1
|
Schneider H, Strauss V, Vogl S, Antonietti M, Filonenko S. Eutectic Media Open a Synthetic Route to Oligocitrazinic Acid Fluorophores of Purple Hue. Chemphyschem 2023; 24:e202300180. [PMID: 37358187 DOI: 10.1002/cphc.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Under isochoric and solvent-free conditions, the reaction between ammonium formate and citric acid results in a deeply purple reaction product with fluorescent properties. This brings this reaction in the realm of bio-based fluorophores and bottom-up carbon nanodots from citric acid. The reaction conditions are optimized in terms of UV-vis spectroscopic properties and, subsequently, the main reaction product is separated. While the structural analysis does not give any indication for carbon nanodots in a general sense, it points towards the formation of molecular fluorophores that consist of oligomerized citrazinic acid derivatives. Furthermore, EPR spectroscopy reveals the presence of stable free radicals in the product. We hypothesize that such open-shell structures may play a general role in molecular fluorophores from citric acid and are not yet sufficiently explored. Therefore, we believe that analysis of these newly discovered fluorophores may contribute to a better understanding of the properties of fluorophores and CND from citric acid in general.
Collapse
Affiliation(s)
- Helen Schneider
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Volker Strauss
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Sarah Vogl
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Markus Antonietti
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Svitlana Filonenko
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
2
|
Liu K, Xia C, Guo Y, Yu H, Xie Y, Yao W. Polyethylenimine-functionalized nitrogen and sulfur co-doped carbon dots as effective fluorescent probes for detection of Hg 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122395. [PMID: 36736048 DOI: 10.1016/j.saa.2023.122395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Surface modification of nitrogen and sulfur co-doped carbon quantum dots (N, S-CDs) were performed using cysteine and polyethylenimine as raw materials. The prepared N, S-CDs exhibited excitation-independent in the range of 300-380 nm. Furthermore, mercury(II) ions (Hg2+) can effectively quench the fluorescence intensity of the N, S-CDs. Based on this, we developed a fluorescence sensor with high sensitivity and selectivity to detect Hg2+. Under optimized conditions, the sensor showed good linearity in the range of 0-500 nM, and the limit of detection is 9.2 nM. Further, the sensor showed high sensitivity to Hg2+ in lake water and rice samples. The recovery of the Hg2+ in lake water and rice samples ranged between 98.2 % and 109.5 % with a relative standard deviation below 5.8 %. With outstanding sensitivity and selectivity, the fluorescence sensor provides a promising platform for monitoring Hg2+ in real samples.
Collapse
Affiliation(s)
- Kunfeng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Chongshu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
3
|
Díez-Pascual AM, Cruz DL, Redondo AL. Advanced Carbon-Based Polymeric Nanocomposites for Forensic Analysis. Polymers (Basel) 2022; 14:3598. [PMID: 36080673 PMCID: PMC9460265 DOI: 10.3390/polym14173598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Nanotechnology is a powerful tool and fast-growing research area in many novel arenas, ranging from biomedicine to engineering and energy storage. Nanotechnology has great potential to make a significant positive contribution in forensic science, which deals with the identification and investigation of crimes, finding relationships between pieces of evidence and perpetrators. Nano-forensics is related to the development of nanosensors for crime investigations and inspection of terrorist activity by analyzing the presence of illicit drugs, explosives, toxic gases, biological agents, and so forth. In this regard, carbon nanomaterials have huge potential for next-generation nanosensors due to their outstanding properties, including strength combined with flexibility, large specific surface area, high electrical conductivity, and little noise. Moreover, their combination with polymers can provide nanocomposites with novel and enhanced performance owed to synergy between the composite components. This review concisely recapitulates up-to-date advances in the development of polymer composites incorporating carbon-based nanomaterials for forensic science. The properties of the different carbon nanomaterials, several methods used to analyze functional polymeric nanocomposites, and their applications in forensic investigation are discussed. Furthermore, present challenges and forthcoming outlooks on the design of new polymer/carbon nanomaterial composites for crime prevention are highlighted.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - Daniel Lechuga Cruz
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Alba Lomas Redondo
- Universidad de Alcalá, Departamento de Teoría de la Señal y Comunicaciones, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Lin Y, Yang C, Huang Y, Chang H. Fluorescent carbon dots and noble metal nanoclusters for sensing applications: Minireview. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu‐Feng Lin
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Cheng‐Ruei Yang
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Yu‐Fen Huang
- Institute of Analytical and Environmental Sciences College of Nuclear Science, National Tsing Hua University Hsinchu Taiwan
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu Taiwan
- School of Pharmacy College of Pharmacy, Kaohsiung Medical University Kaohsiung Taiwan
| | - Huan‐Tsung Chang
- Department of Chemistry National Taiwan University Taipei Taiwan
| |
Collapse
|
5
|
Rahimi F, Anbia M. Nitrogen-rich silicon quantum dots: facile synthesis and application as a fluorescent "on-off-on" probe for sensitive detection of Hg 2+ and cyanide ions. LUMINESCENCE 2022; 37:598-609. [PMID: 35037385 DOI: 10.1002/bio.4195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The sensitive and reliable detection of Hg2+ and CN- as harsh environmental contaminants are of great importance. In view of this, a novel "on-off-on" fluorescent probe based on nitrogen-rich silicon quantum dots (NR-SiQDs) has been designed for sensitive detecting Hg2+ and CN- ions in aqueous media. NR-SiQDs were synthesized by a facile, one-step, and environment friendly procedure in the presence of 3-aminopropyl trimethoxysilane (APTMS) and ascorbic acid (AA) as precursors, with L-asparagine as a nitrogen source for surface modification. The NR-SiQDs exhibited strong fluorescence emission at 450 nm with 42.34% quantum yield, satisfactory salt tolerance, and superior photo- and pH-stability. The fluorescence emission was effectively quenched by Hg2+ (turn off) due to the formation of a non-fluorescent stable NR-SiQDs/Hg2+ complex while after the addition of cyanide ions (CN- ), Hg2+ ions can be leached from the surface of the NR-SiQDs and the fluorescence emission intensity of the quenched NR-SiQDs fully recovered (turn on) due to the formation of highly stable [Hg (CN)4 ]2- species. After optimizing the response conditions, the obtained limits of detection were found to be 53 nM and 0.46 μM for Hg2+ and CN- , respectively. Finally, the NR-SiQDs based fluorescence probe was utilized to detect Hg2+ and CN- ions in water samples and satisfactory results were obtained, suggesting its potential application for environmental monitoring.
Collapse
Affiliation(s)
- Fatemeh Rahimi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| |
Collapse
|
6
|
Wang P, Ji H, Guo S, Zhang Y, Yan Y, Wang K, Xing J, Dong Y. One-pot synthesis of nuclear targeting carbon dots with high photoluminescence. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Wang P, Meziani MJ, Fu Y, Bunker CE, Hou X, Yang L, Msellek H, Zaharias M, Darby JP, Sun YP. Carbon dots versus nano-carbon/organic hybrids - dramatically different behaviors in fluorescence sensing of metal cations with structural and mechanistic implications. NANOSCALE ADVANCES 2021; 3:2316-2324. [PMID: 36133763 PMCID: PMC9418061 DOI: 10.1039/d1na00002k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 05/07/2023]
Abstract
Carbon dots (CDots) are defined as surface-passivated small carbon nanoparticles, with the effective passivation generally achieved by organic functionalization. Photoexcited CDots are both potent electron donors and acceptors, and their characteristic bright and colorful fluorescence emissions make them excellent fluorescence sensors for organic analytes and metal ions. For the latter extraordinarily low detection limits based on extremely efficient quenching of fluorescence intensities by the targeted metal cations have been observed and reported in the literature. However, all of the dot samples in those reported studies were made from "one-pot" carbonization of organic precursors mostly under rather mild processing conditions, unlikely to be sufficient for the required level of carbonization. Those dot samples should therefore be more appropriately considered as "nano-carbon/organic hybrids", characterized structurally as being highly porous and spongy, which must be playing a dominating role in the reported sensing results. In this study, we compared the dot samples from carbonization syntheses under similarly mild and also more aggressive processing conditions with the classically defined and structured CDots for the fluorescence sensing of copper(ii) cations in aqueous solutions. The observed dramatic decoupling between quenching results for fluorescence intensities and lifetimes of the carbonization samples, with the former being extraordinary and the latter within the diffusion controlled limit, suggested that the quenching of fluorescence intensities was greatly affected by the higher local quencher concentrations than the bulk associated with the porous and spongy sample structures, especially for the sample from carbonization under too mild processing conditions. The major differences between the classical CDots and the nano-carbon/organic hybrids are highlighted, and the tradeoffs between sensitivity and accuracy or reproducibility in the use of the latter for fluorescence sensing are discussed.
Collapse
Affiliation(s)
- Ping Wang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Mohammed J Meziani
- Department of Natural Sciences, Northwest Missouri State University Maryville Missouri 64468 USA
| | - Yingqiang Fu
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Christopher E Bunker
- Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson Air Force Base Ohio 45433 USA
| | - Xiaofang Hou
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University Durham NC 27707 USA
| | - Hind Msellek
- Department of Natural Sciences, Northwest Missouri State University Maryville Missouri 64468 USA
| | - Melina Zaharias
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Jasmine P Darby
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University Durham NC 27707 USA
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| |
Collapse
|
8
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
9
|
Li X, Lin H, Li Q, Xue J, Xu Y, Zhuang L. Recyclable Magnetic Fluorescent Fe 3O 4@SiO 2 Core–Shell Nanoparticles Decorated with Carbon Dots for Fluoride Ion Removal. ACS APPLIED NANO MATERIALS 2021. [DOI: 10.1021/acsanm.1c00238] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaolei Li
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People’s Republic of China
| | - Han Lin
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People’s Republic of China
| | - Qianli Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Jingyi Xue
- Centre for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s Hospital, Floor 17, Tower Wing, London Bridge, London SE1 9RT, U.K
| | - Yue Xu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People’s Republic of China
| | - Lin Zhuang
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
10
|
Carneiro Cruz AA, Freire RM, Froelich DB, Alves de Lima AC, Muniz AR, Ferreira OP, Fechine PBA. Fluorescence Based Platform to Discriminate Protein Using Carbon Quantum Dots. ChemistrySelect 2019. [DOI: 10.1002/slct.201901014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antônio Alvernes Carneiro Cruz
- Grupo de Química de Materiais Avançados (GQMat)Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará – UFC, Campus do Pici CP 12100, CEP 60451–970 Fortaleza, CE Brazil
| | - Rafael Melo Freire
- Departamento de Física/CEDENNAUniversidad de Santiago de Chile USACH, Av. Ecuador 3493, Santiago Chile
| | - Deise Beatriz Froelich
- Departamento de Engenharia QuímicaUniversidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Ari Clesius Alves de Lima
- NUTEC- Fundação Núcleo de Tecnologia Industrial do Ceará – Rua Prof° Rômulo Proença- Pici CEP: 60.440-552 Fortaleza, CE Brazil
| | - André Rodrigues Muniz
- Departamento de Engenharia QuímicaUniversidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Odair Pastor Ferreira
- Laboratório de Materiais Funcionais Avançados (LaMFA)Departamento de FísicaUniversidade Federal do Ceará – UFC, Campus do Pici, Fortaleza – CE Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat)Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará – UFC, Campus do Pici CP 12100, CEP 60451–970 Fortaleza, CE Brazil
| |
Collapse
|
11
|
S,N-doped carbon dots as a fluorescent probe for bilirubin. Mikrochim Acta 2017; 185:11. [DOI: 10.1007/s00604-017-2574-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/09/2017] [Indexed: 01/23/2023]
|
12
|
Hou X, Hu Y, Wang P, Yang L, Al Awak MM, Tang Y, Twara FK, Qian H, Sun YP. Modified Facile Synthesis for Quantitatively Fluorescent Carbon Dots. CARBON 2017; 122:389-394. [PMID: 29176908 PMCID: PMC5697797 DOI: 10.1016/j.carbon.2017.06.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A simple yet consequential modification was made to the popular carbonization processing of citric acid - polyethylenimine precursor mixtures to produce carbon dots (CDots). The modification was primarily on pushing the carbonization processing a little harder at a higher temperature, such as the hydrothermal processing condition of around 330 °C for 6 hours. The CDots thus produced are comparable in spectroscopic and other properties to those obtained in other more controlled syntheses including the deliberate chemical functionalization of preprocessed and selected small carbon nanoparticles, demonstrating the consistency in CDots and reaffirming their general definition as carbon nanoparticles with surface passivation by organic or other species. Equally significant is the finding that the modified processing of citric acid - polyethylenimine precursor mixtures could yield CDots of record-setting fluorescence performance, approaching the upper limit of being quantitatively fluorescent. Thus, the reported work serves as a demonstration on not only the need in selecting the right processing conditions and its associated opportunities in one-pot syntheses of CDots, but also the feasibility in pursuing the preparation of quantitatively fluorescent CDots, which represents an important milestone in the development and understanding of these fluorescent carbon nanomaterials.
Collapse
Affiliation(s)
- Xiaofang Hou
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yin Hu
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Ping Wang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Corresponding authors: ,
| | - Mohamad M. Al Awak
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA
| | - Fridah K. Twara
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Haijun Qian
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
- Corresponding authors: ,
| |
Collapse
|
13
|
Carbon nanodots as fluorescent platforms for recognition of fluoride ion via the inner filter effect of simple arylboronic acids. Experimental and theoretical investigations. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Liu W, Li C, Ren Y, Sun X, Pan W, Li Y, Wang J, Wang W. Carbon dots: surface engineering and applications. J Mater Chem B 2016; 4:5772-5788. [PMID: 32263748 DOI: 10.1039/c6tb00976j] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbon dots have attracted a great deal of attention because of their high performance, cheap and facile preparation, and potential applications in a wide area. In order to broaden their applications, especially to meet specific requirements, surface engineering, including tailoring surface functional group coating and subsequent chemical modification as required, is an effective strategy for further functionalization of carbon dots. In this article, representative approaches to coating the surface with various functional groups, and strategies for conjugating specific materials onto the surface of carbon dots for functional modification via covalent bonds, electrostatic interactions and hydrogen bonds are highlighted, as well as the results from explorations of their various applications in target modulated sensing, accurate drug delivery and bioimaging at high resolution.
Collapse
Affiliation(s)
- Weijian Liu
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang L, Bi Y, Gao J, Li Y, Ding H, Ding L. Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. RSC Adv 2016. [DOI: 10.1039/c6ra10115a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of Cu2+ and glyphosate detection using the CDs.
Collapse
Affiliation(s)
- Long Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Yidan Bi
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Jia Gao
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Yijia Li
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Hong Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Lan Ding
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| |
Collapse
|
16
|
BAGHERI N, DJAFARZADEH N, HASSANZADEH J. Inhibition of Rhodamine B-Ferricyanide Chemiluminescence by Gold Nanoparticles and Sensitive Determination of Hazardous Cyanide. ANAL SCI 2016; 32:317-22. [DOI: 10.2116/analsci.32.317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Nafiseh BAGHERI
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University
| | | | | |
Collapse
|
17
|
Mohapatra S, Sahu S, Nayak S, Ghosh SK. Design of Fe₃O₄@SiO₂@Carbon Quantum Dot Based Nanostructure for Fluorescence Sensing, Magnetic Separation, and Live Cell Imaging of Fluoride Ion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8111-20. [PMID: 26114840 DOI: 10.1021/acs.langmuir.5b01513] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A robust reusable fluoride sensor comprised of a receptor in charge of the chemical recognition and a fluorophore responsible for signal recognition has been designed. Highly fluorescent carbon quantum dot (CD) and magnetically separable nickel ethylenediaminetetraacetic acid (EDTA) complex bound-silica coated magnetite nanoparticle (Fe3O4@SiO2-EDTA-Ni) have been used as fluorophore and fluoride ion receptor, respectively. The assay is based on the exchange reaction between the CD and F(-), which persuades the binding of fluoride to magnetic receptor. This method is highly sensitive, fast, and selective for fluoride ion in aqueous solution. The linear response range of fluoride (R(2) = 0.992) was found to be 1-20 μM with a minimum detection limit of 0.06 μM. Excellent magnetic property and superparamagnetic nature of the receptor are advantageous for the removal and well quantification of fluoride ion. The practical utility of the method is well tested with tap water. Because of high sensitivity, reusability, effectivity, and biocompatibility, it exhibits great promise as a fluorescent probe for intracellular detection of fluoride.
Collapse
Affiliation(s)
- Sasmita Mohapatra
- †Department of Chemistry, National Institute of Technology, Rourkela, India 769008
| | - Swagatika Sahu
- †Department of Chemistry, National Institute of Technology, Rourkela, India 769008
| | - Santoshi Nayak
- ‡Department of Biotechnology, Indian Institute of Technology, Kharagpur, India 721302
| | - Sudip K Ghosh
- ‡Department of Biotechnology, Indian Institute of Technology, Kharagpur, India 721302
| |
Collapse
|
18
|
Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1383-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|