1
|
Abulateefeh SR, Al-Adhami GK, Alkawareek MY, Alkilany AM. Controlling the internal morphology of aqueous core-PLGA shell microcapsules: promoting the internal phase separation via alcohol addition. Pharm Dev Technol 2019; 24:671-679. [DOI: 10.1080/10837450.2018.1558238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
2
|
Brzeziński M, Socka M, Kost B. Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. POLYM INT 2019. [DOI: 10.1002/pi.5753] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marek Brzeziński
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Marta Socka
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Bartłomiej Kost
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| |
Collapse
|
3
|
Wang X, Liu J, Wang P, deMello A, Feng L, Zhu X, Wen W, Kodzius R, Gong X. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes (Basel) 2018; 9:E283. [PMID: 29874840 PMCID: PMC6027171 DOI: 10.3390/genes9060283] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Peizhou Wang
- Advanced Placement of Chemistry Program, International Department, Huzhou New Century Foreign Language School, Huzhou 313100, China.
| | | | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, the American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| |
Collapse
|
4
|
Kohri M, Yanagimoto K, Kawamura A, Hamada K, Imai Y, Watanabe T, Ono T, Taniguchi T, Kishikawa K. Polydopamine-Based 3D Colloidal Photonic Materials: Structural Color Balls and Fibers from Melanin-Like Particles with Polydopamine Shell Layers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7640-7648. [PMID: 28661653 DOI: 10.1021/acsami.7b03453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nature creates beautiful structural colors, and some of these colors are produced by nanostructural arrays of melanin. Polydopamine (PDA), an artificial black polymer produced by self-oxidative polymerization of dopamine, has attracted extensive attention because of its unique properties. PDA is a melanin-like material, and recent studies have reported that photonic materials based on PDA particles showed structural colors by enhancing color saturation through the absorption of scattered light. Herein, we describe the preparation of three-dimensional (3D) colloidal photonic materials, such as structural color balls and fibers, from biomimetic core-shell particles with melanin-like PDA shell layers. Structural color balls were prepared through the combined use of membrane emulsion and heating. We also demonstrated the use of microfluidic emulsification and solvent diffusion for the fabrication of structural color fibers. The obtained 3D colloidal materials, i.e., balls and fibers, exhibited angle-independent structural colors due to the amorphous assembly of PDA-containing particles. These findings provide new insight for the development of dye-free technology for the coloration of various 3D colloidal architectures.
Collapse
Affiliation(s)
- Michinari Kohri
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering , Chiba University , 1-33 Yayoi-cho , Inage-ku, Chiba 263-8522 , Japan
| | - Kenshi Yanagimoto
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering , Chiba University , 1-33 Yayoi-cho , Inage-ku, Chiba 263-8522 , Japan
| | - Ayaka Kawamura
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering , Chiba University , 1-33 Yayoi-cho , Inage-ku, Chiba 263-8522 , Japan
| | - Kosuke Hamada
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering , Chiba University , 1-33 Yayoi-cho , Inage-ku, Chiba 263-8522 , Japan
| | - Yoshihiko Imai
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Takaichi Watanabe
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Tsutomu Ono
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Tatsuo Taniguchi
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering , Chiba University , 1-33 Yayoi-cho , Inage-ku, Chiba 263-8522 , Japan
| | - Keiki Kishikawa
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering , Chiba University , 1-33 Yayoi-cho , Inage-ku, Chiba 263-8522 , Japan
| |
Collapse
|
5
|
Nomura T, Routh AF. Benign preparation of aqueous core poly lactic-co-glycolic acid (PLGA) microcapsules. J Colloid Interface Sci 2018; 513:1-9. [DOI: 10.1016/j.jcis.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
|
6
|
|
7
|
Zhao X, Wang Q, Yu X, Lee YIII, Liu HG. Hierarchical composite microstructures fabricated at the air/liquid interface through multilevel self-assembly of block copolymers. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Zhao X, Yu X, Lee YI, Liu HG. Fabrication of Two-Dimensional Arrays of Diameter-Tunable PS-b-P2VP Nanowires at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11819-11826. [PMID: 27783516 DOI: 10.1021/acs.langmuir.6b02396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Composite thin films with well-defined and parallel nanowires were fabricated from the binary blends of a diblock copolymer polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and several homopolystyrenes (h-PSs) at the air/liquid interface through a facile technique, which involves solution self-assembly, interface adsorption, and further self-organization processes. It was confirmed that the nanowires that appeared at the air/water interface came from the cylindrical micelles formed in solution. Interestingly, the diameters of the nanowires are uniform and can be tuned precisely from 45 to 247 nm by incorporating the h-PS molecules into the micellar core. This parallel alignment of the nanowires has potential applications in optical devices and enables the nanowires to be used as templates to prepare functional nanostructures. The extent to which h-PS molecules with different molecular weights are able to influence the diameter control of the nanowires was also systematically investigated.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University , Jinan 250100, P. R. China
| | - Xiaoli Yu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University , Jinan 250100, P. R. China
| | - Yong-Ill Lee
- Anastro Laboratory, Department of Chemistry, Changwon National University , Changwon 641-773, Korea
| | - Hong-Guo Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University , Jinan 250100, P. R. China
| |
Collapse
|
9
|
Abulateefeh SR, Alkilany AM. Synthesis and Characterization of PLGA Shell Microcapsules Containing Aqueous Cores Prepared by Internal Phase Separation. AAPS PharmSciTech 2016; 17:891-7. [PMID: 26416284 DOI: 10.1208/s12249-015-0413-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022] Open
Abstract
The preparation of microcapsules consisting of poly(D,L-lactide-co-glycolide) (PLGA) polymer shell and aqueous core is a clear challenge and hence has been rarely addressed in literature. Herein, aqueous core-PLGA shell microcapsules have been prepared by internal phase separation from acetone-water in oil emulsion. The resulting microcapsules exhibited mean particle size of 1.1 ± 0.39 μm (PDI = 0.35) with spherical surface morphology and internal poly-nuclear core morphology as indicated by scanning electron microscopy (SEM). The incorporation of water molecules into PLGA microcapsules was confirmed by differential scanning calorimetry (DSC). Aqueous core-PLGA shell microcapsules and the corresponding conventional PLGA microspheres were prepared and loaded with risedronate sodium as a model drug. Interestingly, aqueous core-PLGA shell microcapsules illustrated 2.5-fold increase in drug encapsulation in comparison to the classical PLGA microspheres (i.e., 31.6 vs. 12.7%), while exhibiting sustained release behavior following diffusion-controlled Higuchi model. The reported method could be extrapolated to encapsulate other water soluble drugs and hydrophilic macromolecules into PLGA microcapsules, which should overcome various drawbacks correlated with conventional PLGA microspheres in terms of drug loading and release.
Collapse
|
10
|
Zhao X, Zhang X, Liu HG. Composite PS-b-P4VP/Ag and PS-b-P4VP/Au thin films fabricated via a multilevel self-assembly process. RSC Adv 2016. [DOI: 10.1039/c6ra12435f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thin composite films with microstructures doped with Ag or Au species were fabricated at the air/liquid interface, which exhibited effective catalytic activities for heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- Shandong University
- Jinan 250100
- P. R. China
| | - Xiaokai Zhang
- College of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- P. R. China
| | - Hong-Guo Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
11
|
Zhao X, Wang Q, Lee YI, Hao J, Liu HG. A new strategy to fabricate composite thin films with tunable micro- and nanostructures via self-assembly of block copolymers. Chem Commun (Camb) 2015; 51:16687-90. [DOI: 10.1039/c5cc05548b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and facile strategy to fabricate composite thin films with tunable morphologies at the air/liquid interface is first reported, paving a new way for the generation of composite films in nanotechnology applications.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- Shandong University
- Jinan 250100
- P. R. China
| | - Qian Wang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- Shandong University
- Jinan 250100
- P. R. China
| | - Yong-Ill Lee
- Anastro Laboratory
- Department of Chemistry
- Changwon National University
- Changwon 641-773
- Korea
| | - Jingcheng Hao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- Shandong University
- Jinan 250100
- P. R. China
| | - Hong-Guo Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|