1
|
Franz P, Delvaux de Fenffe CM, Fierz B. A Site-Specific Click Chemistry Approach to Di-Ubiquitylate H1 Variants Reveals Position-Dependent Stimulation of the DNA Repair Protein RNF168. Angew Chem Int Ed Engl 2024; 63:e202408435. [PMID: 39377639 DOI: 10.1002/anie.202408435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
Ubiquitylation of histone H2A at lysines 13 and 15 by the E3 ligase RNF168 plays a key role in orchestrating DNA double-strand break (DSB) repair, which is often deregulated in cancer. RNF168 activity is triggered by DSB signaling cascades, reportedly through K63-linked poly-ubiquitylation of linker histone H1. However, direct experimental evidence of this mechanism has been elusive, primarily due to the lack of methods to specifically poly-ubiquitylate H1. Here, we developed a versatile click chemistry approach to covalently link multiple proteins in a site-specific, controlled, and stepwise manner. Applying this method, we synthesized H1 constructs bearing triazole-linked di-ubiquitin on four DNA repair-associated ubiquitylation hotspots (H1KxUb2, at K17, 46, 64 and 96). Integrated into nucleosome arrays, the H1KxUb2 variants stimulated H2A ubiquitylation by RNF168 in a position-dependent manner, with H1K17Ub2 showing the strongest RNF168 activation effect. Moreover, we show that di-ubiquitin binding is the driving force underlying RNF168 recruitment, introducing H1K17Ub2 into living U-2 OS cells. Together, our results support the hypothesis of poly-ubiquitylated H1 guiding RNF168 recruitment to DSB sites. Moreover, we demonstrate how the streamlined synthesis of H1KxUb2 variants enables mechanistic studies into RNF168 regulation, with potential implications for its inhibition in susceptible cancers.
Collapse
Affiliation(s)
- Pauline Franz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), EPFL (Ecole Polytechnique Fédérale de Lausanne), Station 6, 1015, Lausanne, Switzerland
| | - Charlotte M Delvaux de Fenffe
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), EPFL (Ecole Polytechnique Fédérale de Lausanne), Station 6, 1015, Lausanne, Switzerland
- present address: Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, Nederland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), EPFL (Ecole Polytechnique Fédérale de Lausanne), Station 6, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Wanka V, Fottner M, Cigler M, Lang K. Genetic Code Expansion Approaches to Decipher the Ubiquitin Code. Chem Rev 2024; 124:11544-11584. [PMID: 39311880 PMCID: PMC11503651 DOI: 10.1021/acs.chemrev.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The covalent attachment of Ub (ubiquitin) to target proteins (ubiquitylation) represents one of the most versatile PTMs (post-translational modifications) in eukaryotic cells. Substrate modifications range from a single Ub moiety being attached to a target protein to complex Ub chains that can also contain Ubls (Ub-like proteins). Ubiquitylation plays pivotal roles in most aspects of eukaryotic biology, and cells dedicate an orchestrated arsenal of enzymes to install, translate, and reverse these modifications. The entirety of this complex system is coined the Ub code. Deciphering the Ub code is challenging due to the difficulty in reconstituting enzymatic machineries and generating defined Ub/Ubl-protein conjugates. This Review provides a comprehensive overview of recent advances in using GCE (genetic code expansion) techniques to study the Ub code. We highlight strategies to site-specifically ubiquitylate target proteins and discuss their advantages and disadvantages, as well as their various applications. Additionally, we review the potential of small chemical PTMs targeting Ub/Ubls and present GCE-based approaches to study this additional layer of complexity. Furthermore, we explore methods that rely on GCE to develop tools to probe interactors of the Ub system and offer insights into how future GCE-based tools could help unravel the complexity of the Ub code.
Collapse
Affiliation(s)
- Vera Wanka
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Fottner
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Marko Cigler
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
3
|
Immler F, Schneider T, Kovermann M. Targeted Preparation and NMR Spectroscopic Characterization of Lys11-Linked Ubiquitin Trimers. Chembiochem 2024; 25:e202300670. [PMID: 37983597 DOI: 10.1002/cbic.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Ubiquitylation refers to the attachment of mono- or poly-ubiquitin molecules to a substrate protein. To shield ubiquitin chains against potential hydrolysis, a facile, click-chemistry based approach was recently established for the generation of site-specifically conjugated ubiquitin dimers relying on triazole-linkage. Here, the preparation of such ubiquitin chains was advanced by the generation of homotypic Lys11-linked ubiquitin trimers considering an isotopic labeling scheme in a moiety-wise manner. The structural and dynamical impact on the ubiquitin unit at proximal, central, or distal position that is potentially invoked by the respective other two moieties was systematically probed by heteronuclear high-resolution NMR spectroscopic approaches. As a result, conjugating a third ubiquitin moiety to the proximal or distal site of a ubiquitin dimer does not alter structural and dynamical characteristics as it has been seen for ubiquitin dimers. This observation suggests that recognition of a homotypically assembled ubiquitin chain by a potential substrate is primarily done by screening the length of a ubiquitin chain rather than relying on subtle changes in structure or dynamic properties of single ubiquitin moieties composing the chain.
Collapse
Affiliation(s)
- Fabian Immler
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| | - Tobias Schneider
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
4
|
van Kruijsbergen I, Mulder MPC, Uckelmann M, van Welsem T, de Widt J, Spanjaard A, Jacobs H, El Oualid F, Ovaa H, van Leeuwen F. Strategy for Development of Site-Specific Ubiquitin Antibodies. Front Chem 2020; 8:111. [PMID: 32154221 PMCID: PMC7047734 DOI: 10.3389/fchem.2020.00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Protein ubiquitination is a key post-translational modification regulating a wide range of biological processes. Ubiquitination involves the covalent attachment of the small protein ubiquitin to a lysine of a protein substrate. In addition to its well-established role in protein degradation, protein ubiquitination plays a role in protein-protein interactions, DNA repair, transcriptional regulation, and other cellular functions. Understanding the mechanisms and functional relevance of ubiquitin as a signaling system requires the generation of antibodies or alternative reagents that specifically detect ubiquitin in a site-specific manner. However, in contrast to other post-translational modifications such as acetylation, phosphorylation, and methylation, the instability and size of ubiquitin-76 amino acids-complicate the preparation of suitable antigens and the generation antibodies detecting such site-specific modifications. As a result, the field of ubiquitin research has limited access to specific antibodies. This severely hampers progress in understanding the regulation and function of site-specific ubiquitination in many areas of biology, specifically in epigenetics and cancer. Therefore, there is a high demand for antibodies recognizing site-specific ubiquitin modifications. Here we describe a strategy for the development of site-specific ubiquitin antibodies. Based on a recently developed antibody against site-specific ubiquitination of histone H2B, we provide detailed protocols for chemical synthesis methods for antigen preparation and discuss considerations for screening and quality control experiments.
Collapse
Affiliation(s)
- Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Monique P C Mulder
- Leiden Institute for Chemical Immunology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Uckelmann
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - John de Widt
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Aldo Spanjaard
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Huib Ovaa
- Leiden Institute for Chemical Immunology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Chemical ubiquitination for decrypting a cellular code. Biochem J 2017; 473:1297-314. [PMID: 27208213 PMCID: PMC5298413 DOI: 10.1042/bj20151195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Abstract
The modification of proteins with ubiquitin (Ub) is an important regulator of eukaryotic biology and deleterious perturbation of this process is widely linked to the onset of various diseases. The regulatory capacity of the Ub signal is high and, in part, arises from the capability of Ub to be enzymatically polymerised to form polyubiquitin (polyUb) chains of eight different linkage types. These distinct polyUb topologies can then be site-specifically conjugated to substrate proteins to elicit a number of cellular outcomes. Therefore, to further elucidate the biological significance of substrate ubiquitination, methodologies that allow the production of defined polyUb species, and substrate proteins that are site-specifically modified with them, are essential to progress our understanding. Many chemically inspired methods have recently emerged which fulfil many of the criteria necessary for achieving deeper insight into Ub biology. With a view to providing immediate impact in traditional biology research labs, the aim of this review is to provide an overview of the techniques that are available for preparing Ub conjugates and polyUb chains with focus on approaches that use recombinant protein building blocks. These approaches either produce a native isopeptide, or analogue thereof, that can be hydrolysable or non-hydrolysable by deubiquitinases. The most significant biological insights that have already been garnered using such approaches will also be summarized.
Collapse
|
6
|
Flierman D, van der Heden van Noort GJ, Ekkebus R, Geurink PP, Mevissen TET, Hospenthal MK, Komander D, Ovaa H. Non-hydrolyzable Diubiquitin Probes Reveal Linkage-Specific Reactivity of Deubiquitylating Enzymes Mediated by S2 Pockets. Cell Chem Biol 2016; 23:472-82. [PMID: 27066941 PMCID: PMC4850247 DOI: 10.1016/j.chembiol.2016.03.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 01/25/2016] [Accepted: 02/23/2016] [Indexed: 01/05/2023]
Abstract
Ubiquitin chains are important post-translational modifications that control a large number of cellular processes. Chains can be formed via different linkages, which determines the type of signal they convey. Deubiquitylating enzymes (DUBs) regulate ubiquitylation status by trimming or removing chains from attached proteins. DUBs can contain several ubiquitin-binding pockets, which confer specificity toward differently linked chains. Most tools for monitoring DUB specificity target binding pockets on opposing sides of the active site; however, some DUBs contain additional pockets. Therefore, reagents targeting additional pockets are essential to fully understand linkage specificity. We report the development of active site-directed probes and fluorogenic substrates, based on non-hydrolyzable diubiquitin, that are equipped with a C-terminal warhead or a fluorogenic activity reporter moiety. We demonstrate that various DUBs in lysates display differential reactivity toward differently linked diubiquitin probes, as exemplified by the proteasome-associated DUB USP14. In addition, OTUD2 and OTUD3 show remarkable linkage-specific reactivity with our diubiquitin-based reagents. Protease-resistant diUb probes bind to DUB S1-S2 sites and react at the proximal end First kinetic assay showing proximal end cleavage by DUBs using diUb-based substrates OTUD3 binds K11-linked diUb and OTUD2 binds K11- and K33-linked diUb in S1-S2 pockets Kinetics suggest different mechanisms for polyUb cleavage by OTUD2 and OTUD3
Collapse
Affiliation(s)
- Dennis Flierman
- Department of Cell Biology II, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | - Reggy Ekkebus
- Department of Cell Biology II, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paul P Geurink
- Department of Cell Biology II, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Tycho E T Mevissen
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Manuela K Hospenthal
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Huib Ovaa
- Department of Cell Biology II, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Pham GH, Rana ASJB, Korkmaz EN, Trang VH, Cui Q, Strieter ER. Comparison of native and non-native ubiquitin oligomers reveals analogous structures and reactivities. Protein Sci 2016; 25:456-71. [PMID: 26506216 DOI: 10.1002/pro.2834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Ubiquitin (Ub) chains regulate a wide range of biological processes, and Ub chain connectivity is a critical determinant of the many regulatory roles that this post-translational modification plays in cells. To understand how distinct Ub chains orchestrate different biochemical events, we and other investigators have developed enzymatic and non-enzymatic methods to synthesize Ub chains of well-defined length and connectivity. A number of chemical approaches have been used to generate Ub oligomers connected by non-native linkages; however, few studies have examined the extent to which non-native linkages recapitulate the structural and functional properties associated with native isopeptide bonds. Here, we compare the structure and function of Ub dimers bearing native and non-native linkages. Using small-angle X-ray scattering (SAXS) analysis, we show that scattering profiles for the two types of dimers are similar. Moreover, using an experimental structural library and atomistic simulations to fit the experimental SAXS profiles, we find that the two types of Ub dimers can be matched to analogous structures. An important application of non-native Ub oligomers is to probe the activity and selectivity of deubiquitinases. Through steady-state kinetic analyses, we demonstrate that different families of deubiquitinases hydrolyze native and non-native isopeptide linkages with comparable efficiency and selectivity. Considering the significant challenges associated with building topologically diverse native Ub chains, our results illustrate that chains harboring non-native linkages can serve as surrogate substrates for explorations of Ub function.
Collapse
Affiliation(s)
- Grace H Pham
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Ambar S J B Rana
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - E Nihal Korkmaz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Vivian H Trang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Eric R Strieter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
8
|
Lin B, Su H, Ma G, Liu Y, Hou Q. Theoretical study of the hydrolysis mechanism of dihydrocoumarin catalyzed by serum paraoxonase 1 (PON1): different roles of Glu53 and His115 for catalysis. RSC Adv 2016. [DOI: 10.1039/c6ra09735a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the PON1-catalyzed hydrolysis of dihydrocoumarin, Glu53 is necessary whereas His115 is not essential but can promote the activity.
Collapse
Affiliation(s)
- Beibei Lin
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Hao Su
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Guangcai Ma
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Qianqian Hou
- Shandong Non-metallic Materials Institute
- Jinan
- China
| |
Collapse
|
9
|
Pham GH, Strieter ER. Peeling away the layers of ubiquitin signaling complexities with synthetic ubiquitin-protein conjugates. Curr Opin Chem Biol 2015; 28:57-65. [PMID: 26093241 DOI: 10.1016/j.cbpa.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
Covalent attachment of ubiquitin, a process termed ubiquitination, affects the location, function, and stability of modified proteins. Significant advances have been made in building synthetic ubiquitin-protein conjugates that can be used to investigate how ubiquitin regulates diverse biological processes. Herein we describe recent advances and discuss how chemical methods have been implemented to address the molecular underpinnings of ubiquitin-dependent cellular signaling.
Collapse
Affiliation(s)
- Grace H Pham
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Eric R Strieter
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
10
|
Sommer S, Ritterhoff T, Melchior F, Mootz HD. A stable chemical SUMO1-Ubc9 conjugate specifically binds as a thioester mimic to the RanBP2-E3 ligase complex. Chembiochem 2015; 16:1183-9. [PMID: 25917782 DOI: 10.1002/cbic.201500011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 01/20/2023]
Abstract
Ubiquitin and ubiquitin-like (Ubl) modifiers such as SUMO are conjugated to substrate proteins by E1, E2, and E3 enzymes. In the presence of an E3 ligase, the E2∼Ubl thioester intermediate becomes highly activated and is prone to chemical decomposition, thus making biochemical and structural studies difficult. Here we explored a stable chemical conjugate of the E2 enzyme from the SUMO pathway, Ubc9, with its modifier SUMO1 as a structural analogue of the Ubc9∼SUMO1 thioester intermediate, by introducing a triazole linkage by biorthogonal click chemistry. The chemical conjugate proved stable against proteolytic cleavage, in contrast to a Ubc9-SUMO1 isopeptide analogue obtained by auto-SUMOylation. Triazole-linked Ubc9-SUMO1 bound specifically to the preassembled E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9, thus suggesting that it is a suitable thioester mimic. We anticipate interesting prospects for its use as a research tool to study protein complexes involving E2 and E3 enzymes.
Collapse
Affiliation(s)
- Stefanie Sommer
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany)
| | - Tobias Ritterhoff
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg (Germany)
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg (Germany).
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany).
| |
Collapse
|
11
|
Yilmazer ND, Korth M. Enhanced semiempirical QM methods for biomolecular interactions. Comput Struct Biotechnol J 2015; 13:169-75. [PMID: 25848495 PMCID: PMC4372622 DOI: 10.1016/j.csbj.2015.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022] Open
Abstract
Recent successes and failures of the application of 'enhanced' semiempirical QM (SQM) methods are reviewed in the light of the benefits and backdraws of adding dispersion (D) and hydrogen-bond (H) correction terms. We find that the accuracy of SQM-DH methods for non-covalent interactions is very often reported to be comparable to dispersion-corrected density functional theory (DFT-D), while computation times are about three orders of magnitude lower. SQM-DH methods thus open up a possibility to simulate realistically large model systems for problems both in life and materials science with comparably high accuracy.
Collapse
Affiliation(s)
| | - Martin Korth
- Institute of Theoretical Chemistry, Ulm University, D-89069 Ulm, Germany
| |
Collapse
|
12
|
Schneider T, Schneider D, Rösner D, Malhotra S, Mortensen F, Mayer TU, Scheffner M, Marx A. Analyse des Ubiquitincodes durch proteasebeständige Ubiquitinketten mit definierter Verknüpfung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Schneider T, Schneider D, Rösner D, Malhotra S, Mortensen F, Mayer TU, Scheffner M, Marx A. Dissecting ubiquitin signaling with linkage-defined and protease resistant ubiquitin chains. Angew Chem Int Ed Engl 2014; 53:12925-9. [PMID: 25196034 DOI: 10.1002/anie.201407192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 01/08/2023]
Abstract
Ubiquitylation is a complex posttranslational protein modification and deregulation of this pathway has been associated with different human disorders. Ubiquitylation comes in different flavors: Besides mono-ubiquitylation, ubiquitin chains of various topologies are formed on substrate proteins. The fate of ubiquitylated proteins is determined by the linkage-type of the attached ubiquitin chains, however, the underlying mechanism is poorly characterized. Herein, we describe a new method based on codon expansion and click-chemistry-based polymerization to generate linkage-defined ubiquitin chains that are resistant to ubiquitin-specific proteases and adopt native-like functions. The potential of these artificial chains for analyzing ubiquitin signaling is demonstrated by linkage-specific effects on cell-cycle progression.
Collapse
Affiliation(s)
- Tatjana Schneider
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Waller MP, Kumbhar S, Yang J. A Density-Based Adaptive Quantum Mechanical/Molecular Mechanical Method. Chemphyschem 2014; 15:3218-25. [DOI: 10.1002/cphc.201402105] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 12/13/2022]
|
15
|
van Treel ND, Mootz HD. SUMOylated RanGAP1 prepared by click chemistry. J Pept Sci 2013; 20:121-7. [PMID: 24338848 DOI: 10.1002/psc.2591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/26/2023]
Abstract
Ubiquitin and ubiquitin-like proteins such as SUMO represent important and abundant post-translational modifications involved in many cellular processes. These modifiers are reversibly attached via an isopeptide bond to lysine side chains of their target proteins by the action of specific E1, E2, and E3 enzymes. A significant challenge in studying ubiquitylation and SUMOylation is the frequently encountered inability to access desired conjugates at a defined position of the target protein and in homogenous form by using enzymatic preparation. In recent years, several chemical conjugation approaches have been developed to overcome this limitation. In this study, we aimed to selectively SUMOylate a 189-amino acid fragment of human RanGAP1 (amino acids 398-587) at the position of Lys524 by applying two recently reported approaches based on the Cu(I)-catalyzed alkyne-azide cycloaddition. Because of low yields observed for the incorporation of an unnatural amino acid with an azide moiety by the tRNA suppression technology, this route was abandoned. However, installing a single cysteine at position 524 and its selective alkylation was successful to introduce the azide group. The triazole-linked SUMO1**RanGAP1 conjugate could be obtained in good yields, purified, and was shown to specifically interact with RanBP2/Ubc9. Thus, we expand the scope of proteins accessible to chemical conjugation with ubiquitin-like proteins and underline the importance of having alternative approaches to do so.
Collapse
Affiliation(s)
- Nadine D van Treel
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| |
Collapse
|
16
|
McGouran JF, Gaertner SR, Altun M, Kramer HB, Kessler BM. Deubiquitinating enzyme specificity for ubiquitin chain topology profiled by di-ubiquitin activity probes. ACTA ACUST UNITED AC 2013; 20:1447-55. [PMID: 24290882 PMCID: PMC3899023 DOI: 10.1016/j.chembiol.2013.10.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/22/2013] [Accepted: 10/15/2013] [Indexed: 11/16/2022]
Abstract
Posttranslational modification with ubiquitin (Ub) controls many cellular processes, and aberrant ubiquitination can contribute to cancer, immunopathology, and neurodegeneration. The versatility arises from the ability of Ub to form polymer chains with eight distinct linkages via lysine side chains and the N terminus. In this study, we engineered Di-Ub probes mimicking all eight different poly-Ub linkages and profiled the deubiquitinating enzyme (DUB) selectivity for recognizing Di-Ub moieties in cellular extracts. Mass spectrometric profiling revealed that most DUBs examined have broad selectivity, whereas a subset displays a clear preference for recognizing noncanonical over K48/K63 Ub linkages. Our results expand knowledge of Ub processing enzyme functions in cellular contexts that currently depends largely on using recombinant enzymes and substrates. Synthesis of Di-ubiquitin-based active site probes representing all eight linkages Mass spectrometric profiling of DUB-Ub linkage preference in whole cell extracts Activity-based Di-Ub probe screen for DUB specificity toward poly-Ub linkages DUBs detected with a preference for noncanonical linkages over K48/K63-linked Ub
Collapse
Affiliation(s)
- Joanna F McGouran
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Selina R Gaertner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Mikael Altun
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Holger B Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| |
Collapse
|