1
|
Melnikov DV, Barker NR, Gracheva ME. Ionic current blockade in a nanopore due to an ellipsoidal particle. Phys Rev E 2024; 110:034403. [PMID: 39425349 DOI: 10.1103/physreve.110.034403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/09/2024] [Indexed: 10/21/2024]
Abstract
Nanopores in solid-state membranes have been used to detect, identify, filter, and characterize nanoparticles and biological molecules. In this work, we simulate an ionic flow through a nanopore while an ellipsoidal nanoparticle translocates through a pore. We numerically solve the Poisson-Nernst-Planck equations to obtain the ionic current values for different aspect ratios, sizes, and orientations of a translocating particle. By extending the existing theoretical model for the ionic current in the nanopore to the particles of ellipsoidal shape, we propose semiempirical fitting formulas which describe our computed data within 5% accuracy. We also demonstrate how the derived formulas can be used to identify the dimensions of nanoparticles from the available experimental data which may have useful applications in bionanotechnology.
Collapse
|
2
|
Zhang R, Zeng Q, Wang M, Wang L. Catalytic ability characterization of in situ synthesized Pt NP coated SBA-15 within a sub-micropipette. Chem Commun (Camb) 2024; 60:5310-5313. [PMID: 38666500 DOI: 10.1039/d4cc01079e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
An individual catalytic entity of an n-Pt/SBA-15 composite was synthesized in situ within a sub-micropipette nanoreactor, and its size-dependent catalytic ability was evaluated using the resistance pulse signals of O2 nanobubbles, originating from H2O2 decomposition catalyzed by decorated Pt NPs in the composite.
Collapse
Affiliation(s)
- Rui Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Min Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
3
|
Dynamic rotation featured translocations of human serum albumin with a conical glass nanopore. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Tang W, Fried JP, Tilley RD, Gooding JJ. Understanding and modelling the magnitude of the change in current of nanopore sensors. Chem Soc Rev 2022; 51:5757-5776. [PMID: 35748606 DOI: 10.1039/d1cs00972a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanopores are promising sensing devices that can be used for the detection of analytes at the single molecule level. It is of importance to understand and model the current response of a nanopore sensor for improving the sensitivity of the sensor, a better interpretation of the behaviours of different analytes in confined nanoscale spaces, and quantitative analysis of the properties of the targets. The current response of a nanopore sensor, usually called a resistive pulse, results from the change in nanopore resistance when an analyte translocates through the nanopore. This article reviews the theoretical models used for the calculation of the resistance of the nanopore, and the corresponding change in nanopore resistance due to a translocation event. Models focus on the resistance of the pore cavity region and the access region of the nanopore. The influence of the sizes, shapes and surface charges of the translocating species and the nanopore, as well as the trajectory that the analyte follows are also discussed. This review aims to give a general guidance to the audience for understanding the current response of a nanopore sensor and the application of this class of sensor to a broad range of species with the theoretical models.
Collapse
Affiliation(s)
- Wenxian Tang
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jasper P Fried
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.,Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Dey S, Dorey A, Abraham L, Xing Y, Zhang I, Zhang F, Howorka S, Yan H. A reversibly gated protein-transporting membrane channel made of DNA. Nat Commun 2022; 13:2271. [PMID: 35484117 PMCID: PMC9051096 DOI: 10.1038/s41467-022-28522-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/14/2022] [Indexed: 01/14/2023] Open
Abstract
Controlled transport of biomolecules across lipid bilayer membranes is of profound significance in biological processes. In cells, cargo exchange is mediated by dedicated channels that respond to triggers, undergo a nanomechanical change to reversibly open, and thus regulate cargo flux. Replicating these processes with simple yet programmable chemical means is of fundamental scientific interest. Artificial systems that go beyond nature's remit in transport control and cargo are also of considerable interest for biotechnological applications but challenging to build. Here, we describe a synthetic channel that allows precisely timed, stimulus-controlled transport of folded and functional proteins across bilayer membranes. The channel is made via DNA nanotechnology design principles and features a 416 nm2 opening cross-section and a nanomechanical lid which can be controllably closed and re-opened via a lock-and-key mechanism. We envision that the functional DNA device may be used in highly sensitive biosensing, drug delivery of proteins, and the creation of artificial cell networks.
Collapse
Affiliation(s)
- Swarup Dey
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Leeza Abraham
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yongzheng Xing
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Irene Zhang
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
6
|
Ying C, Houghtaling J, Mayer M. Effects of off-axis translocation through nanopores on the determination of shape and volume estimates for individual particles. NANOTECHNOLOGY 2022; 33:275501. [PMID: 35320779 DOI: 10.1088/1361-6528/ac6087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Resistive pulses generated by nanoparticles that translocate through a nanopore contain multi-parametric information about the physical properties of those particles. For example, non-spherical particles sample several different orientations during translocation, producing fluctuations in blockade current that relate to their shape. Due to the heterogenous distribution of electric field from the center to the wall of a nanopore while a particle travels through the pore, its radial position influences the blockade current, thereby affecting the quantification of parameters related to the particle's characteristics. Here, we investigate the influence of these off-axis effects on parameters estimated by performing finite element simulations of dielectric particles transiting a cylindrical nanopore. We varied the size, ellipsoidal shape, and radial position of individual particles, as well as the size of the nanopore. As expected, nanoparticles translocating near the nanopore wall produce increase current blockades, resulting in overestimates of particle volume. We demonstrated that off-axis effects also influence estimates of shape determined from resistive pulse analyses, sometimes producing a multiple-fold deviation in ellipsoidal length-to-diameter ratio between estimates and reference values. By using a nanopore with the minimum possible diameter that still allows the particle to rotate while translocating, off-axis effects on the determination of both volume and shape can be minimized. In addition, tethering the nanoparticles to a fluid coating on the nanopore wall makes it possible to determine an accurate particle shape with an overestimated volume. This work provides a framework to select optimal ratios of nanopore to nanoparticle size for experiments targeting free translocations.
Collapse
Affiliation(s)
- Cuifeng Ying
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Zhang R, Liu X, Zeng Q, Shen H, Wang L. Studies on the Morphology Effect on Catalytic Ability of a Single MnO 2 Catalyst Particle with a Solid Nanopipette. ACS Sens 2022; 7:338-344. [PMID: 35005900 DOI: 10.1021/acssensors.1c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigating the catalytic ability of an individual catalyst particle helps to understand heterogeneity and can provide new insights into the synthesis of high-efficiency catalysts. Solid-state nanopores have become a promising tool for detecting single molecules/particles due to their high temporal and spatial resolution. Here, we report a nanopore-based strategy for the evaluation and comparison of a single MnO2 catalyst particle with different morphologies by monitoring the generated O2 bubbles from the catalytic decomposition of H2O2. The finite element simulation was introduced to account for the flow velocity and bubble-induced current variation in the nanopore. In particular, the differences in catalytic ability of spherical and cubic MnO2 have been studied by calculating the production rate and volume of O2. It demonstrates that the shape of a single MnO2 catalyst particle has a significant effect on its catalytic activity indeed.
Collapse
Affiliation(s)
- Rui Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xuye Liu
- Shantou Institute for Food Inspection, Shantou 515000, China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanhuan Shen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
8
|
Yokota K, Takeo A, Abe H, Kurokawa Y, Hashimoto M, Kajimoto K, Tanaka M, Murayama S, Nakajima Y, Taniguchi M, Kataoka M. Application of Micropore Device for Accurate, Easy, and Rapid Discrimination of Saccharomyces pastorianus from Dekkera spp. BIOSENSORS-BASEL 2021; 11:bios11080272. [PMID: 34436074 PMCID: PMC8393547 DOI: 10.3390/bios11080272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022]
Abstract
Traceability analysis, such as identification and discrimination of yeasts used for fermentation, is important for ensuring manufacturing efficiency and product safety during brewing. However, conventional methods based on morphological and physiological properties have disadvantages such as time consumption and low sensitivity. In this study, the resistive pulse method (RPM) was employed to discriminate between Saccharomyces pastorianus and Dekkera anomala and S. pastorianus and D. bruxellensis by measuring the ionic current response of cells flowing through a microsized pore. The height and shape of the pulse signal were used for the simultaneous measurement of the size, shape, and surface charge of individual cells. Accurate discrimination of S. pastorianus from Dekkera spp. was observed with a recall rate of 96.3 ± 0.8%. Furthermore, budding S. pastorianus was quantitatively detected by evaluating the shape of the waveform of the current ionic blockade. We showed a proof-of-concept demonstration of RPM for the detection of contamination of Dekkera spp. in S. pastorianus and for monitoring the fermentation of S. pastorianus through the quantitative detection of budding cells.
Collapse
Affiliation(s)
- Kazumichi Yokota
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Asae Takeo
- Institute for Future Beverages, Research & Development Division, Kirin Holdings Company, Limited. 1-17-1, Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8628, Japan; (A.T.); (Y.K.)
| | - Hiroko Abe
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Yuji Kurokawa
- Institute for Future Beverages, Research & Development Division, Kirin Holdings Company, Limited. 1-17-1, Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8628, Japan; (A.T.); (Y.K.)
| | - Muneaki Hashimoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Kazuaki Kajimoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masato Tanaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Sanae Murayama
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.)
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.)
| | - Masatoshi Kataoka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
- Correspondence: ; Tel.: +81-87-869-3576
| |
Collapse
|
9
|
Yilmaz D, Kaya D, Kececi K, Dinler A. Role of Nanopore Geometry in Particle Resolution by Resistive‐Pulse Sensing. ChemistrySelect 2021. [DOI: 10.1002/slct.202004425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Durdane Yilmaz
- Nanoscience and Nanoengineering Program Istanbul Medeniyet University İstanbul Turkey
| | - Dila Kaya
- Department of Chemistry Istanbul Medeniyet University İstanbul Turkey
| | - Kaan Kececi
- Department of Chemistry Istanbul Medeniyet University İstanbul Turkey
| | - Ali Dinler
- Department of Mathematics Istanbul Medeniyet University İstanbul Turkey
| |
Collapse
|
10
|
Aguilella-Arzo M, Aguilella VM. Access resistance in protein nanopores. A structure-based computational approach. Bioelectrochemistry 2020; 131:107371. [DOI: 10.1016/j.bioelechem.2019.107371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 01/25/2023]
|
11
|
Saharia J, Bandara YMNDY, Lee JS, Wang Q, Kim MJ, Kim MJ. Fabrication of hexagonal boron nitride based 2D nanopore sensor for the assessment of electro‐chemical responsiveness of human serum transferrin protein. Electrophoresis 2019; 41:630-637. [DOI: 10.1002/elps.201900336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering Lyle School of Engineering Southern Methodist University Dallas Texas USA
| | - Y. M. Nuwan D. Y. Bandara
- Department of Mechanical Engineering Lyle School of Engineering Southern Methodist University Dallas Texas USA
| | - Jung Soo Lee
- Department of Mechanical Engineering Lyle School of Engineering Southern Methodist University Dallas Texas USA
| | - Qingxiao Wang
- Department of Materials Science and Engineering The University of Texas at Dallas Richardson Texas USA
| | - Moon J. Kim
- Department of Materials Science and Engineering The University of Texas at Dallas Richardson Texas USA
| | - Min Jun Kim
- Department of Mechanical Engineering Lyle School of Engineering Southern Methodist University Dallas Texas USA
| |
Collapse
|
12
|
Gao J, Liu X, Jiang Y, Ding L, Jiang L, Guo W. Understanding the Giant Gap between Single-Pore- and Membrane-Based Nanofluidic Osmotic Power Generators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804279. [PMID: 30653272 DOI: 10.1002/smll.201804279] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/06/2018] [Indexed: 05/20/2023]
Abstract
Nanofluidic blue energy harvesting attracts great interest due to its high power density and easy-to-implement nature. Proof-of-concept studies on single-pore platforms show that the power density approaches up to 103 to 106 W m-2 . However, to translate the estimated high power density into real high power becomes a challenge in membrane-scale applications. The actual power density from existing membrane materials is merely several watts per square meter. Understanding the origin and thereby bridging the giant gap between the single-pore demonstration and the membrane-scale application is therefore highly demanded. In this work, an intuitive resistance paradigm is adopted to show that this giant gap originates from the different ion transport property in porous membrane, which is dominated by both the constant reservoir resistance and the reservoir/nanopore interfacial resistance. In this case, the generated electric power becomes saturated despite the increasing pore number. The theoretical predictions are further compared with existing experimental results in literature. For both single nanopore and multipore membrane, the simulation results excellently cover the range of the experimental results. Importantly, by suppressing the reservoir and interfacial resistances, kW m-2 to MW m-2 power density can be achieved with multipore membranes, approaching the level of a single-pore system.
Collapse
Affiliation(s)
- Jun Gao
- Faculty of Science and Technology, University of Twente, Enschede, 7500AE, The Netherlands
| | - Xueli Liu
- Faculty of Science and Technology, University of Twente, Enschede, 7500AE, The Netherlands
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Ding
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
Qiu Y, Siwy ZS, Wanunu M. Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores. Anal Chem 2018; 91:996-1004. [DOI: 10.1021/acs.analchem.8b04225] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yinghua Qiu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zuzanna S. Siwy
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Arima A, Tsutsui M, Harlisa IH, Yoshida T, Tanaka M, Yokota K, Tonomura W, Taniguchi M, Okochi M, Washio T, Kawai T. Selective detections of single-viruses using solid-state nanopores. Sci Rep 2018; 8:16305. [PMID: 30390013 PMCID: PMC6214978 DOI: 10.1038/s41598-018-34665-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/23/2018] [Indexed: 01/31/2023] Open
Abstract
Rapid diagnosis of flu before symptom onsets can revolutionize our health through diminishing a risk for serious complication as well as preventing infectious disease outbreak. Sensor sensitivity and selectivity are key to accomplish this goal as the number of virus is quite small at the early stage of infection. Here we report on label-free electrical diagnostics of influenza based on nanopore analytics that distinguishes individual virions by their distinct physical features. We accomplish selective resistive-pulse sensing of single flu virus having negative surface charges in a physiological media by exploiting electroosmotic flow to filter contaminants at the Si3N4 pore orifice. We demonstrate identifications of allotypes with 68% accuracy at the single-virus level via pattern classifications of the ionic current signatures. We also show that this discriminability becomes >95% under a binomial distribution theorem by ensembling the pulse data of >20 virions. This simple mechanism is versatile for point-of-care tests of a wide range of flu types.
Collapse
Affiliation(s)
- Akihide Arima
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| | - Ilva Hanun Harlisa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Takeshi Yoshida
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kazumichi Yokota
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Wataru Tonomura
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
15
|
Athreya NBM, Sarathy A, Leburton JP. Large Scale Parallel DNA Detection by Two-Dimensional Solid-State Multipore Systems. ACS Sens 2018; 3:1032-1039. [PMID: 29663800 DOI: 10.1021/acssensors.8b00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a scalable device design of a dense array of multiple nanopores made from nanoscale semiconductor materials to detect and identify translocations of many biomolecules in a massively parallel detection scheme. We use molecular dynamics coupled to nanoscale device simulations to illustrate the ability of this device setup to uniquely identify DNA parallel translocations. We show that the transverse sheet currents along membranes are immune to the crosstalk effects arising from simultaneous translocations of biomolecules through multiple pores, due to their ability to sense only the local potential changes. We also show that electronic sensing across the nanopore membrane offers a higher detection resolution compared to ionic current blocking technique in a multipore setup, irrespective of the irregularities that occur while fabricating the nanopores in a two-dimensional membrane.
Collapse
|
16
|
Abstract
The combination of a nanopore with a local field-effect transistor (FET-nanopore), like a nanoribbon, nanotube, or nanowire, in order to sense single molecules translocating through the pore is promising for DNA sequencing at megahertz bandwidths. Previously, it was experimentally determined that the detection mechanism was due to local potential fluctuations that arise when an analyte enters a nanopore and constricts ion flow through it, rather than the theoretically proposed mechanism of direct charge coupling between the DNA and nanowire. However, there has been little discussion on the experimentally observed detection mechanism and its relation to the operation of real devices. We model the intrinsic signal and noise in such an FET-nanopore device and compare the results to the ionic current signal. The physical dimensions of DNA molecules limit the change in gate voltage on the FET to below 40 mV. We discuss the low-frequency flicker noise (<10 kHz), medium-frequency thermal noise (<100 kHz), and high-frequency capacitive noise (>100 kHz) in FET-nanopore devices. At bandwidths dominated by thermal noise, the signal-to-noise ratio in FET-nanopore devices is lower than in the ionic current signal. At high frequencies, where noise due to parasitic capacitances in the amplifier and chip is the dominant source of noise in ionic current measurements, high-transconductance FET-nanopore devices can outperform ionic current measurements.
Collapse
Affiliation(s)
- William M. Parkin
- Department of Physics and
Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marija Drndić
- Department of Physics and
Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Willmott GR. Tunable Resistive Pulse Sensing: Better Size and Charge Measurements for Submicrometer Colloids. Anal Chem 2018; 90:2987-2995. [DOI: 10.1021/acs.analchem.7b05106] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Geoff R. Willmott
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The Departments of Physics and Chemistry, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Ma Y, Guo J, Jia L, Xie Y. Entrance Effects Induced Rectified Ionic Transport in a Nanopore/Channel. ACS Sens 2018; 3:167-173. [PMID: 29235863 DOI: 10.1021/acssensors.7b00793] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nanofluidic diode, as one of the emerging nanofluidic logic devices, has been used in many fields such as biosensors, energy harvesting, and so on. However, the entrance effects of the nanofluidic ionic conductance were less discussed, which can be a crucial factor for the ionic conduction. Here we calculate the ionic conductance as a function of the length-to-pore ratio (L/r), which has a clear boundary between nanopore (surface dominated) and nanochannel (geometry dominated) electrically in diluted salt solution. These entrance effects are even more obvious in the rectified ionic conduction with oppositely charged exterior surfaces of a nanopore. We build three models-Exterior Charged Surface model (ECS), Inner Charged Surface model (ICS), and All Charged Surface model (ACS)-to discuss the entrance effects on the ionic conduction. Our results demonstrate, for a thin nanopore, that the ECS model has a larger ionic rectification factor (Q) than that of ICS model, with a totally reversed tendency of Q compared to the ICS and ACS models as L/r increases. Our models predict an alternative option of building nanofluidic biosensors that only need to modify the exterior surface of a nanopore, avoiding the slow diffusion of molecules in the nanochannel.
Collapse
Affiliation(s)
- Yu Ma
- Joint
Lab of Nanofluidics and Interfaces, School of Science, Northwestern Polytechnical University, Xi’an, 710072, China
- Key
Laboratory of Space Applied Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an, 710100, China
| | - Jinxiu Guo
- Joint
Lab of Nanofluidics and Interfaces, School of Science, Northwestern Polytechnical University, Xi’an, 710072, China
- Key
Laboratory of Space Applied Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an, 710100, China
| | - Laibing Jia
- School
of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, 710100, China
| | - Yanbo Xie
- Joint
Lab of Nanofluidics and Interfaces, School of Science, Northwestern Polytechnical University, Xi’an, 710072, China
- Key
Laboratory of Space Applied Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an, 710100, China
| |
Collapse
|
19
|
Abstract
Optimal voltages were found for particle detections, at which the current blockade ratio did not depend on surface charge density.
Collapse
Affiliation(s)
- Yinghua Qiu
- Department of Physics
- Northeastern University
- Boston
- USA
| |
Collapse
|
20
|
Wen C, Zhang Z, Zhang SL. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement. ACS Sens 2017; 2:1523-1530. [PMID: 28974095 DOI: 10.1021/acssensors.7b00576] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanopores have been explored for various biochemical and nanoparticle analyses, primarily via characterizing the ionic current through the pores. At present, however, size determination for solid-state nanopores is experimentally tedious and theoretically unaccountable. Here, we establish a physical model by introducing an effective transport length, Leff, that measures, for a symmetric nanopore, twice the distance from the center of the nanopore where the electric field is the highest to the point along the nanopore axis where the electric field falls to e-1 of this maximum. By [Formula: see text], a simple expression S0 = f (G, σ, h, β) is derived to algebraically correlate minimum nanopore cross-section area S0 to nanopore conductance G, electrolyte conductivity σ, and membrane thickness h with β to denote pore shape that is determined by the pore fabrication technique. The model agrees excellently with experimental results for nanopores in graphene, single-layer MoS2, and ultrathin SiNx films. The generality of the model is verified by applying it to micrometer-size pores.
Collapse
Affiliation(s)
- Chenyu Wen
- Solid-State
Electronics, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Zhen Zhang
- Solid-State
Electronics, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Shi-Li Zhang
- Solid-State
Electronics, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| |
Collapse
|
21
|
Ryuzaki S, Tsutsui M, He Y, Yokota K, Arima A, Morikawa T, Taniguchi M, Kawai T. Rapid structural analysis of nanomaterials in aqueous solutions. NANOTECHNOLOGY 2017; 28:155501. [PMID: 28303796 DOI: 10.1088/1361-6528/aa5e66] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.
Collapse
|
22
|
Nanopore-CMOS Interfaces for DNA Sequencing. BIOSENSORS-BASEL 2016; 6:bios6030042. [PMID: 27509529 PMCID: PMC5039661 DOI: 10.3390/bios6030042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022]
Abstract
DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.
Collapse
|
23
|
Tsutsui M, He Y, Yokota K, Arima A, Hongo S, Taniguchi M, Washio T, Kawai T. Particle Trajectory-Dependent Ionic Current Blockade in Low-Aspect-Ratio Pores. ACS NANO 2016; 10:803-9. [PMID: 26641133 DOI: 10.1021/acsnano.5b05906] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Resistive pulse sensing with nanopores having a low thickness-to-diameter aspect-ratio structure is expected to enable high-spatial-resolution analysis of nanoscale objects in a liquid. Here we investigated the sensing capability of low-aspect-ratio pore sensors by monitoring the ionic current blockades during translocation of polymeric nanobeads. We detected numerous small current spikes due to partial occlusion of the pore orifice by particles diffusing therein reflecting the expansive electrical sensing zone of the low-aspect-ratio pores. We also found wide variations in the ion current line-shapes in the particle capture stage suggesting random incident angle of the particles drawn into the pore. In sharp contrast, the ionic profiles were highly reproducible in the post-translocation regime by virtue of the spatial confinement in the pore that effectively constricts the stochastic capture dynamics into a well-defined ballistic motion. These results, together with multiphysics simulations, indicate that the resistive pulse height is highly dependent on the nanoscopic single-particle trajectories involved in ultrathin pore sensors. The present finding indicates the importance of regulating the translocation pathways of analytes in low-aspect-ratio pores for improving the discriminability toward single-bioparticle tomography in liquid.
Collapse
Affiliation(s)
- Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuhui He
- School of Optical and Electronic Information, Huazhong University of Science and Technology , LuoYu Road, Wuhan 430074, China
| | - Kazumichi Yokota
- The Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Akihide Arima
- The Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Sadato Hongo
- Corporate Research & Development Center, Toshiba Corporation, Kawasaki, Kanagawa 212-8582, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
24
|
Sheng Q, Wang X, Xie Y, Wang C, Xue J. A capacitive-pulse model for nanoparticle sensing by single conical nanochannels. NANOSCALE 2016; 8:1565-71. [PMID: 26689931 DOI: 10.1039/c5nr07596c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanochannel based devices have been widely used for single-molecule detection. The detection usually relies on the resistive-pulse model, where the change of the monitored current depends on the physical volumetric blocking of the nanochannel by the analyte. However, this mechanism requires that the nanochannel diameter should not be much larger than the analyte size, because, otherwise, the resultant current change would be too small to detect, and therefore poses particular challenges for the fabrication of nanochannels. To circumvent this issue, in this report, we propose a different mechanism of capacitive-pulse model, where the transport signals can be significantly magnified by the capacitive effect of the nanochannel. We experimentally demonstrate that current pulses with an averaged peak height of 0.87 nA can be achieved for transporting 60 nm nanoparticles through a conical nanochannel device, whereas the traditional resistive-pulse model only predicts one-order-of-magnitude lowered value. With further comprehensive simulation, the dependence of this effect on the nanochannel geometry as well as the surface charge density for both the nanochannel and the analyte is predicted, which would provide important guidance for better designing of the nanochannel-based sensors.
Collapse
Affiliation(s)
- Qian Sheng
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Xinwei Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.
| | - Yanbo Xie
- Department of Applied Physics, School of Science, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Ceming Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Jianming Xue
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China and Center for Applied Physics and Technology, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
25
|
Kudr J, Skalickova S, Nejdl L, Moulick A, Ruttkay-Nedecky B, Adam V, Kizek R. Fabrication of solid-state nanopores and its perspectives. Electrophoresis 2015; 36:2367-79. [DOI: 10.1002/elps.201400612] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/13/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jiri Kudr
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Sylvie Skalickova
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Branislav Ruttkay-Nedecky
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
26
|
Weatherall E, Willmott GR. Conductive and Biphasic Pulses in Tunable Resistive Pulse Sensing. J Phys Chem B 2015; 119:5328-35. [DOI: 10.1021/acs.jpcb.5b00344] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eva Weatherall
- The MacDiarmid
Institute for Advanced Materials and Nanotechnology, School of Chemical
and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Callaghan Innovation, PO Box 31-310, Lower
Hutt 5040, New Zealand
| | - Geoff R. Willmott
- The MacDiarmid
Institute for Advanced Materials and Nanotechnology, School of Chemical
and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- The
Departments of Physics and Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
27
|
Gadaleta A, Biance AL, Siria A, Bocquet L. Ultra-sensitive flow measurement in individual nanopores through pressure – driven particle translocation. NANOSCALE 2015; 7:7965-70. [PMID: 25866078 DOI: 10.1039/c4nr07468h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A challenge for the development of nanofluidics is to develop new instrumentation tools, able to probe the extremely small mass transport across individual nanochannels.
Collapse
Affiliation(s)
| | | | - Alessandro Siria
- Laboratoire de Physique Statistique
- Ećole Normale Supérieure and CNRS
- UMR 8550
- 75231 Paris, France
| | - Lyderic Bocquet
- Laboratoire de Physique Statistique
- Ećole Normale Supérieure and CNRS
- UMR 8550
- 75231 Paris, France
| |
Collapse
|
28
|
Affiliation(s)
- Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
29
|
Carlsen AT, Zahid OK, Ruzicka J, Taylor EW, Hall AR. Interpreting the conductance blockades of DNA translocations through solid-state nanopores. ACS NANO 2014; 8:4754-60. [PMID: 24758739 DOI: 10.1021/nn501694n] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Solid-state nanopore electrical signatures can be convoluted and are thus challenging to interpret. In order to better understand the origin of these conductance changes, we investigate the translocation of DNA through small, thin pores over a range of voltage. We observe multiple, discrete populations of conductance blockades that vary with applied voltage. To describe our observations, we develop a simple model that is applicable to solid-state nanopores generally. These results represent an important step toward understanding the dynamics of the electrokinetic translocation process.
Collapse
Affiliation(s)
- Autumn T Carlsen
- Department of Biomedical Engineering and ‡Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27101, United States
| | | | | | | | | |
Collapse
|
30
|
Wang J, Zhang L, Xue J, Hu G. Ion diffusion coefficient measurements in nanochannels at various concentrations. BIOMICROFLUIDICS 2014; 8:024118. [PMID: 24803967 PMCID: PMC4008760 DOI: 10.1063/1.4874215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Diffusion is one of the most fundamental properties of ionic transport in solutions. Here, we present experimental studies and theoretical analysis on the ion diffusion in nanochannels. Based on Fick's second law, we develop a current monitoring method to measure ion diffusion coefficient of high solution concentrations in nanochannels. This method is further extended to the cases at medium and low concentrations. Through monitoring ionic current during diffusion, we obtain diffusion coefficients of potassium chloride solution at different concentrations in nanochannels. These diffusion coefficients within the confined space are close to theirs bulk values. It is also found that the apparent ion diffusion equilibrium in the present experiments is very slow at low concentration, which we attribute to the slow equilibrium of the nanochannel surface charge. Finally, we get a primary acknowledge of the equilibrium rate between the nanochannel surface charge and electrolyte solution. The results in this work have improved the understanding of nanoscale diffusion and nanochannel surface charge and may be useful in nanofluidic applications such as ion-selective transport, energy conversion, and nanopore biosensors.
Collapse
Affiliation(s)
- Junrong Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Zhang
- Research and Development Center, Synfuels China Technology Co., Ltd., Beijing 101407, China
| | - Jianming Xue
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - Guoqing Hu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|