1
|
Enbanathan S, Iyer SK. A novel phenanthridine and terpyridine based D-π-A fluorescent probe for the ratiometric detection of Cd 2+ in environmental water samples and living cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114272. [PMID: 36356527 DOI: 10.1016/j.ecoenv.2022.114272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
A "turn-on" Donor-π-Acceptor (D-π-A) containing phenanthridine-functionalized extended π-conjugate terpyridine, 5-(4'-([2,2':6',2''-terpyridin]-4'-yl)-[1,1'-biphenyl]4-yl)7,8,13,14-tetrahydrodibenzo [a, i] phenanthridine (TBTP) was synthesised. It shows strong selectivity for the detection of toxic Cd2+ without interference from other metal ions. In the presence of Cd2+, the absorption of the TBTP changes dramatically along with the fluorescent emission with the large Stokes shift of 6300 cm-1. When the compound TBTP is exposed to UV light, its colour changes from blue to orange over the addition of Cd2+. Adding other transition metal ions has no effect. This is based on the mechanism of intramolecular charge transfer. The detection limit for Cd2+ was found to be around 1.181 × 10-8 M. An investigation of the sensing mechanism includes job plot, NMR titration, DFT calculation, and HRMS analyses. Excitingly, the recognition of Cd2+ in CH3CN: H2O (8:2, v/v) medium is quantitative without interference from Zn2+, which is a common interferent for Cd2+. Furthermore, the probe was used for detecting Cd2+ in real water samples and cell imaging in living cells was also performed.
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | | |
Collapse
|
2
|
Dias GG, O Rodrigues M, Paz ERS, P Nunes M, Araujo MH, Rodembusch FS, da Silva Júnior EN. Aryl-Phenanthro[9,10- d]imidazole: A Versatile Scaffold for the Design of Optical-Based Sensors. ACS Sens 2022; 7:2865-2919. [PMID: 36250642 DOI: 10.1021/acssensors.2c01687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescent and colorimetric sensors are important tools for investigating the chemical compositions of different matrices, including foods, environmental samples, and water. The high sensitivity, low interference, and low detection limits of these sensors have inspired scientists to investigate this class of sensing molecules for ion and molecule detection. Several examples of fluorescent and colorimetric sensors have been described in the literature; this Review focuses particularly on phenanthro[9,10-d]imidazoles. Different strategies have been developed for obtaining phenanthro[9,10-d]imidazoles, which enable modification of their optical properties upon interaction with specific analytes. These sensing responses usually involve changes in the fluorescence intensity and/or color arising from processes like photoinduced electron transfer, intramolecular charge transfer, intramolecular proton transfer in the excited state, and Förster resonance energy transfer. In this Review, we categorized these sensors into two different groups: those bearing formyl groups and their derivatives and those based on other molecular groups. The different optical responses of phenanthro[9,10-d]imidazole-based sensors upon interaction with specific analytes are discussed.
Collapse
Affiliation(s)
- Gleiston G Dias
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| | - Marieli O Rodrigues
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP, Porto Alegre 91501-970, RS. Brazil
| | - Esther R S Paz
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| | - Maria H Araujo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| | - Fabiano S Rodembusch
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP, Porto Alegre 91501-970, RS. Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| |
Collapse
|
3
|
A quinoline based Schiff base as a turn-on fluorescence chemosensor for selective and robust detection of Cd2+ ion in semi-aqueous medium. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Mikata Y, Takekoshi A, Kaneda M, Yonemura S, Aono Y, Matsumoto A, Konno H, Burdette SC. N,N,N′,N′
‐Tetrakis(3‐isoquinolylmethyl)‐2,6‐lutidylenediamine (3‐isoTQLN): A Fluorescent Zn
2+
/Cd
2+
Dual Sensor as a Hybrid of 2‐Quinolyl/1‐Isoquionolyl Counterparts TQLN/1‐isoTQLN. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuji Mikata
- Department of Chemistry, Biology, and Environmental Science Faculty of Science Nara Women's University Nara 630-8506 Japan
- KYOUSEIScience Center Nara Women's University Nara 630-8506 Japan
- Department of Chemistry, Faculty of Science Nara Women's University Nara 630-8506 Japan
| | - Ayaka Takekoshi
- Department of Chemistry, Faculty of Science Nara Women's University Nara 630-8506 Japan
| | - Minori Kaneda
- Department of Chemistry, Faculty of Science Nara Women's University Nara 630-8506 Japan
| | - Shizuka Yonemura
- Department of Chemistry, Biology, and Environmental Science Faculty of Science Nara Women's University Nara 630-8506 Japan
| | - Yuri Aono
- Department of Chemistry, Faculty of Science Nara Women's University Nara 630-8506 Japan
| | - Arimasa Matsumoto
- Department of Chemistry, Biology, and Environmental Science Faculty of Science Nara Women's University Nara 630-8506 Japan
| | - Hideo Konno
- National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi, Tsukuba Ibaraki 305-8565 Japan
| | - Shawn C. Burdette
- Department of Chemistry and Biochemistry Worcester Polytechnic Institute Worcester, MA 01609-2280 USA
| |
Collapse
|
5
|
Jayabharathi J, Sivaraj S, Thanikachalam V, Seransenguttuvan B. Efficient blue electroluminescence with an external quantum efficiency of 9.20% and CIE y < 0.08 without excimer emission. RSC Adv 2020; 10:25059-25072. [PMID: 35517441 PMCID: PMC9055148 DOI: 10.1039/d0ra03463k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 01/13/2023] Open
Abstract
Aromatically substituted phenanthroimidazoles at the C6 and C9 positions enhanced the thermal, photochemical and electroluminescence properties due to extension of conjugation. These new materials exhibit good photophysical properties with high thermal stability, good film-forming property and high luminous efficiency. The electroluminescence performances of C6 and C9 modified phenanthroimidazoles as host emitters were evaluated as well as the dopant in the fabricated devices. Among the non-doped devices, pyrene substituted PPI-Py or PPICN-Py based devices show maximum efficiency: PPI-Py/PPICN-Py: η c (cd A-1) - 9.20/9.98; η p (lm W-1) - 8.50/9.16; η ex (%) - 5.56/5.80. The doped OLEDs, m-MTDATA/TAPC:PPI-Cz (4.81/4.85%), m-MTDATA/TAPC:PPICN-Cz (5.23/5.26%), m-MTDATA/TAPC:PPI-An (5.01/5.04%), m-MTDATA/TAPC:PPICN-An (5.25/5.28%), m-MTDATA/TAPC:PPI-Py (5.61/5.65%) and m-MTDATA/TAPC:PPICN-Py (5.76/5.78%) show improved device efficiencies compared to non-doped devices. Designing C6/C9 modified phenanthrimidazole fluorophores is an efficient strategy for constructing highly efficient OLEDs.
Collapse
Affiliation(s)
| | - Sekar Sivaraj
- Department of Chemistry, Annamalai University Annamalai Nagar Tamilnadu - 608 002 India
| | | | - Balu Seransenguttuvan
- Department of Chemistry, Annamalai University Annamalai Nagar Tamilnadu - 608 002 India
| |
Collapse
|
6
|
Weng WZ, Guo JS, Liu KX, Shao TQ, Song LQ, Zhu YP, Sun YY, Meng QG. Metal-free oxidative C(sp3)–H functionalization: a facile route to quinoline formaldehydes from methyl-azaheteroarenes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A facile protocol for the synthesis of quinoline formaldehydes via direct oxidative C–H bonds functionalization of methyl-azaheteroarenes in the presence of I2–DMSO has been described. This method is metal-free and easy to operate. This reaction provided a convenient route for the preparation of a range of important quinoline formaldehydes.
Collapse
Affiliation(s)
- Wei-Zhao Weng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Jiang-Shan Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Kai-Xuan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Tian-Qi Shao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Li-Qun Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Yuan-Yuan Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Qing-Guo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| |
Collapse
|
7
|
Lu N, Liu H, Huang R, Gu Y, Yan X, Zhang T, Xu Z, Xu H, Xing Y, Song Y, Li X, Zhang Z. Charge Transfer Platform and Catalytic Amplification of Phenanthroimidazole Derivative: A New Strategy for DNA Bases Recognition. Anal Chem 2019; 91:11938-11945. [PMID: 31429273 DOI: 10.1021/acs.analchem.9b02746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Research about DNA composition has been concentrated on DNA damage in the past few decades. However, it still remains a great challenge to construct a rapid, facile, and accurate approach for simultaneously monitoring four DNA bases, guanine (G), adenine (A), thymine (T), and cytosine (C). Herein, a novel electrochemical sensor based on phenanthroimidazole derivative, 2-(4-bromophenyl)-1-phenyl-1H-phenanthro[9,10-d]-imidazole (PPI), is successfully fabricated by a simple electrochemical method. The bromophenyl group in PI could expand their aromatic plane, induce the π-conjugated extension, and enhance the charge transfer and π-π interaction. The phenyl group at N1 position could regulate the intermolecular interaction, which could promote the possibility of intermolecular connection. The PPI polymer (poly(PPI)) with π-electron enriched conjugation architecture has been applied in simultaneous determination of G, A, T, and C in neutral solution by square wave voltammetry (SWV) method with well-separated peak potentials at 0.714, 1.004, 1.177, and 1.353 V, respectively. The sensor functionalized with poly(PPI) exhibits wide linear response for G, A, T, and C in the concentration ranges of 3-300, 1-300, 30-800, and 20-750 μM, respectively. With favorable selectivity, stability, and reproducibility, the sensor is successfully utilized to monitor four DNA bases in real samples, displaying a promising prospect for electrochemical sensing devices.
Collapse
Affiliation(s)
- Nannan Lu
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - He Liu
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Rui Huang
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Yue Gu
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Xiaoyi Yan
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Tingting Zhang
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Zhiqian Xu
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Haixin Xu
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Yue Xing
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Yu Song
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Xuwen Li
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Zhiquan Zhang
- College of Chemistry , Jilin University , Changchun 130012 , China
| |
Collapse
|
8
|
Das B, Jana A, Mahapatra AD, Chattopadhyay D, Dhara A, Mabhai S, Dey S. Fluorescein derived Schiff base as fluorimetric zinc (II) sensor via 'turn on' response and its application in live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:222-231. [PMID: 30641362 DOI: 10.1016/j.saa.2018.12.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
A novel Schiff base L composed of fluorescein hydrazine and a phenol functionalized moiety has been designed and prepared via cost-effective condensation reaction. The L is utilized for selective sensing of Zn2+ over other environmental and biological relevant metal ions in aqueous alcoholic solution under physiological pH range. The binding of Zn2+ to the receptor L is found to causes ~23 fold fluorescence enhancement of L. The 1:1 binding mode of the metal complex is established by combined UV-Vis, fluorescence, and HRMS (high-resolution mass spectroscopy) spectroscopic methods. The binding constant (Ka) for complexation and the limit of detection (LOD) of Zn2+ is calculated to be 2.86 × 104 M-1 and 1.59 μM, respectively. Further photophysical investigations including steady-state, time-resolved fluorescence analysis and spectral investigations including NMR (nuclear magnetic resonance), IR (infrared spectroscopy) suggest introduction of CHEF (chelation enhance fluorescence) with the suppression of CN isomerization and PET (photo-induced electron transfer) mechanism for the strong fluorescent response towards Zn2+. Finally, the sensor L is successfully employed to monitor a real-time detection of Zn2+ by means of TLC (thin layer chromatography) based paper strip. The L is used in the cell imaging study using African green monkey kidney cells (Vero cells) for the determination of exogenous Zn2+ by Immunofluorescence Assay (IFA) process.
Collapse
Affiliation(s)
- Bhriguram Das
- Department of Chemistry, Tamralipta Mahavidyalaya, Purba Medinipur, West Bengal 721636, India
| | - Atanu Jana
- Center for Superfunctional Materials, Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
| | - Ananya Das Mahapatra
- ICMR-Virus Unit, ID & BG Hospital Campus, 57 Dr Suresh C Banerjee Road, Beliaghata, Kolkata 700010, India
| | - Debprasad Chattopadhyay
- ICMR-Virus Unit, ID & BG Hospital Campus, 57 Dr Suresh C Banerjee Road, Beliaghata, Kolkata 700010, India; ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Anamika Dhara
- Department of Chemistry, Jadavpur University, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Subhabrata Mabhai
- Department of Chemistry, Mahishadal Raj College, Purba Medinipur, Mahishadal, West Bengal 721628, India
| | - Satyajit Dey
- Department of Chemistry, Tamralipta Mahavidyalaya, Purba Medinipur, West Bengal 721636, India.
| |
Collapse
|
9
|
Wu G, Gao Q, Li M, Tang X, Lai KWC, Tong Q. A ratiometric probe based on coumarin-quinoline for highly selective and sensitive detection of Zn2+ ions in living cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Chen WC, Yuan Y, Xiong Y, Rogach AL, Tong QX, Lee CS. Aromatically C6- and C9-Substituted Phenanthro[9,10-d]imidazole Blue Fluorophores: Structure-Property Relationship and Electroluminescent Application. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26268-26278. [PMID: 28692277 DOI: 10.1021/acsami.7b06547] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, a series of aromatically substituted phenanthro[9,10-d]imidazole (PI) fluorophores at C6 and C9 (no. 6 and 9 carbon atoms) have been synthesized and systematically characterized by theoretical, thermal, photophysical, electrochemical, and electroluminescent (EL) studies. C6 and C9 modifications have positive influences on the thermal properties of the new materials. Theoretical calculations suggest that the C6 and the C9 positions of PI are electronically different. Theoretical and experimental evidences of intramolecular charge transfer (ICT) between two identical moieties attaching to the C6 and the C9 positions are observed. Photophysical properties of the fluorophores are greatly influenced by size and conjugation extent of the substituents as well as linking steric hindrance. It is found that the C6 and C9 positions afford moderate conjugated extension compared to the C2 modification. Moreover, ICT characteristics of the new fluorophores increase as the size of the substituted aromatic group, and are partially influenced by steric hindrance, with the anthracene and the pyrene derivatives having the strongest ICT excited properties. EL performances of the fluorophores were evaluated as host emitters or dopants in organic light-emitting devices (OLEDs). Most of the devices showed significantly improved efficiencies compared to the OLED using the nonmodified emitter. Among all the devices, a 5 wt % TPI-Py doped device exhibited excellent performances with an external quantum efficiency >5% at 1000 cd/m2 and a deep-blue color index of (0.155, 0.065), which are comparable to the most advanced deep-blue devices. Our study can give useful information for designing C6/C9-modificated PI fluorophores and provide an efficient approach for constructing high-performance deep-blue OLEDs.
Collapse
Affiliation(s)
- Wen-Cheng Chen
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong P.R. China
| | - Yi Yuan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University , 243 University Road, Shantou, Guangdong 515063, P.R. China
| | | | | | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University , 243 University Road, Shantou, Guangdong 515063, P.R. China
| | - Chun-Sing Lee
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong P.R. China
| |
Collapse
|
11
|
Yan X, Kim JJ, Jeong HS, Moon YK, Cho YK, Ahn S, Jun SB, Kim H, You Y. Low-Affinity Zinc Sensor Showing Fluorescence Responses with Minimal Artifacts. Inorg Chem 2017; 56:4332-4346. [PMID: 28378582 DOI: 10.1021/acs.inorgchem.6b02786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study of the zinc biology requires molecular probes with proper zinc affinity. We developed a low-affinity zinc probe (HBO-ACR) based on an azacrown ether (ACR) and an 2-(2-hydroxyphenyl)benzoxazole (HBO) fluorophore. This probe design imposed positive charge in the vicinity of a zinc coordination center, which enabled fluorescence turn-on responses to high levels of zinc without being affected by the pH and the presence of other transition-metal ions. Steady-state and transient photophysical investigations suggested that such a high tolerance benefits from orchestrated actions of proton-induced nonradiative and zinc-induced radiative control. The zinc bioimaging utility of HBO-ACR has been fully demonstrated with the use of human pancreas epidermoid carcinoma, PANC-1 cells, and rodent hippocampal neurons from cultures and acute brain slices. The results obtained through our studies established the validity of incorporating positively charged ionophores for the creation of low-affinity probes for the visualization of biometals.
Collapse
Affiliation(s)
- Xinhao Yan
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi-do 17104, Korea
| | | | | | | | | | - Soyeon Ahn
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi-do 17104, Korea
| | | | - Hakwon Kim
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi-do 17104, Korea
| | | |
Collapse
|
12
|
Wu G, Tang X, Ji W, Lai KWC, Tong Q. A turn-on fluorescent probe based on coumarin-anhydride for highly sensitive detection of hydrazine in the aqueous solution and gas states. Methods Appl Fluoresc 2017; 5:015001. [DOI: 10.1088/2050-6120/aa5387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Coumarin Based Highly Selective “off-on-off” Type Novel Fluorescent Sensor for Cu2+ and S2− in Aqueous Solution. J Fluoresc 2016; 27:463-471. [DOI: 10.1007/s10895-016-1972-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
|
14
|
Li G, Liu G, Zhang DB, Pu SZ. A new fluorescence probe based on fluorescein-diarylethene fluorescence resonance energy transfer system for rapid detection of Cd2+. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Wu G, Li M, Zhu J, Lai KWC, Tong Q, Lu F. A highly sensitive and selective turn-on fluorescent probe for Pb(ii) ions based on a coumarin–quinoline platform. RSC Adv 2016. [DOI: 10.1039/c6ra19734e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new fluorescent probeT1, which contained a coumarin fluorophore with a triazole substituted 8-hydroxyquinoline (8-HQ) receptor and a Schiff base spacer, was rationally designed and synthesized.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Chemistry
- Shantou University
- P. R. China
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
| | - Mingxin Li
- Department of Chemistry
- Shantou University
- P. R. China
| | - Jieji Zhu
- Department of Chemistry
- Shantou University
- P. R. China
| | - King Wai Chiu Lai
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
| | - Qingxiao Tong
- Department of Chemistry
- Shantou University
- P. R. China
| | - Feng Lu
- Department of Chemistry
- Shantou University
- P. R. China
| |
Collapse
|
16
|
Geng QX, Cong H, Tao Z, Lindoy LF, Wei G. Cucurbit[7]uril-improved recognition by a fluorescent sensor for cadmium and zinc cations. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1117614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qing-Xia Geng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, P.R. China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, P.R. China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, P.R. China
| | | | - Gang Wei
- CSIRO Manufacturing Flagship, Lindfield, Australia
| |
Collapse
|
17
|
Ryu SY, Huh M, You Y, Nam W. Phosphorescent Zinc Probe for Reversible Turn-On Detection with Bathochromically Shifted Emission. Inorg Chem 2015; 54:9704-14. [DOI: 10.1021/acs.inorgchem.5b00967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seung Yeon Ryu
- Department
of Chemistry and Nano Science and ‡Division of Chemical Engineering and Materials
Science, Ewha Womans University, Seoul 120-750, Korea
| | - Mijoung Huh
- Department
of Chemistry and Nano Science and ‡Division of Chemical Engineering and Materials
Science, Ewha Womans University, Seoul 120-750, Korea
| | - Youngmin You
- Department
of Chemistry and Nano Science and ‡Division of Chemical Engineering and Materials
Science, Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science and ‡Division of Chemical Engineering and Materials
Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
18
|
Liu XY, Liu DY, Qi J, Cui ZG, Chang HX, He HR, Yang GM. A new fluorescent sensor for Cd2+ and its application in living cells imaging. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Gonzalez-Carrero S, Agudelo-Morales C, Guardia MDL, Galian RE, Pérez-Prieto J. Three independent channel nanohybrids as fluorescent probes. RSC Adv 2015. [DOI: 10.1039/c5ra18028g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pyrene-capped CdSe/ZnS nanohybrids permit a simple and rapid quantification of trinitrotoluene in the presence of interferents of the same chemical family.
Collapse
Affiliation(s)
| | - Carlos Agudelo-Morales
- Instituto de Ciencia Molecular (ICmol)
- Universidad de Valencia
- Catedrático José Beltrán 2
- Paterna
- Spain
| | | | - Raquel E. Galian
- Instituto de Ciencia Molecular (ICmol)
- Universidad de Valencia
- Catedrático José Beltrán 2
- Paterna
- Spain
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICmol)
- Universidad de Valencia
- Catedrático José Beltrán 2
- Paterna
- Spain
| |
Collapse
|
20
|
Dutta K, Deka RC, Das DK. A new fluorescent and electrochemical Zn2+ ion sensor based on Schiff base derived from benzil and L-tryptophan. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:124-129. [PMID: 24468984 DOI: 10.1016/j.saa.2013.12.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/12/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
Single molecule acting as both fluorescent and electrochemical sensor for Zn(2+) ion is rare. The product (L) obtained on condensation between benzil and L-tryptophan has been characterized by H NMR, ESI-MS and FT-IR spectroscopy. L in 1:1 (v/v) CH3OH:H2O solution shows fluorescence emission in the range 300 nm to 600 nm with λmax at 350 nm when is excited with 295 nm photon. Zn(2+) ion could induce a 10-fold enhancement in fluorescent intensity of L. Fluorescence and UV/Visible spectral data analysis shows that the binding ratio between Zn(2+) ion and L is 1:1 with log β=4.55. Binding of Zn(2+) ion disrupts the photoinduced electron transfer (PET) process in L and causes the fluorescence intensity enhancement. When cyclic voltammogram is recorded for L in 1:1 (v/v) CH3OH:H2O using glassy carbon (GC) electrode, two quasi reversible redox couples at redox potential values -0.630±0.005 V and -1.007±0.005 V are obtained (Ag-AgCl as reference, scan rate 0.1 V s(-1)). Interaction with Zn(2+) ion makes the first redox couple irreversible while the second couple undergoes a 0.089 V positive shift in redox potential. Metal ions - Cd(2+), Cu(2+), Co(2+), Hg(2+), Ag(+), Ni(2+), Fe(2+), Mn(2+), Mg(2+), Ca(2+)and Pb(2+), individually or all together, has no effect on the fluorescent as well as electrochemical property of L. DFT calculations showed that Zn(2+) ion binds to L to form a stable complex. The detection limit for both fluorescence as well as electrochemical detection was 10(-6) M.
Collapse
Affiliation(s)
- Kaku Dutta
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India
| | - Ramesh C Deka
- Department of Chemical Science, Tezpur University, Napaam, Tezpur 784 028, Assam, India
| | - Diganta Kumar Das
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| |
Collapse
|