1
|
Keenan T, Cowan AR, Flack EKP, Hatton NE, Walklett AJ, Thomas GH, Hemsworth GR, Fascione MA. Structural dissection of the CMP-pseudaminic acid synthetase, PseF. Structure 2024; 32:2399-2409.e4. [PMID: 39393361 DOI: 10.1016/j.str.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Pseudaminic acid is a non-mammalian sugar found in the surface glycoconjugates of many bacteria, including several human pathogens, and is a virulence factor thought to facilitate immune evasion. The final step in the biosynthesis of the nucleotide activated form of the sugar, CMP-Pse5Ac7Ac is performed by a CMP-Pse5Ac7Ac synthetase (PseF). Here we present the biochemical and structural characterization of PseF from Aeromonas caviae (AcPseF), with AcPseF displaying metal-dependent activity over a broad pH and temperature range. Upon binding to CMP-Pse5Ac7Ac, AcPseF undergoes dynamic movements akin to other CMP-ulosonic acid synthetases. The enzyme clearly discriminates Pse5Ac7Ac from other ulosonic acids, through active site interactions with side-chain functional groups and by positioning the molecule in a hydrophobic pocket. Finally, we show that AcPseF binds the CMP-Pse5Ac7Ac side chain in the lowest energy conformation, a trend that we observed in the structures of other enzymes of this class.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York, York YO10 5DD, UK
| | - Andrew R Cowan
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Emily K P Flack
- Department of Biology, University of York, York YO10 5DD, UK
| | | | | | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Glyn R Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
2
|
Cheung YC, Guo X, Yang X, Wei R, Chan EW, Li X, Chen S. KpsS1 Mediates the Glycosylation of Pseudaminic Acid in Acinetobacter Baumannii. Chemistry 2024; 30:e202400703. [PMID: 38682414 DOI: 10.1002/chem.202400703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
Pseudaminic acid (Pse) is found in the polysaccharide structures of the cell surface of various Gram-negative pathogenic bacteria including Acinetobacter baumannii and considered as an important component of cell surface glycans including oligosaccharides and glycoproteins. However, the glycosyltransferase that is responsible for the Pse glycosylation in A. baumannii remains unknown yet. In this study, through comparative genomics analysis of Pse-positive and negative A. baumannii clinical isolates, we identified a potential glycosyltransferase, KpsS1, located right downstream of the Pse biosynthesis genetic locus. Deletion of this gene in an Pse-positive A. baumannii strain, Ab8, impaired the glycosylation of Pse to the surface CPS and proteins, while the gene knockout strain, Ab8ΔkpsS1, could still produce Pse with 2.86 folds higher amount than that of Ab8. Furthermore, impairment of Pse glycosylation affected the morphology and virulence potential of A. baumannii, suggesting the important role of this protein. This study will provide insights into the further understanding of Pse in bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Yan Chu Cheung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077
| | - Xing Guo
- Department of Chemistry, the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 999077
| | - Xuemei Yang
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077
- Shenzhen Key lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China, 518057
| | - Ruohan Wei
- Department of Chemistry, the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 999077
| | - Edward Waichi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077
| | - Xuechen Li
- Department of Chemistry, the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 999077
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077
- Shenzhen Key lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China, 518057
| |
Collapse
|
3
|
Warnes ME, Fascione MA. Bimodal Glycosyl Donors as an Emerging Approach Towards a General Glycosylation Strategy. Chemistry 2024; 30:e202400399. [PMID: 38501362 PMCID: PMC11497259 DOI: 10.1002/chem.202400399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Organic synthesis provides an accessible route to preparative scale biological glycans, although schemes to access these complex structures are often complicated by preparation of multiple monosaccharide building blocks. Bimodal glycosyl donors capable of forming both α- and β-anomers selectively, are an emerging tactic to reduce the required number of individual synthetic components in glycan construction. This review discusses examples of bimodal donors in the literature, and how they achieve their stereocontrol for both anomers. Notable examples include a bespoke O-2 benzyl protecting group, a strained glycal for reaction using organometallic catalysis, and a simple perbenzylated donor optimised for stereoselective glycosylation through extensive reaction tuning.
Collapse
|
4
|
Guo X, Cheung YC, Li C, Liu H, Li P, Chen S, Li X. Investigation on the substrate specificity and N-substitution tolerance of PseF in catalytic transformation of pseudaminic acids to CMP-Pse derivatives. Chem Sci 2024; 15:5950-5956. [PMID: 38665540 PMCID: PMC11040635 DOI: 10.1039/d4sc00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudaminic acid (Pse) belongs to a class of bacterial non-2-ulosonic acids, and has been implicated in bacterial infection and immune evasion. Various Pse structures with diverse N-substitutions have been identified in pathogenic bacterial strains like Pseudomonas aeruginosa, Campylobacter jejuni, and Acinetobacter baumannii. In this study, we successfully synthesized three new Pse species, including Pse5Ac7Fo, Pse5Ac7(3RHb) and Pse7Fo5(3RHb) using chemical methods. Furthermore, we investigated the substrate specificity of cytidine 5'-monophosphate (CMP)-Pse synthetase (PseF), resulting in the production of N-modified CMP-Pse derivatives (CMP-Pses). It was found that PseF was promiscuous with the Pse substrate and could tolerate different modifications at the two nitrogen atoms. This study provides valuable insights into the incorporation of variable N-substitutions in the Pse biosynthetic pathway.
Collapse
Affiliation(s)
- Xing Guo
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong Province P. R. China
| | - Yan Chu Cheung
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR P. R. China
| | - Can Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Pengfei Li
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong Province P. R. China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Ocean University China Qingdao 266237 People's Republic of China
| |
Collapse
|
5
|
Walklett AJ, Flack EKP, Chidwick HS, Hatton NE, Keenan T, Budhadev D, Walton J, Thomas GH, Fascione MA. The Retaining Pse5Ac7Ac Pseudaminyltransferase KpsS1 Defines a Previously Unreported glycosyltransferase family (GT118). Angew Chem Int Ed Engl 2024; 63:e202318523. [PMID: 38224120 DOI: 10.1002/anie.202318523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Cell surface sugar 5,7-diacetyl pseudaminic acid (Pse5Ac7Ac) is a bacterial analogue of the ubiquitous sialic acid, Neu5Ac, and contributes to the virulence of a number of multidrug resistant bacteria, including ESKAPE pathogens Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite its discovery in the surface glycans of bacteria over thirty years ago, to date no glycosyltransferase enzymes (GTs) dedicated to the synthesis of a pseudaminic acid glycosidic linkage have been unequivocally characterised in vitro. Herein we demonstrate that A. baumannii KpsS1 is a dedicated pseudaminyltransferase enzyme (PseT) which constructs a Pse5Ac7Ac-α(2,6)-Glcp linkage, and proceeds with retention of anomeric configuration. We utilise this PseT activity in tandem with the biosynthetic enzymes required for CMP-Pse5Ac7Ac assembly, in a two-pot, seven enzyme synthesis of an α-linked Pse5Ac7Ac glycoside. Due to its unique activity and protein sequence, we also assign KpsS1 as the prototypical member of a previously unreported GT family (GT118).
Collapse
Affiliation(s)
| | - Emily K P Flack
- Department of Chemistry, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | | | | | - Tessa Keenan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Julia Walton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
6
|
Kint N, Dubois T, Viollier PH. Stereoisomer-specific reprogramming of a bacterial flagellin sialyltransferase. EMBO J 2023; 42:e112880. [PMID: 36636824 PMCID: PMC9975948 DOI: 10.15252/embj.2022112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Glycosylation of surface structures diversifies cells chemically and physically. Nucleotide-activated sialic acids commonly serve as glycosyl donors, particularly pseudaminic acid (Pse) and its stereoisomer legionaminic acid (Leg), which decorate eubacterial and archaeal surface layers or protein appendages. FlmG, a recently identified protein sialyltransferase, O-glycosylates flagellins, the subunits of the flagellar filament. We show that flagellin glycosylation and motility in Caulobacter crescentus and Brevundimonas subvibrioides is conferred by functionally insulated Pse and Leg biosynthesis pathways, respectively, and by specialized FlmG orthologs. We established a genetic glyco-profiling platform for the classification of Pse or Leg biosynthesis pathways, discovered a signature determinant of eubacterial and archaeal Leg biosynthesis, and validated it by reconstitution experiments in a heterologous host. Finally, by rewiring FlmG glycosylation using chimeras, we defined two modular determinants that govern flagellin glycosyltransferase specificity: a glycosyltransferase domain that either donates Leg or Pse and a specialized flagellin-binding domain that identifies the acceptor.
Collapse
Affiliation(s)
- Nicolas Kint
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenèveSwitzerland
| | - Thomas Dubois
- University of Lille, CNRS, INRAE, Centrale Lille, UMR 8207‐UMET‐Unité Matériaux et TransformationsLilleFrance
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenèveSwitzerland
| |
Collapse
|
7
|
Structural analysis of the pseudaminic acid synthase PseI from Campylobacter jejuni. Biochem Biophys Res Commun 2022; 635:252-258. [DOI: 10.1016/j.bbrc.2022.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022]
|
8
|
Niedzwiecka A, Pham Q, Ling CC. Regiospecific O → N Acyl Migration as a Methodology to Access l-Altropyranosides with an N2, N4-Differentiation. Org Lett 2022; 24:8667-8671. [DOI: 10.1021/acs.orglett.2c03508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Anna Niedzwiecka
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Quyen Pham
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
9
|
Filik K, Szermer-Olearnik B, Oleksy S, Brykała J, Brzozowska E. Bacteriophage Tail Proteins as a Tool for Bacterial Pathogen Recognition-A Literature Review. Antibiotics (Basel) 2022; 11:555. [PMID: 35625199 PMCID: PMC9137617 DOI: 10.3390/antibiotics11050555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, a number of bacterial detection methods have been developed to replace time-consuming culture methods. One interesting approach is to mobilize the ability of phage tail proteins to recognize and bind to bacterial hosts. In this paper, the authors provide an overview of the current methodologies in which phage proteins play major roles in detecting pathogenic bacteria. Authors focus on proteins capable of recognizing highly pathogenic strains, such as Acinetobacter baumannii, Campylobacter spp., Yersinia pestis, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Enterococcus spp., Salmonella spp., and Shigella. These pathogens may be diagnosed by capture-based detection methods involving the use of phage protein-coated nanoparticles, ELISA (enzyme-linked immunosorbent assay)-based methods, or biosensors. The reviewed studies show that phage proteins are becoming an important diagnostic tool due to the discovery of new phages and the increasing knowledge of understanding the specificity and functions of phage tail proteins.
Collapse
Affiliation(s)
- Karolina Filik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. R. Weigl 12, 51-167 Wroclaw, Poland; (S.O.); (J.B.); (E.B.)
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. R. Weigl 12, 51-167 Wroclaw, Poland; (S.O.); (J.B.); (E.B.)
| | | | | | | |
Collapse
|
10
|
Siyabalapitiya Arachchige S, Crich D. Syntheses of Legionaminic Acid, Pseudaminic Acid, Acetaminic Acid, 8- epi-Acetaminic Acid, and 8- epi-Legionaminic Acid Glycosyl Donors from N-Acetylneuraminic Acid by Side Chain Exchange. Org Lett 2022; 24:2998-3002. [PMID: 35420827 PMCID: PMC9066425 DOI: 10.1021/acs.orglett.2c00894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metaperiodate cleavage of the glycerol side chain from an N-acetyl neuraminic acid-derived thioglycoside and condensation with the two enantiomers of the Ellman sulfinamide afford two diastereomeric N-sulfinylimines from which bacterial sialic acid donors with the legionaminic and acetaminic acid configurations and their 8-epi-isomers are obtained by samarium iodide-mediated coupling with acetaldehyde and subsequent manipulations. A variation on the theme, with inversion of the configuration at C5, similarly provides two differentially protected pseudaminic acid donors.
Collapse
Affiliation(s)
- Sameera Siyabalapitiya Arachchige
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Meng X, Boons GJ, Wösten MMSM, Wennekes T. Metabolic Labeling of Legionaminic Acid in Flagellin Glycosylation of Campylobacter jejuni Identifies Maf4 as a Putative Legionaminyl Transferase. Angew Chem Int Ed Engl 2021; 60:24811-24816. [PMID: 34519150 PMCID: PMC9298399 DOI: 10.1002/anie.202107181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Indexed: 12/19/2022]
Abstract
Campylobacter jejuni is the major human food‐borne pathogen. Its bipolar flagella are heavily O‐glycosylated with microbial sialic acids and essential for its motility and pathogenicity. However, both the glycosylation of flagella and the exact contribution of legionaminic acid (Leg) to flagellar activity is poorly understood. Herein, we report the development of a metabolic labeling method for Leg glycosylation on bacterial flagella with probes based on azide‐modified Leg precursors. The hereby azido‐Leg labeled flagellin could be detected by Western blot analysis and imaged on intact bacteria. Using the probes on C. jejuni and its isogenic maf4 mutant we also further substantiated the identification of Maf4 as a putative Leg glycosyltransferase. Further evidence was provided by UPLC–MS detection of labeled CMP‐Leg and an in silico model of Maf4. This method and the developed probes will facilitate the study of Leg glycosylation and the functional role of this modification in C. jejuni motility and invasiveness.
Collapse
Affiliation(s)
- Xianke Meng
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
12
|
Meng X, Boons G, Wösten MMSM, Wennekes T. Metabolic Labeling of Legionaminic Acid in Flagellin Glycosylation of
Campylobacter jejuni
Identifies Maf4 as a Putative Legionaminyl Transferase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xianke Meng
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Complex Carbohydrate Research Center and Department of Chemistry University of Georgia 315 Riverbend Road Athens GA 30602 USA
| | - Marc M. S. M. Wösten
- Department Biomolecular Health Sciences Utrecht University Yalelaan 1 3584 CL Utrecht The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
13
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
14
|
Vibhute AM, Tamai H, Logviniuk D, Jones PG, Fridman M, Werz DB. Azide-Functionalized Derivatives of the Virulence-Associated Sugar Pseudaminic Acid: Chiral Pool Synthesis and Labeling of Bacteria. Chemistry 2021; 27:10595-10600. [PMID: 33769621 PMCID: PMC8360151 DOI: 10.1002/chem.202100443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/19/2022]
Abstract
Pseudaminic acid (Pse) is a significant prokaryotic monosaccharide found in important Gram-negative and Gram-positive bacteria. This unique sugar serves as a component of cell-surface-associated glycans or glycoproteins and is associated with their virulence. We report the synthesis of azidoacetamido-functionalized Pse derivatives as part of a search for Pse-derived metabolic labeling reagents. The synthesis was initiated with d-glucose (Glc), which served as a cost-effective chiral pool starting material. Key synthetic steps involve the conversion of C1 of Glc into the terminal methyl group of Pse, and inverting deoxyaminations at C3 and C5 of Glc followed by backbone elongation with a three-carbon unit using the Barbier reaction. Metabolic labeling experiments revealed that, of the four Pse derivatives, ester-protected C5 azidoacetamido-Pse successfully labeled cells of Pse-expressing Gram-positive and Gram-negative strains. No labeling was observed in cells of non-Pse-expressing strains. The ester-protected and C5 azidoacetamido-functionalized Pse is thus a useful reagent for the identification of bacteria expressing this unique virulence-associated nonulosonic acid.
Collapse
Affiliation(s)
- Amol M Vibhute
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Hideki Tamai
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Dana Logviniuk
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Micha Fridman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
15
|
Quirke JCK, Crich D. Side Chain Conformation Restriction in the Catalysis of Glycosidic Bond Formation by Leloir Glycosyltransferases, Glycoside Phosphorylases, and Transglycosidases. ACS Catal 2021; 11:5069-5078. [PMID: 34367723 PMCID: PMC8336929 DOI: 10.1021/acscatal.1c00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbohydrate side chain conformation is an important factor in the control of reactivity at the anomeric center, ie, in the making and breaking of glycosidic bonds, whether chemically or, for hydrolysis, by glycoside hydrolases. In nature glycosidic bond formation is catalyzed out by glycosyltransferases (GTs), glycoside phosphoryases, and transglycosidases. By analysis of 118 crystal structures of sugar nucleotide dependent (Leloir) GTs, 136 crystal structures of glycoside phosphorylases, and 54 crystal structures of transglycosidases bound to hexopyranosides or their analogs at the donor site (-1 site), we determined that most enzymes that catalyze glycoside synthesis, be they GTs, glycoside phosphorylases or transglycosidases, restrict their substrate side chains to the most reactive gauche,gauche (gg) conformation to achieve maximum stabilization of the oxocarbenium ion-like transition state for glycosyl transfer. The galactose series deviates from this trend, with α-galactosyltransferases preferentially restricting their substrates to the second-most reactive gauche,trans (gt) conformation, and β-galactosyltransferases favoring the least reactive trans,gauche (tg) conformation. This insight will help progress the design and development of improved, conformationally-restricted GT inhibitors that take advantage of these inherent side chain preferences.
Collapse
Affiliation(s)
- Jonathan C. K. Quirke
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
16
|
Chidwick HS, Flack EKP, Keenan T, Walton J, Thomas GH, Fascione MA. Reconstitution and optimisation of the biosynthesis of bacterial sugar pseudaminic acid (Pse5Ac7Ac) enables preparative enzymatic synthesis of CMP-Pse5Ac7Ac. Sci Rep 2021; 11:4756. [PMID: 33637817 PMCID: PMC7910423 DOI: 10.1038/s41598-021-83707-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
Pseudaminic acids present on the surface of pathogenic bacteria, including gut pathogens Campylobacter jejuni and Helicobacter pylori, are postulated to play influential roles in the etiology of associated infectious diseases through modulating flagella assembly and recognition of bacteria by the human immune system. Yet they are underexplored compared to other areas of glycoscience, in particular enzymes responsible for the glycosyltransfer of these sugars in bacteria are still to be unambiguously characterised. This can be largely attributed to a lack of access to nucleotide-activated pseudaminic acid glycosyl donors, such as CMP-Pse5Ac7Ac. Herein we reconstitute the biosynthesis of Pse5Ac7Ac in vitro using enzymes from C. jejuni (PseBCHGI) in the process optimising coupled turnover with PseBC using deuterium wash in experiments, and establishing a method for co-factor regeneration in PseH tunover. Furthermore we establish conditions for purification of a soluble CMP-Pse5Ac7Ac synthetase enzyme PseF from Aeromonas caviae and utilise it in combination with the C. jejuni enzymes to achieve practical preparative synthesis of CMP-Pse5Ac7Ac in vitro, facilitating future biological studies.
Collapse
Affiliation(s)
- Harriet S Chidwick
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - Emily K P Flack
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - Tessa Keenan
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - Julia Walton
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Heslington Road, York, YO10 5DD, UK
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK.
| |
Collapse
|
17
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Niedzwiecka A, Sequeira C, Zhang P, Ling CC. An efficient and scalable synthesis of 2,4-di- N-acetyl- l-altrose ( l-2,4-Alt-diNAc). RSC Adv 2021; 11:11583-11594. [PMID: 35423663 PMCID: PMC8695972 DOI: 10.1039/d1ra01070k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
An efficient and scalable synthesis of pseudaminic acid precursor l-2,4-Alt-diNAc was developed from l-fucose. The desired l-altro configuration and N-acetamido substitutions ensued from a sequence of highly regio- and stereoselective transformations.
Collapse
Affiliation(s)
| | | | - Ping Zhang
- Department of Chemistry
- University of Calgary
- Calgary
- Canada
| | | |
Collapse
|
19
|
Lee IM, Tu IF, Yang FL, Wu SH. Bacteriophage Tail-Spike Proteins Enable Detection of Pseudaminic-Acid-Coated Pathogenic Bacteria and Guide the Development of Antiglycan Antibodies with Cross-Species Antibacterial Activity. J Am Chem Soc 2020; 142:19446-19450. [PMID: 33166120 DOI: 10.1021/jacs.0c07314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudaminic acid (Pse), a unique carbohydrate in surface-associated glycans of pathogenic bacteria, has pivotal roles in virulence. Owing to its significant antigenicity and absence in mammals, Pse is considered an attractive target for vaccination or antibody-based therapies against bacterial infections. However, a specific and universal probe for Pse, which could also be used in immunotherapy, has not been reported. In a prior study, we used a tail spike protein from a bacteriophage (ΦAB6TSP) that digests Pse-containing exopolysaccharide (EPS) from Acinetobacter baumannii strain 54149 (Ab-54149) to form a glycoconjugate for preparing anti-Ab-54149 EPS serum. We report here that a catalytically inactive ΦAB6TSP (I-ΦAB6TSP) retains binding ability toward Pse. In addition, an I-ΦAB6TSP-DyLight-650 conjugate (Dy-I-ΦAB6TSP) was more sensitive in detecting Ab-54149 than an antibody purified from anti- Ab-54149 EPS serum. Dy-I-ΦAB6TSP also cross-reacted with other pathogenic bacteria containing Pse on their surface polysaccharides (e.g., Helicobacter pylori and Enterobacter cloacae), revealing it to be a promising probe for detecting Pse across bacterial species. We also developed a detection method that employs I-ΦAB6TSP immobilized on microtiter plate. These results suggested that the anti-Ab-54149 EPS serum would exhibit cross-reactivity to Pse on other organisms. When this was tested, this serum facilitated complement-mediated killing of H. pylori and E. cloacae, indicating its potential as a cross-species antibacterial agent. This work opens new avenues for diagnosis and treatment of multidrug resistant (MDR) bacterial infections.
Collapse
Affiliation(s)
- I-Ming Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
20
|
Flack EKP, Chidwick HS, Guchhait G, Keenan T, Budhadev D, Huang K, Both P, Mas Pons J, Ledru H, Rui S, Stafford GP, Shaw JG, Galan MC, Flitsch S, Thomas GH, Fascione MA. Biocatalytic Transfer of Pseudaminic Acid (Pse5Ac7Ac) Using Promiscuous Sialyltransferases in a Chemoenzymatic Approach to Pse5Ac7Ac-Containing Glycosides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emily K. P. Flack
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | | | - Goutam Guchhait
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | - Tessa Keenan
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | - Darshita Budhadev
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | - Kun Huang
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kindgom
| | - Peter Both
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kindgom
| | - Jordi Mas Pons
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kindgom
| | - Helene Ledru
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kindgom
| | - Shengtao Rui
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, United Kindgom
| | - Graham P. Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kindgom
| | - Jonathan G. Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, United Kindgom
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kindgom
| | - Sabine Flitsch
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kindgom
| | - Gavin H. Thomas
- Department of Biology, University of York, York YO10 5DD, United Kindgom
| | - Martin A. Fascione
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| |
Collapse
|
21
|
Affiliation(s)
- Kabita Pradhan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Suvarn S. Kulkarni
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
22
|
Flack EKP, Chidwick HS, Best M, Thomas GH, Fascione MA. Synthetic Approaches for Accessing Pseudaminic Acid (Pse) Bacterial Glycans. Chembiochem 2020; 21:1397-1407. [PMID: 31944494 DOI: 10.1002/cbic.202000019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/18/2022]
Abstract
Pseudaminic acids (Pses) are a group of non-mammalian nonulosonic acids (nulOs) that have been shown to be an important virulence factor for a number of pathogenic bacteria, including emerging multidrug-resistant ESKAPE pathogens. Despite their discovery over 30 years ago, relatively little is known about the biological significance of Pse glycans compared with their sialic acid analogues, primarily due to a lack of access to the synthetically challenging Pse architecture. Recently, however, the Pse backbone has been subjected to increasing synthetic exploration by carbohydrate (bio)chemists, and the total synthesis of complex Pse glycans achieved with inspiration from the biosynthesis and subsequent detailed study of chemical glycosylation by using Pse donors. Herein, context is provided for these efforts by summarising recent synthetic approaches pioneered for accessing Pse glycans, which are set to open up this underexplored area of glycoscience to the wider scientific community.
Collapse
Affiliation(s)
- Emily K P Flack
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Harriet S Chidwick
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Matthew Best
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| |
Collapse
|
23
|
Chidwick HS, Fascione MA. Mechanistic and structural studies into the biosynthesis of the bacterial sugar pseudaminic acid (Pse5Ac7Ac). Org Biomol Chem 2020; 18:799-809. [PMID: 31913385 DOI: 10.1039/c9ob02433f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The non-mammalian nonulosonic acid sugar pseudaminic acid (Pse) is present on the surface of a number of human pathogens including Campylobacter jejuni and Helicobacter pylori and other bacteria such as multidrug resistant Acinetobacter baumannii. It is likely important for evasion of the host immune sysyem, and also plays a role in bacterial motility through flagellin glycosylation. Herein we review the mechanistic and structural characterisation of the enzymes responsible for the biosynthesis of the Pse parent structure, Pse5Ac7Ac in bacteria.
Collapse
|
24
|
Everson J, Kiefel MJ. Synthesis of Butenolides via a Horner-Wadsworth-Emmons Cascading Dimerization Reaction. J Org Chem 2019; 84:15226-15235. [PMID: 31657574 DOI: 10.1021/acs.joc.9b02015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient synthesis of a range of structurally related butenolides has been observed while we were exploring the substrate-scope of a Horner-Wadsworth-Emmons (HWE) reaction. While aliphatic aldehydes gave the expected HWE product, aromatic aldehydes furnished butenolides, resulting from the dimerization of the HWE product during desilylation of the initially formed HWE adduct. In addition to isolating butenolides in a high yield, we have also determined precisely when dimerization occurs.
Collapse
Affiliation(s)
- Jack Everson
- Institute for Glycomics , Griffith University Gold Coast Campus , Southport , Queensland 4222 , Australia
| | - Milton J Kiefel
- Institute for Glycomics , Griffith University Gold Coast Campus , Southport , Queensland 4222 , Australia
| |
Collapse
|
25
|
Casillo A, Ricciardelli A, Parrilli E, Tutino ML, Corsaro MM. Cell-wall associated polysaccharide from the psychrotolerant bacterium Psychrobacter arcticus 273-4: isolation, purification and structural elucidation. Extremophiles 2019; 24:63-70. [PMID: 31309337 DOI: 10.1007/s00792-019-01113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 01/27/2023]
Abstract
In this paper, the structure of the capsular polysaccharide isolated from the psychrotolerant bacterium Psychrobacter arcticus 273-4 is reported. The polymer was purified by gel filtration chromatography and the structure was elucidated by means of one- and two-dimensional NMR spectroscopy, in combination with chemical analyses. The polysaccharide consists of a trisaccharidic repeating unit containing two residues of glucose and a residue of a N,N-diacetyl-pseudaminic acid.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| | - Annarita Ricciardelli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
26
|
Bacterial carbohydrate diversity - a Brave New World. Curr Opin Chem Biol 2019; 53:1-8. [PMID: 31176085 DOI: 10.1016/j.cbpa.2019.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Glycans and glycoconjugates feature on the 'front line' of bacterial cells, playing critical roles in the mechanical and chemical stability of the microorganisms, and orchestrating interactions with the environment and all other living organisms. To negotiate such central tasks, bacterial glycomes incorporate a dizzying array of carbohydrate building blocks and non-carbohydrate modifications, which create opportunities for infinite structural variation. This review highlights some of the challenges and opportunities for the chemical biology community in the field of bacterial glycobiology.
Collapse
|
27
|
Wei R, Liu H, Tang AH, Payne RJ, Li X. A Solution to Chemical Pseudaminylation via a Bimodal Glycosyl Donor for Highly Stereocontrolled α- and β-Glycosylation. Org Lett 2019; 21:3584-3588. [DOI: 10.1021/acs.orglett.9b00990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ruohan Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Arthur H. Tang
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
28
|
Bloch S, Tomek MB, Friedrich V, Messner P, Schäffer C. Nonulosonic acids contribute to the pathogenicity of the oral bacterium Tannerella forsythia. Interface Focus 2019; 9:20180064. [PMID: 30842870 PMCID: PMC6388019 DOI: 10.1098/rsfs.2018.0064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a polymicrobial, biofilm-caused, inflammatory disease affecting the tooth-supporting tissues. It is not only the leading cause of tooth loss worldwide, but can also impact systemic health. The development of effective treatment strategies is hampered by the complicated disease pathogenesis which is best described by a polymicrobial synergy and dysbiosis model. This model classifies the Gram-negative anaerobe Tannerella forsythia as a periodontal pathogen, making it a prime candidate for interference with the disease. Tannerella forsythia employs a protein O-glycosylation system that enables high-density display of nonulosonic acids via the bacterium's two-dimensional crystalline cell surface layer. Nonulosonic acids are sialic acid-like sugars which are well known for their pivotal biological roles. This review summarizes the current knowledge of T. forsythia's unique cell envelope with a focus on composition, biosynthesis and functional implications of the cell surface O-glycan. We have obtained evidence that glycobiology affects the bacterium's immunogenicity and capability to establish itself in the polymicrobial oral biofilm. Analysis of the genomes of different T. forsythia isolates revealed that complex protein O-glycosylation involving nonulosonic acids is a hallmark of pathogenic T. forsythia strains and, thus, constitutes a valuable target for the design of novel anti-infective strategies to combat periodontitis.
Collapse
|
29
|
De novo synthesis of novel bacterial monosaccharide fusaminic acid. J Antibiot (Tokyo) 2019; 72:420-431. [PMID: 30903099 DOI: 10.1038/s41429-019-0170-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 12/15/2022]
Abstract
Fusobacterium nucleatum is an oral bacteria related to various types of diseases. As Gram-negative bacteria, lipopolysaccharide (LPS) of Fusobacterium nucleatum could be a potential virulence factor. Recently, the structure of O-antigen in LPS of Fusobacterium nucleatum strain 25586 was elucidated to contain a trisaccharide repeating unit -(4-β-Nonp5Am-4-α-L-6dAltpNAc3PCho-3-β-D-QuipNAc)-. The nonulosonic acid characterized as 5-acetamidino-3,5,9-trideoxy-L-glycero-L-gluco-non-2-ulosonic acid (named as fusaminic acid), and 2-acetamido-2,6-dideoxy-L-altrose are the novel monosaccharides isolated. Herein we report the de novo synthesis of 5-N-acetyl fusaminic acid and the thioglycoside derivative in order to further investigate the biological significance of nonulosonic acids for bacterial pathogenesis.
Collapse
|
30
|
Gintner M, Yoneda Y, Schmölzer C, Denner C, Kählig H, Schmid W. A versatile de novo synthesis of legionaminic acid and 4-epi-legionaminic acid starting from d-serine. Carbohydr Res 2019; 474:34-42. [PMID: 30711766 DOI: 10.1016/j.carres.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/17/2023]
Abstract
Legionaminic acid and 4-epi-legionaminic acid are 5,7-diacetamido nonulosonic acids and are assumed to play a crucial role in the virulence of Legionella pneumophila, the causative agent of Legionnaires' disease. Moreover, they are ideal target motifs for the development of vaccines and pathogen detection. Herein, we present a versatile de novo synthesis of legionaminic acid and 4-epi-legionaminic acid. Starting from simple d-serine, the C9-backbone is built up by two CC-bond formation reactions. First, the protected d-serine motif is elongated utilizing a highly stereoselective nitroaldol reaction to give a C6-precursor of desired d-rhamno configuration. Second, an indium-mediated allylation is employed to further elongate the carbon backbone and introduce a masked α-keto acid function.
Collapse
Affiliation(s)
- Manuel Gintner
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria.
| | - Yuko Yoneda
- Facultiy of Agriculture, Shizuoka University, 836, Ohya, Shizuoka, Japan
| | - Christoph Schmölzer
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria
| | - Christian Denner
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria
| | - Hanspeter Kählig
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria
| | - Walther Schmid
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria
| |
Collapse
|
31
|
Kenyon JJ, Arbatsky NP, Sweeney EL, Shashkov AS, Shneider MM, Popova AV, Hall RM, Knirel YA. Production of the K16 capsular polysaccharide by Acinetobacter baumannii ST25 isolate D4 involves a novel glycosyltransferase encoded in the KL16 gene cluster. Int J Biol Macromol 2019; 128:101-106. [PMID: 30664967 DOI: 10.1016/j.ijbiomac.2019.01.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
A new capsular polysaccharide (CPS) biosynthesis gene cluster, KL16, was found in the genome sequence of a clinical Acinetobacter baumannii ST25 isolate, D4. The variable part of KL16 contains a module of genes for synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (5,7-di-N-acetylpseudaminic acid, Pse5Ac7Ac), a gene encoding ItrA3 that initiates the CPS synthesis with d-GlcpNAc, and two glycosyltransferase (Gtr) genes. The K16 CPS was studied by sugar analysis and Smith degradation along with 1D and 2D 1H and 13C NMR spectroscopy, and shown to be built up of linear trisaccharide repeats containing d-galactose (d-Gal), N-acetyl-d-glucosamine (d-GlcNAc), and Pse5Ac7Ac. The d-Galp residue is linked to the d-GlcpNAc initiating sugar via a β-(1 → 3) linkage evidently formed by a Gtr5 variant, Gtr5K16, encoded in KL16. This reveals an altered or relaxed substrate specificity of this variant as the majority of Gtr5-type glycosyltransferases have previously been shown to form a β-d-Galp-(1 → 3)-d-GalpNAc linkage. The β-Psep5Ac7Ac-(2 → 4)-d-Galp linkage is predicted to be formed by the other glycosyltransferase, Gtr37, which does not match members of any known glycosyltransferase family.
Collapse
Affiliation(s)
- Johanna J Kenyon
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| | - Nikolay P Arbatsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Emma L Sweeney
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | - Anastasia V Popova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Dhakal B, Crich D. Synthesis and Stereocontrolled Equatorially Selective Glycosylation Reactions of a Pseudaminic Acid Donor: Importance of the Side-Chain Conformation and Regioselective Reduction of Azide Protecting Groups. J Am Chem Soc 2018; 140:15008-15015. [PMID: 30351022 DOI: 10.1021/jacs.8b09654] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pseudaminic acid is an amino deoxy sialic acid whose glycosides are essential components of many pathogenic Gram-negative bacterial cell walls including those from Pseudomonas aeruginosa, Vibrio cholerae, Campylobacter jejuni, Campylobacter coli, Vibrio vulnificus, and Pseudoalteromonas distincta. The study of pseudaminic acid glycosides is however hampered by poor availability from nature and the paucity of good synthetic methods and limited to no understanding of the factors controlling stereoselectivity. Conformational analysis of the side chains of various stereoisomeric sialic acids suggested that the side chain of pseudaminic acid would take up the most electron-withdrawing trans, gauche-conformation, as opposed to the gauche, gauche conformation of N-acetyl neuraminic acid and the gauche, trans-conformtion of 7- epi N-acetyl neuraminic acid, leading to the prediction of high equatorial selectivity. This prediction is borne out by the synthesis of a suitably protected pseudaminic acid donor from N-acetyl neuraminic acid in 20 steps and 5% overall yield and by the exquisite equatorial selectivity it displays in coupling reactions with typical glycosyl acceptors. The selectivity of the glycosylation reactions is further buttressed by the development and implementation of conditions for the regioselective release of the two amines from the corresponding azides, such as required for the preparation of the lipopolysaccharides. These findings open the way to the synthesis and study of pseudaminic acid-based bacterial lipopolysaccharides and, importantly in the broader context of glycosylation reactions in general, underline the significant role played by side-chain conformation in the control of reactivity and selectivity.
Collapse
Affiliation(s)
- Bibek Dhakal
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
34
|
Lee IM, Yang FL, Chen TL, Liao KS, Ren CT, Lin NT, Chang YP, Wu CY, Wu SH. Pseudaminic Acid on Exopolysaccharide of Acinetobacter baumannii Plays a Critical Role in Phage-Assisted Preparation of Glycoconjugate Vaccine with High Antigenicity. J Am Chem Soc 2018; 140:8639-8643. [PMID: 29965749 DOI: 10.1021/jacs.8b04078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pseudaminic acid (Pse) has been known for participating in crucial bacterial virulence and thus is an attractive target in the development of glycoconjugate vaccine. Particularly, this therapeutic alternative was suggested to be a potential solution against antibiotic resistant Acinetobacter baumannii that poses a serious global health threat. Also, Pse was found to be involved in the exopolysaccharide (EPS) of mild antibiotic resistant A. baumannii strain 54149 ( Ab-54149) of which specific glycosyl linkage can be depolymerized by phage ΦAB6 tailspike protein (ΦAB6TSP). In this study, we found that the antibodies induced by Ab-54149 EPS was capable of recognizing a range of EPS of other clinical A. baumannii strains, and deemed as a great potential material for vaccination. To efficiently acquire homogeneous EPS-derived oligosaccharide with significant immunogenic activity for the production of glycoconjugate, we used the ΦAB6TSP for the fragmentation of Ab-54149 EPS instead of chemical methods. Moreover, insight into the ligand binding characterization of ΦAB6TSP suggested the branched Pse on the Ab-54149 EPS served as a recognition site of ΦAB6TSP. The serum boosted by ΦAB6TSP-digested product and carrier protein CRM197 conjugate complex displayed specific sensitivity toward Ab-54149 EPS with bacterial killing activity. Strikingly, Pse is an ideal epitope with strong antigenicity, profiting the application of the probe for pathogen detection and glyco-based vaccine.
Collapse
Affiliation(s)
- I-Ming Lee
- Institute of Biological Chemistry, Academia Sinica , Taipei 115 , Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115 , Taiwan
| | - Te-Li Chen
- Graduate Institute of Life Science, National Defense Medical Center , Taipei 112 , Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| | - Nien-Tsung Lin
- Department of Microbiology , Tzu Chi University , Hualien 970 , Taiwan
| | - Yu-Pei Chang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115 , Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei 115 , Taiwan.,Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan.,Institute of Biochemical Sciences , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
35
|
Tomek MB, Janesch B, Maresch D, Windwarder M, Altmann F, Messner P, Schäffer C. A pseudaminic acid or a legionaminic acid derivative transferase is strain-specifically implicated in the general protein O-glycosylation system of the periodontal pathogen Tannerella forsythia. Glycobiology 2018; 27:555-567. [PMID: 28334934 PMCID: PMC5420450 DOI: 10.1093/glycob/cwx019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
The occurrence of nonulosonic acids in bacteria is wide-spread and linked to pathogenicity. However, the knowledge of cognate nonulosonic acid transferases is scarce. In the periodontopathogen Tannerella forsythia, several proposed virulence factors carry strain-specifically either a pseudaminic or a legionaminic acid derivative as terminal sugar on an otherwise structurally identical, protein-bound oligosaccharide. This study aims to shed light on the transfer of either nonulosonic acid derivative on a proximal N-acetylmannosaminuronic acid residue within the O-glycan structure, exemplified with the bacterium's abundant S-layer glycoproteins. Bioinformatic analyses provided the candidate genes Tanf_01245 (strain ATCC 43037) and TFUB4_00887 (strain UB4), encoding a putative pseudaminic and a legionaminic acid derivative transferase, respectively. These transferases have identical C-termini and contain motifs typical of glycosyltransferases (DXD) and bacterial sialyltransferases (D/E-D/E-G and HP). They share homology to type B glycosyltransferases and TagB, an enzyme catalyzing glycerol transfer to an N-acetylmannosamine residue in teichoic acid biosynthesis. Analysis of a cellular pool of nucleotide-activated sugars confirmed the presence of the CMP-activated nonulosonic acid derivatives, which are most likely serving as substrates for the corresponding transferase. Single gene knock-out mutants targeted at either transferase were analyzed for S-layer O-glycan composition by ESI-MS, confirming the loss of the nonulosonic acid derivative. Cross-complementation of the mutants with the nonnative nonulosonic acid transferase was not successful indicating high stringency of the enzymes. This study identified plausible candidates for a pseudaminic and a legionaminic acid derivative transferase; these may serve as valuable tools for engineering of novel sialoglycoconjugates.
Collapse
Affiliation(s)
- Markus B Tomek
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Bettina Janesch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Markus Windwarder
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| |
Collapse
|
36
|
Amarasekara H, Dharuman S, Kato T, Crich D. Synthesis of Conformationally-Locked cis- and trans-Bicyclo[4.4.0] Mono-, Di-, and Trioxadecane Modifications of Galacto- and Glucopyranose; Experimental Limiting 3J H,H Coupling Constants for the Estimation of Carbohydrate Side Chain Populations and Beyond. J Org Chem 2018; 83:881-897. [PMID: 29241001 PMCID: PMC5775050 DOI: 10.1021/acs.joc.7b02891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hexopyranose side chains populate three staggered conformations, whose proportions can be determined from the three sets of ideal limiting 3JH5,H6R and 3JH5,H6S coupling constants in combination with the time-averaged experimental coupling constants. Literature values for the limiting coupling constants, obtained by the study of model compounds, the use of the Haasnoot-Altona and related equations, or quantum mechanical computations, can result in computed negative populations of one of the three ideal conformations. Such values arise from errors in the limiting coupling constants and/or from the population of nonideal conformers. We describe the synthesis and analysis of a series of cis- and trans-fused mono-, di-, and trioxabicyclo[4.4.0]octane-like compounds. Correction factors for the application of data from internal models (-CH(OR)-CH(OR)-) to terminal systems (-CH(OR)-CH2(OR)) are deduced from comparison of further models, and applied where necessary. Limiting coupling constants so-derived are applied to the side chain conformations of three model hexopyranosides, resulting in calculated conformer populations without negative values. Although, developed primarily for hexopyranose side chains, the limiting coupling constants are suitable, with the correction factors presented, for application to the side chains of higher carbon sugars and to conformation analysis of acyclic diols and their derivatives in a more general sense.
Collapse
Affiliation(s)
- Harsha Amarasekara
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Suresh Dharuman
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Takayuki Kato
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
37
|
Friedrich V, Janesch B, Windwarder M, Maresch D, Braun ML, Megson ZA, Vinogradov E, Goneau MF, Sharma A, Altmann F, Messner P, Schoenhofen IC, Schäffer C. Tannerella forsythia strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications. Glycobiology 2018; 27:342-357. [PMID: 27986835 PMCID: PMC5378307 DOI: 10.1093/glycob/cww129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/12/2016] [Indexed: 01/17/2023] Open
Abstract
Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a gene locus for the synthesis of pseudaminic acid (Pse) in the type strain ATCC 43037 while strains FDC 92A2 and UB4 possess a locus for the synthesis of legionaminic acid (Leg) instead. In contrast to the NulO in ATCC 43037, which has been previously identified as a Pse derivative (5-N-acetimidoyl-7-N-glyceroyl-3,5,7,9-tetradeoxy-l-glycero-l-manno-NulO), glycan analysis of strain UB4 performed in this study indicated a 350-Da, possibly N-glycolyl Leg (3,5,7,9-tetradeoxy-d-glycero-d-galacto-NulO) derivative with unknown C5,7 N-acyl moieties. We have expressed, purified and characterized enzymes of both NulO pathways to confirm these genes’ functions. Using capillary electrophoresis (CE), CE–mass spectrometry and NMR spectroscopy, our studies revealed that Pse biosynthesis in ATCC 43037 essentially follows the UDP-sugar route described in Helicobacter pylori, while the pathway in strain FDC 92A2 corresponds to Leg biosynthesis in Campylobacter jejuni involving GDP-sugar intermediates. To demonstrate that the NulO biosynthesis enzymes are functional in vivo, we created knockout mutants resulting in glycans lacking the respective NulO. Compared to the wild-type strains, the mutants exhibited significantly reduced biofilm formation on mucin-coated surfaces, suggestive of their involvement in host-pathogen interactions or host survival. This study contributes to understanding possible biological roles of bacterial NulOs.
Collapse
Affiliation(s)
- Valentin Friedrich
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Bettina Janesch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Markus Windwarder
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, Vienna, Austria
| | - Matthias L Braun
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Zoë A Megson
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Evgeny Vinogradov
- National Research Council, Human Health Therapeutics Portfolio, 100 Sussex Drive, Ottawa, ON, Canada
| | - Marie-France Goneau
- National Research Council, Human Health Therapeutics Portfolio, 100 Sussex Drive, Ottawa, ON, Canada
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 311 Foster Hall, 3435 Main St. Buffalo, New York, USA
| | - Friedrich Altmann
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Ian C Schoenhofen
- National Research Council, Human Health Therapeutics Portfolio, 100 Sussex Drive, Ottawa, ON, Canada
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| |
Collapse
|
38
|
Carter JR, Kiefel MJ. A new approach to the synthesis of legionaminic acid analogues. RSC Adv 2018; 8:35768-35775. [PMID: 35547932 PMCID: PMC9088180 DOI: 10.1039/c8ra07771a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022] Open
Abstract
Legionaminic acid is a member of the nonulosonic acids, which are a class of sugars considered to be a virulence factor within a wide variety of pathogenic bacteria. We have developed a synthetic pathway towards C-7 analogues of legionaminic acid starting from Neu5Ac, resulting in the complete synthesis of both legionaminic acid, and its C-7 epimer, from a common precurser. Our approach involves the late-stage introduction of the requisite C-7 nitrogen functionality, thus making our strategy amenable to the introduction of a range of different amide groups at C-7 of legionaminic acid. We report the synthesis of the bacterial nonulosonic acid legionaminic acid, together with its C-7 epimer, from a common precursor derived from N-acetylneuraminic acid.![]()
Collapse
Affiliation(s)
- James R. Carter
- Institute for Glycomics
- Griffith University Gold Coast Campus
- Australia
| | - Milton J. Kiefel
- Institute for Glycomics
- Griffith University Gold Coast Campus
- Australia
| |
Collapse
|
39
|
Sulzenbacher G, Roig-Zamboni V, Lebrun R, Guérardel Y, Murat D, Mansuelle P, Yamakawa N, Qian XX, Vincentelli R, Bourne Y, Wu LF, Alberto F. Glycosylate and move! The glycosyltransferase Maf is involved in bacterial flagella formation. Environ Microbiol 2017; 20:228-240. [DOI: 10.1111/1462-2920.13975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Régine Lebrun
- Plate-forme Protéomique; Institut de Microbiologie de la Méditerranée, FR3479 Aix-Marseille Université and Centre National de la Recherche Scientifique; Marseille 13402 France
| | - Yann Guérardel
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 Université de Lille and Centre National de la Recherche Scientifique; Lille 59000 France
| | - Dorothée Murat
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| | - Pascal Mansuelle
- Plate-forme Protéomique; Institut de Microbiologie de la Méditerranée, FR3479 Aix-Marseille Université and Centre National de la Recherche Scientifique; Marseille 13402 France
| | - Nao Yamakawa
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 Université de Lille and Centre National de la Recherche Scientifique; Lille 59000 France
| | - Xin-Xin Qian
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| | | | - Yves Bourne
- Aix Marseille Univ, CNRS, AFMB UMR7257; Marseille 13288 France
| | - Long-Fei Wu
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| | - François Alberto
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| |
Collapse
|
40
|
Kenyon JJ, Notaro A, Hsu LY, De Castro C, Hall RM. 5,7-Di-N-acetyl-8-epiacinetaminic acid: A new non-2-ulosonic acid found in the K73 capsule produced by an Acinetobacter baumannii isolate from Singapore. Sci Rep 2017; 7:11357. [PMID: 28900250 PMCID: PMC5595891 DOI: 10.1038/s41598-017-11166-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/17/2017] [Indexed: 11/15/2022] Open
Abstract
Nonulosonic acids are found in the surface polysaccharides of many bacterial species and are often implicated in pathogenesis. Here, the structure of a novel 5,7-diacetamido-3,5,7,9-tetradeoxynon-2-ulosonic acid recovered from the capsular polysaccharide of a multiply antibiotic resistant Acinetobacter baumannii isolate was determined. The isolate carries a sugar synthesis module that differs by only a single gene from the module for the synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-altro-non-2-ulosonic acid or 5,7-di-N-acetylacinetaminic acid, recently discovered in the capsule of another A. baumannii isolate. The new monosaccharide is the C8-epimer of acinetaminic acid (8eAci; 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-L-altro-non-2-ulosonic acid) and the C7-epimer of legionaminic acid. This monosaccharide had not previously been detected in a biological sample but had been synthesized chemically.
Collapse
Affiliation(s)
- Johanna J Kenyon
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Anna Notaro
- Department of Chemical Sciences, University of Napoli, Naples, Italy
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli, Naples, Italy.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
41
|
Liu H, Zhang Y, Wei R, Andolina G, Li X. Total Synthesis of Pseudomonas aeruginosa 1244 Pilin Glycan via de Novo Synthesis of Pseudaminic Acid. J Am Chem Soc 2017; 139:13420-13428. [DOI: 10.1021/jacs.7b06055] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Han Liu
- Department of Chemistry,
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong
Kong SAR 999077, China
| | - Yanfeng Zhang
- Department of Chemistry,
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong
Kong SAR 999077, China
| | - Ruohan Wei
- Department of Chemistry,
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong
Kong SAR 999077, China
| | - Gloria Andolina
- Department of Chemistry,
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong
Kong SAR 999077, China
| | - Xuechen Li
- Department of Chemistry,
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong
Kong SAR 999077, China
| |
Collapse
|
42
|
Popik O, Dhakal B, Crich D. Stereoselective Synthesis of the Equatorial Glycosides of Legionaminic Acid. J Org Chem 2017; 82:6142-6152. [PMID: 28530837 DOI: 10.1021/acs.joc.7b00746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The synthesis of a legionaminic acid donor from N-acetylneuraminic acid in 15 steps and 17% overall yield is described. Activation of the adamantanyl thioglycoside in the donor with N-iodosuccinimide and trifluoromethanesulfonic acid in dichloromethane and acetonitrile at -78 °C in the presence of primary, secondary and tertiary alcohols affords the corresponding glycosides in excellent yield and good to excellent equatorial selectivity. In particular, coupling to the 4-OH of a suitably protected neuraminic acid derivative affords a disaccharide that closely resembles the glycosidic linkage in the polylegionaminic acid from the lipopolysaccharide of the Legionella pneumophila virulence factor. A straightforward deprotection sequence enables conversion of the protected glycosides to the free N,N-diacetyllegionaminic acid glycosides.
Collapse
Affiliation(s)
- Oskar Popik
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Bibek Dhakal
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
43
|
Dhakal B, Buda S, Crich D. Stereoselective Synthesis of 5-epi-α-Sialosides Related to the Pseudaminic Acid Glycosides. Reassessment of the Stereoselectivity of the 5-Azido-5-deacetamidosialyl Thioglycosides and Use of Triflate as Nucleophile in the Zbiral Deamination of Sialic Acids. J Org Chem 2016; 81:10617-10630. [PMID: 27806203 PMCID: PMC5148678 DOI: 10.1021/acs.joc.6b02221] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With a view to the eventual synthesis of glycosyl donors for the stereocontrolled synthesis of pseudaminic acid glycosides, the stereocontrolled synthesis of a d-glycero-d-gulo sialic acid adamantanylthioglycoside carrying an axial azide at the 5-position is described. The synthesis employs levulinic acid as nucleophile in the oxidative deamination of an N-acetylneuraminic acid thioglycoside leading to the formation of a 3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (KDN) derivative selectively protected as 5-O-levulinate. Replacement of the levulinate by triflate enables introduction of the axial azide and hence formation of the glycosyl donor. A shorter synthesis uses trifluoromethanesulfonate as nucleophile in the oxidative deamination step when the 5-O-triflyl KDN derivative is obtained directly. Glycosylation reactions conducted with the 5-azido-d-glycero-d-gulo-configured sialyl adamantanylthioglycoside at -78 °C are selective for the formation of the equatorial glycosides, suggesting that the synthesis of equatorial pseudaminic acid glycosides will be possible as suitable donors become available. A comparable N-acetylneuraminic acid adamantanylthioglycoside carrying an equatorial azide at the 5-position was also found to be selective for equatorial glycoside formation under the same conditions, suggesting that reinvestigation of other azide-protected NeuAc donors is merited. Glycosylation stereoselectivity in the d-glycero-d-gulo series is discussed in terms of the side-chain conformation of the donor.
Collapse
Affiliation(s)
- Bibek Dhakal
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Szymon Buda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
44
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
45
|
|
46
|
Hassan MI, Lundgren BR, Chaumun M, Whitfield DM, Clark B, Schoenhofen IC, Boddy CN. Total Biosynthesis of Legionaminic Acid, a Bacterial Sialic Acid Analogue. Angew Chem Int Ed Engl 2016; 55:12018-21. [PMID: 27538580 DOI: 10.1002/anie.201606006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 02/03/2023]
Abstract
Legionaminic acid, Leg5,7Ac2 , a nonulosonic acid like 5-acetamido neuraminic acid (Neu5Ac, sialic acid), is found in cell surface glycoconjugates of bacteria including the pathogens Campylobacter jejuni, Acinetobacter baumanii and Legionella pneumophila. The presence of Leg5,7Ac2 has been correlated with virulence in humans by mechanisms that likely involve subversion of the host's immune system or interactions with host cell surfaces due to its similarity to Neu5Ac. Investigation into its role in bacterial physiology and pathogenicity is limited as there are no effective sources of it. Herein, we construct a de novo Leg5,7Ac2 biosynthetic pathway by combining multiple metabolic modules from three different microbial sources (Saccharomyces cerevisiae, C. jejuni, and L. pneumophila). Over-expression of this de novo pathway in Escherichia coli that has been engineered to lack two native catabolic pathways, enables significant quantities of Leg5,7Ac2 (≈120 mg L(-1) of culture broth) to be produced. Pure Leg5,7Ac2 could be isolated and converted into CMP-activated sugar for biochemical applications and a phenyl thioglycoside for chemical synthesis applications. This first total biosynthesis provides an essential source of Leg5,7Ac2 enabling study of its role in prokaryotic and eukaryotic glycobiology.
Collapse
Affiliation(s)
- Mohamed I Hassan
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Benjamin R Lundgren
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Michael Chaumun
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | - Brady Clark
- Sussex Research Laboratories Inc., Ottawa, ON, K1A 0R6, Canada
| | - Ian C Schoenhofen
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
47
|
Paek SM, Jeong M, Jo J, Heo YM, Han YT, Yun H. Recent Advances in Substrate-Controlled Asymmetric Induction Derived from Chiral Pool α-Amino Acids for Natural Product Synthesis. Molecules 2016; 21:E951. [PMID: 27455209 PMCID: PMC6274556 DOI: 10.3390/molecules21070951] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can be categorized prudently as chiral sources, devices, and inducers. This review specifically examines recent advances in substrate-controlled asymmetric reactions induced by the chirality of α-amino acid templates in natural product synthesis research and related areas.
Collapse
Affiliation(s)
- Seung-Mann Paek
- College of Pharmacy, Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju daero, Jinju 52828, Korea.
| | - Myeonggyo Jeong
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Yu Mi Heo
- College of Pharmacy, Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju daero, Jinju 52828, Korea.
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan 31116, Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
48
|
Williams JT, Corcilius L, Kiefel MJ, Payne RJ. Total Synthesis of Native 5,7-Diacetylpseudaminic Acid from N-Acetylneuraminic Acid. J Org Chem 2016; 81:2607-11. [PMID: 26907566 DOI: 10.1021/acs.joc.5b02754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pseudaminic acids are a family of 5,7-diamino-3,5,7,9-tetradeoxynonulosonic acids that are functional components of flagellin and pili proteins within clinically relevant Gram-negative bacteria. Herein, we describe the total synthesis of the most common pseudaminic acid, 5,7-diacetylpseudaminic acid, from N-acetylneuraminic acid. The divergent nature of the route reported here provides a robust and versatile means to access other members of the family, together with analogues, for probing the functional role of the pseudaminic acids and pseudaminic acid derived proteins in the future.
Collapse
Affiliation(s)
- James T Williams
- School of Chemistry, The University of Sydney , Sydney, NSW, 2006, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney , Sydney, NSW, 2006, Australia
| | - Milton J Kiefel
- Institute for Glycomics, Griffith University Gold Coast Campus , Southport, QLD, 4222, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney , Sydney, NSW, 2006, Australia
| |
Collapse
|
49
|
Shashkov AS, Senchenkova SN, Popova AV, Mei Z, Shneider MM, Liu B, Miroshnikov KA, Volozhantsev NV, Knirel YA. Revised structure of the capsular polysaccharide of Acinetobacter baumannii LUH5533 (serogroup O1) containing di-N-acetyllegionaminic acid. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1000-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Shashkov AS, Kenyon JJ, Senchenkova SN, Shneider MM, Popova AV, Arbatsky NP, Miroshnikov KA, Volozhantsev NV, Hall RM, Knirel YA. Acinetobacter baumanniiK27 and K44 capsular polysaccharides have the same K unit but different structures due to the presence of distinctwzygenes in otherwise closely related K gene clusters. Glycobiology 2015; 26:501-8. [DOI: 10.1093/glycob/cwv168] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 12/27/2022] Open
|