical, TEMPO-UBD, carrying TEMPO radical, as well as the urea, alkyl group, and phenyl ring, which demonstrate self-assembly behaviors using noncovalent bonds in an aqueous solution. In addition, TEMPO-UBD has the tertiary amine and the oligoethylene glycol chains (OEGs) for the function of pH and thermal responsiveness. By dynamic light scattering and transmission electron microscopy imaging, the resulting self-assembly was seen to form the spherical nanoparticles 10-150 nm in size. On heating, interestingly, the nanoparticles showed a lower critical solution temperature (LCST) behavior having two-step variation. This double-LCST behavior is the first such example among the supra-molecules. To evaluate of the ability as MRI contrast agents, the values of proton ((1)H) longitudinal relaxivity (r1) were determined using MRI apparatus. In conditions below and above CAC at pH 7.0, the distinguishable r1 values were estimated to be 0.17 and 0.21 mM(-1) s(1), indicating the suppression of fast tumbling motion of TEMPO moiety in a nanoparticle. Furthermore, r1 values became larger in the order of pH 7.0 > 9.0 > 5.0. Those thermal and pH dependencies indicated the possibility of metal-fee MRI functional contrast agents in the future.
Collapse
Affiliation(s)
- Kosuke Morishita
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shuhei Murayama
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), QST , Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
| | - Takeru Araki
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), QST , Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
| | - Satoru Karasawa
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.,PRESTO, Japan Science and Technology Agency , Kawaguchi 332-0012, Japan
| |
Collapse
|
10
|
Chen C, Kang N, Xu T, Wang D, Ren L, Guo X. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging. NANOSCALE 2015; 7:5249-5261. [PMID: 25716884 DOI: 10.1039/c4nr07591a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo.
Collapse
Affiliation(s)
- Chuan Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | | | | | | | | | | |
Collapse
|
11
|
Caglieris F, Melone L, Canepa F, Lamura G, Castiglione F, Ferro M, Malpezzi L, Mele A, Punta C, Franchi P, Lucarini M, Rossi B, Trotta F. Effective magnetic moment in cyclodextrin–polynitroxides: potential supramolecular vectors for magnetic resonance imaging. RSC Adv 2015. [DOI: 10.1039/c5ra14597j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hepta-TEMPO β-CD has a molecular effective magnetic moment of 4.2 μB that is responsible of a NMR relaxivity up to 1.60 mm−1 s−1, not far from the values reported for Gd-based contrast agents, thus resulting a promising candidates as non-toxic MRI contrast agents.
Collapse
|
12
|
Ferreira MF, Gonçalves J, Mousavi B, Prata MIM, Rodrigues SPJ, Calle D, López-Larrubia P, Cerdan S, Rodrigues TB, Ferreira PM, Helm L, Martins JA, Geraldes CFGC. Gold nanoparticles functionalised with fast water exchanging Gd3+ chelates: linker effects on the relaxivity. Dalton Trans 2015; 44:4016-31. [DOI: 10.1039/c4dt03210a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Linker length has little effect on the relaxivity of Gd3+ chelates immobilized onto gold nanoparticles.
Collapse
Affiliation(s)
- Miguel F. Ferreira
- Centro de Química
- Campus de Gualtar
- Universidade do Minho
- 4710-057 Braga
- Portugal
| | - Janaina Gonçalves
- Centro de Química
- Campus de Gualtar
- Universidade do Minho
- 4710-057 Braga
- Portugal
| | - Bibimaryam Mousavi
- Laboratoire de Chimie Inorganique et Bioinorganique
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| | | | | | - Daniel Calle
- Instituto de Investigaciones Biomédicas “Alberto Sols”
- Madrid
- Spain
| | | | - Sebastian Cerdan
- Instituto de Investigaciones Biomédicas “Alberto Sols”
- Madrid
- Spain
| | - Tiago B. Rodrigues
- Cancer Research UK Cambridge Research Institute
- Li KaShing Centre
- Cambridge CB2 0RE
- UK
- Department of Biochemistry
| | - Paula M. Ferreira
- Centro de Química
- Campus de Gualtar
- Universidade do Minho
- 4710-057 Braga
- Portugal
| | - Lothar Helm
- Laboratoire de Chimie Inorganique et Bioinorganique
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| | - José A. Martins
- Centro de Química
- Campus de Gualtar
- Universidade do Minho
- 4710-057 Braga
- Portugal
| | - Carlos F. G. C. Geraldes
- Chemistry Center and Department of Life Sciences
- Faculty of Science and Technology
- University of Coimbra
- 3000-393 Coimbra
- Portugal
| |
Collapse
|