1
|
Schrittwieser S, Reichinger D, Schotter J. Applications, Surface Modification and Functionalization of Nickel Nanorods. MATERIALS (BASEL, SWITZERLAND) 2017; 11:E45. [PMID: 29283415 PMCID: PMC5793543 DOI: 10.3390/ma11010045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
The growing number of nanoparticle applications in science and industry is leading to increasingly complex nanostructures that fulfill certain tasks in a specific environment. Nickel nanorods already possess promising properties due to their magnetic behavior and their elongated shape. The relevance of this kind of nanorod in a complex measurement setting can be further improved by suitable surface modification and functionalization procedures, so that customized nanostructures for a specific application become available. In this review, we focus on nickel nanorods that are synthesized by electrodeposition into porous templates, as this is the most common type of nickel nanorod fabrication method. Moreover, it is a facile synthesis approach that can be easily established in a laboratory environment. Firstly, we will discuss possible applications of nickel nanorods ranging from data storage to catalysis, biosensing and cancer treatment. Secondly, we will focus on nickel nanorod surface modification strategies, which represent a crucial step for the successful application of nanorods in all medical and biological settings. Here, the immobilization of antibodies or peptides onto the nanorod surface adds another functionality in order to yield highly promising nanostructures.
Collapse
Affiliation(s)
- Stefan Schrittwieser
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| | - Daniela Reichinger
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| | - Joerg Schotter
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| |
Collapse
|
2
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Solanki PR, Singh J, Rupavali B, Tiwari S, Malhotra BD. Bismuth oxide nanorods based immunosensor for mycotoxin detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:564-571. [DOI: 10.1016/j.msec.2016.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
4
|
Gupta PK, Gupta A, Dhakate SR, Khan ZH, Solanki PR. Functionalized polyacrylonitrile-nanofiber based immunosensor forVibrio choleraedetection. J Appl Polym Sci 2016. [DOI: 10.1002/app.44170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pramod K. Gupta
- Department of Applied Sciences and Humanities; Jamia Millia Islamia; New Delhi India
- Special Centre for Nanosciences; Jawaharlal Nehru University; New Delhi India
| | - A. Gupta
- Physics and Engineering of Carbon, National Physical Laboratory; New Delhi India
| | - S. R. Dhakate
- Physics and Engineering of Carbon, National Physical Laboratory; New Delhi India
| | - Zishan H. Khan
- Department of Applied Sciences and Humanities; Jamia Millia Islamia; New Delhi India
| | - Pratima R. Solanki
- Special Centre for Nanosciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
5
|
Ali MA, Singh C, Mondal K, Srivastava S, Sharma A, Malhotra BD. Mesoporous Few-Layer Graphene Platform for Affinity Biosensing Application. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7646-7656. [PMID: 26950488 DOI: 10.1021/acsami.5b12460] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A label-free, highly reproducible, sensitive, and selective biosensor is proposed using antiapolipoprotein B 100 (AAB) functionalized mesoporous few-layer reduced graphene oxide and nickel oxide (rGO-NiO) nanocomposite for detection of low density lipoprotein (LDL) molecules. The formation of mesoporous rGO-NiO composite on indium tin oxide conductive electrode has been accomplished via electrophoretic technique using colloidal suspension of rGO sheets and NiO nanoparticles. This biosensor shows good stability obtained by surface conjugation of antibody AAB molecules with rGO-NiO matrix by EDC-NHS coupling chemistry. The defect-less few layer rGO sheets, NiO nanoparticles (nNiO) and formation of nanocomposite has been confirmed by Raman mapping, electron microscopic studies, X-ray diffraction, and electrochemical techniques. The synthesized rGO-NiO composite is mesoporous dominated with a small percentage of micro and macroporous structure as is evident by the results of Brunauer-Emmett-Teller experiment. Further, the bioconjugation of AAB with rGO-NiO has been investigated by Fourier transform-infrared spectroscopy studies. The kinetic studies for binding of antigen-antibody (LDL-AAB) and analytical performance of this biosensor have been evaluated by the impedance spectroscopic method. This biosensor exhibits an excellent sensitivity of 510 Ω (mg/dL)(-1) cm(-2) for detection of LDL molecules and is sensitive to 5 mg/dL concentration of LDL in a wide range of 0-130 mg/dL. Thus, this fabricated biosensor is an efficient and highly sensitive platform for the analysis of other antigen-antibody interactions and biomolecules detection.
Collapse
Affiliation(s)
- Md Azahar Ali
- Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Chandan Singh
- Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory , Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Kunal Mondal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Saurabh Srivastava
- Department of Biotechnology, Delhi Technological University , Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University , Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| |
Collapse
|
6
|
Immunosensor based on nanocomposite of nanostructured zirconium oxide and gelatin-A. Int J Biol Macromol 2016; 82:480-7. [DOI: 10.1016/j.ijbiomac.2015.10.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023]
|
7
|
Dai W, Li H, Li M, Li C, Wu X, Yang B. Electrochemical Imprinted Polycrystalline Nickel-Nickel Oxide Half-Nanotube-Modified Boron-Doped Diamond Electrode for the Detection of L-Serine. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22858-22867. [PMID: 26421883 DOI: 10.1021/acsami.5b05642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper presents a novel and versatile method for the fabrication of half nanotubes (HNTs) using a flexible template-based nanofabrication method denoted as electrochemical imprinting. With use of this method, polycrystalline nickel and nickel(II) oxide (Ni-NiO) HNTs were synthesized using pulsed electrodeposition to transfer Ni, deposited by radio frequency magnetron sputtering on a porous polytetrafluoroethylene template, onto a boron-doped diamond (BDD) film. The Ni-NiO HNTs exhibited semicircular profiles along their entire lengths, with outer diameters of 50-120 nm and inner diameters of 20-50 nm. The HNT walls were formed of Ni and NiO nanoparticles. A biosensor for the detection of L-serine was fabricated using a BDD electrode modified with Ni-NiO HNTs, and the device demonstrated satisfactory analytical performance with high sensitivity (0.33 μA μM(-1)) and a low limit of detection (0.1 μM). The biosensor also exhibited very good reproducibility and stability, as well as a high anti-interference ability against amino acids such as L-leucine, L-tryptophan, L-cysteine, L-phenylalanine, L-arginine, and L-lysine.
Collapse
Affiliation(s)
- Wei Dai
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University , Tianjin 300072, P.R. China
| | | | | | | | | | | |
Collapse
|
8
|
Sharma A, Baral D, Bohidar HB, Solanki PR. Oxalic acid capped iron oxide nanorods as a sensing platform. Chem Biol Interact 2015; 238:129-37. [PMID: 26048074 DOI: 10.1016/j.cbi.2015.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 11/16/2022]
Abstract
A label free impedimetric immunosensor has been fabricated using protein bovine serum albumin (BSA) and monoclonal antibodies against Vibrio cholerae (Ab) functionalized oxalic acid (OA) capped iron oxide (Fe3O4) nanorods for V. cholerae detection. The structural and morphological studies of Fe3O4 and OA-Fe3O4, were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, OA-Fe3O4 nanorods were obtained as about 29±1 and 39±1nm, respectively. The hydrodynamic radius of nanorods is found as 116nm (OA-Fe3O4) and 77nm (Fe3O4) by DLS measurement. Cytotoxicity of Fe3O4 and OA-Fe3O4 nanorods has been investigated in the presence of human epithelial kidney (HEK) cell line 293 using MTT assay. The cell viability and proliferation studies reveal that the OA-Fe3O4 nanorods facilitate cell growth. The results of electrochemical response studies of the fabricated BSA/Ab/OA-Fe2O3/ITO immunosensor exhibits good linearity in the range of 12.5-500ng mL(-1) with low detection limit of 0.5ng mL(-1), sensitivity 0.1Ωng(-1)ml(-1)cm(-2) and reproducibility more than 11 times.
Collapse
Affiliation(s)
- Anshu Sharma
- Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, India; School of Physical Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dinesh Baral
- School of Physical Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - H B Bohidar
- Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, India; School of Physical Science, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Pratima R Solanki
- Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Solanki PR, Patel MK, Ali MA, Malhotra BD. A chitosan modified nickel oxide platform for biosensing applications. J Mater Chem B 2015; 3:6698-6708. [DOI: 10.1039/c5tb00494b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a highly sensitive and selective electrochemical sandwich immunosensor (the analyte is “sandwiched” between two antibodies) based on chitosan modified nickel oxide nanoparticles for the detection of Vibrio cholerae.
Collapse
Affiliation(s)
- Pratima R. Solanki
- Special Centre for Nanosciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Manoj Kumar Patel
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi-110067
- India
- Department of Chemistry
| | - Md. Azahar Ali
- Department of Electrical and Computer Engineering
- Iowa State University
- Ames
- USA
| | - B. D. Malhotra
- Department of Biotechnology
- Delhi Technical University
- Delhi-110042
- India
| |
Collapse
|
10
|
Zheng Y, Liang J, Chen Y, Liu Z. Economical and green synthesis of Cu nanowires and their use as a catalyst for selective hydrogenation of cinnamaldehyde. RSC Adv 2014. [DOI: 10.1039/c4ra06680d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
|
12
|
Solanki PR, Srivastava S, Ali MA, Srivastava RK, Srivastava A, Malhotra BD. Reduced graphene oxide–titania based platform for label-free biosensor. RSC Adv 2014. [DOI: 10.1039/c4ra09265a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A label-free biosensor has been fabricated using a reduced graphene oxide and anatase titania nanocomposite, deposited on indium tin oxide electrode for the specific recognition of Vibrio cholerae.
Collapse
Affiliation(s)
- Pratima R. Solanki
- Special Centre for Nano Sciences
- Jawaharlal Nehru University
- New Delhi-110067, India
- Department of Science and Technology Centre on Biomolecular Electronics
- Biomedical Instrumentation Section
| | - Saurabh Srivastava
- Department of Science and Technology Centre on Biomolecular Electronics
- Biomedical Instrumentation Section
- CSIR-National Physical Laboratory
- New Delhi 110012, India
- Department of Physics
| | - Md. Azahar Ali
- Department of Science and Technology Centre on Biomolecular Electronics
- Biomedical Instrumentation Section
- CSIR-National Physical Laboratory
- New Delhi 110012, India
| | - Rajesh Kr. Srivastava
- Department of Physics
- Banaras Hindu University
- Varanasi, India
- Department of Physics
- Indian Institute of Science
| | | | - B. D. Malhotra
- Department of Science and Technology Centre on Biomolecular Electronics
- Biomedical Instrumentation Section
- CSIR-National Physical Laboratory
- New Delhi 110012, India
- Department of Biotechnology
| |
Collapse
|