1
|
Amulya E, Bahuguna D, Negi M, Phatale V, Sikder A, Vambhurkar G, Katta CB, Dandekar MP, Madan J, Srivastava S. Lipid engineered nanomaterials: A novel paradigm shift for combating stroke. APPLIED MATERIALS TODAY 2024; 38:102194. [DOI: 10.1016/j.apmt.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Ersöz E, Demir-Dora D. Unveiling the potential of antisense oligonucleotides: Mechanisms, therapies, and safety insights. Drug Dev Res 2024; 85:e22187. [PMID: 38764172 DOI: 10.1002/ddr.22187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 05/21/2024]
Abstract
Antisense oligonucleotides (ASOs) are short, synthetic, single-stranded deoxynucleotide sequences composed of phosphate backbone-connected sugar rings. Designing of those strands is based on Watson-Crick hydrogen bonding mechanism. Thanks to rapidly advancing medicine and technology, evolving of the gene therapy area and ASO approaches gain attention. Considering the genetic basis of diseases, it is promising that gene therapy approaches offer more specific and effective options compared to conventional treatments. The objective of this review is to explain the mechanism of ASOs and discuss the characteristics and safety profiles of therapeutic agents in this field. Pharmacovigilance for gene therapy products is complex, requiring accurate assessment of benefit-risk balance and evaluation of adverse effects.
Collapse
Affiliation(s)
- Edanur Ersöz
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Medical Pharmacology, Akdeniz University, Antalya, Turkey
- Health Sciences Institute, Department of Medical Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Sharma VK, Mangla P, Singh SK, Prasad AK. Triazole-linked Nucleic Acids: Synthesis, Therapeutics and Synthetic Biology Applications. Curr Org Synth 2024; 21:436-455. [PMID: 37138439 DOI: 10.2174/1570179420666230502123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 05/05/2023]
Abstract
This article covers the triazole-linked nucleic acids where the triazole linkage (TL) replaces the natural phosphate backbone. The replacement is done at either a few selected linkages or all the phosphate linkages. Two triazole linkages, the four-atom TL1 and the six-atom TL2, have been discussed in detail. These triazole-modified oligonucleotides have found a wide range of applications, from therapeutics to synthetic biology. For example, the triazole-linked oligonucleotides have been used in the antisense oligonucleotide (ASO), small interfering RNA (siRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology as therapeutic agents. Due to the ease of the synthesis and a wide range of biocompatibility, the triazole linkage TL2 has been used to assemble a functional 300-mer DNA from alkyne- and azide-functionalized 100-mer oligonucleotides as well as an epigenetically modified variant of a 335 base-pair gene from ten short oligonucleotides. These outcomes highlight the potential of triazole-linked nucleic acids and open the doors for other TL designs and artificial backbones to fully exploit the vast potential of artificial nucleic acids in therapeutics, synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Vivek K Sharma
- Department of Medicine, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
- MassBiologics of the University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110 007, India
| | - Ashok K Prasad
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, 110 007, India
| |
Collapse
|
4
|
Lyu F, Tomita T, Abe N, Hiraoka H, Hashiya F, Nakashima Y, Kajihara S, Tomoike F, Shu Z, Onizuka K, Kimura Y, Abe H. Topological capture of mRNA for silencing gene expression. Chem Commun (Camb) 2023; 59:11564-11567. [PMID: 37682012 DOI: 10.1039/d2cc06189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
We describe herein topological mRNA capture using branched oligodeoxynucleotides (ODNs) with multiple reactive functional groups. These fragmented ODNs efficiently formed topological complexes on template mRNA in vitro. In cell-based experiments targeting AcGFP mRNA, the bifurcated reactive ODNs showed a much larger gene silencing effect than the corresponding natural antisense ODN.
Collapse
Affiliation(s)
- Fangjie Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Takashi Tomita
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Fumitaka Hashiya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Shiryu Kajihara
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Fumiaki Tomoike
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Zhaoma Shu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Baghban R, Ghasemian A, Mahmoodi S. Nucleic acid-based vaccine platforms against the coronavirus disease 19 (COVID-19). Arch Microbiol 2023; 205:150. [PMID: 36995507 PMCID: PMC10062302 DOI: 10.1007/s00203-023-03480-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 03/31/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has infected 673,010,496 patients and caused the death of 6,854,959 cases globally until today. Enormous efforts have been made to develop fundamentally different COVID-19 vaccine platforms. Nucleic acid-based vaccines consisting of mRNA and DNA vaccines (third-generation vaccines) have been promising in terms of rapid and convenient production and efficient provocation of immune responses against the COVID-19. Several DNA-based (ZyCoV-D, INO-4800, AG0302-COVID19, and GX-19N) and mRNA-based (BNT162b2, mRNA-1273, and ARCoV) approved vaccine platforms have been utilized for the COVID-19 prevention. mRNA vaccines are at the forefront of all platforms for COVID-19 prevention. However, these vaccines have lower stability, while DNA vaccines are needed with higher doses to stimulate the immune responses. Intracellular delivery of nucleic acid-based vaccines and their adverse events needs further research. Considering re-emergence of the COVID-19 variants of concern, vaccine reassessment and the development of polyvalent vaccines, or pan-coronavirus strategies, is essential for effective infection prevention.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
6
|
Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer-based materials as nucleic acids carriers in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1820. [PMID: 35637638 DOI: 10.1002/wnan.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Patrícia Alexandra Pereira
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, Portugal
| | | | - Arménio C Serra
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| |
Collapse
|
7
|
Asanuma H, Kamiya Y, Kashida H, Murayama K. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties. Chem Commun (Camb) 2022; 58:3993-4004. [DOI: 10.1039/d1cc05868a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA and RNA have significance as a genetic materials, therapeutic potential, and supramolecular properties. Advances in nucleic acid chemistry have enabled large-scale synthesis of DNA and RNA oligonucleotides and oligomers...
Collapse
|
8
|
Fujimoto K, Hirano A, Watanabe Y, Shimabara A, Nakamura S. The Inhibition Effect of Photo-Cross-Linking between Probes in Photo-Induced Double Duplex Invasion DNA. Chembiochem 2021; 22:3402-3405. [PMID: 34643012 DOI: 10.1002/cbic.202100430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Double duplex invasion (DDI) DNA is a useful antigene method that inhibits expression of genomic DNA. We succeeded in performing photoinduced-DDI (pDDI) using ultrafast photo-cross-linking. 5-Cyanouracil (CN U) has been used in pDDI to inhibit photo-cross-linking between probes, but its importance has not been clarified. Therefore, in this study, we evaluated the effect of spacer (S) and d-spacer (dS) that exhibit photo-cross-linking ability similar to that of CN U. CN U exhibited the highest pDDI efficiency, and S, dS, and T were not very different. The photo-cross-linking inhibitory effect was better with S and dS than with thymidine (T). Conversely, the thermal stability was significantly lower with S and dS than with T. The results suggest that the pDDI efficiency is determined by the balance between the photo-cross-linking inhibitory effect and the thermal stability, which is the introduction efficiency for double-stranded DNA. Therefore, CN U, which has a photo-cross-linking inhibitory effect and a high Tm value, showed the highest inhibitory efficiency.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ayumu Hirano
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Yasuha Watanabe
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ami Shimabara
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Shigetaka Nakamura
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| |
Collapse
|
9
|
Pathak P, Zarandi MA, Zhou X, Jayawickramarajah J. Synthesis and Applications of Porphyrin-Biomacromolecule Conjugates. Front Chem 2021; 9:764137. [PMID: 34820357 PMCID: PMC8606752 DOI: 10.3389/fchem.2021.764137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
With potential applications in materials and especially in light-responsive biomedicine that targets cancer tissue selectively, much research has focused on developing covalent conjugation techniques to tether porphyrinoid units to various biomacromolecules. This review details the key synthetic approaches that have been employed in the recent decades to conjugate porphyrinoids with oligonucleotides and peptides/proteins. In addition, we provide succinct discussions on the subsequent applications of such hybrid systems and also give a brief overview of the rapidly progressing field of porphyrin-antibody conjugates. Since nucleic acid and peptide systems vary in structure, connectivity, functional group availability and placement, as well as stability and solubility, tailored synthetic approaches are needed for conjugating to each of these biomacromolecule types. In terms of tethering to ONs, porphyrins are typically attached by employing bioorthogonal chemistry (e.g., using phosphoramidites) that drive solid-phase ON synthesis or by conducting post-synthesis modifications and subsequent reactions (such as amide couplings, hydrazide-carbonyl reactions, and click chemistry). In contrast, peptides and proteins are typically conjugated to porphyrinoids using their native functional groups, especially the thiol and amine side chains. However, bioorthogonal reactions (e.g., Staudinger ligations, and copper or strain promoted alkyne-azide cycloadditions) that utilize de novo introduced functional groups onto peptides/proteins have seen vigorous development, especially for site-specific peptide-porphyrin tethering. While the ON-porphyrin conjugates have largely been explored for programmed nanostructure self-assembly and artificial light-harvesting applications, there are some reports of ON-porphyrin systems targeting clinically translational applications (e.g., antimicrobial biomaterials and site-specific nucleic acid cleavage). Conjugates of porphyrins with proteinaceous moieties, on the other hand, have been predominantly used for therapeutic and diagnostic applications (especially in photodynamic therapy, photodynamic antimicrobial chemotherapy, and photothermal therapy). The advancement of the field of porphyrinoid-bioconjugation chemistry from basic academic research to more clinically targeted applications require continuous fine-tuning in terms of synthetic strategies and hence there will continue to be much exciting work on porphyrinoid-biomacromolecule conjugation.
Collapse
Affiliation(s)
- Pravin Pathak
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | | | - Xiao Zhou
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | - Janarthanan Jayawickramarajah
- Department of Chemistry, Tulane University, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
10
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
11
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
12
|
Santos IC, Brodbelt JS. Recent developments in the characterization of nucleic acids by liquid chromatography, capillary electrophoresis, ion mobility, and mass spectrometry (2010-2020). J Sep Sci 2021; 44:340-372. [PMID: 32974962 PMCID: PMC8378248 DOI: 10.1002/jssc.202000833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
The development of new strategies for the analysis of nucleic acids has gained momentum due to the increased interest in using these biomolecules as drugs or drug targets. The application of new mass spectrometry ion activation techniques and the optimization of separation methods including liquid chromatography, capillary electrophoresis, and ion mobility have allowed more detailed characterization of nucleic acids and oligonucleotide therapeutics including confirmation of sequence, localization of modifications and interaction sites, and structural analysis as well as identification of failed sequences and degradation products. This review will cover tandem mass spectrometry methods as well as the recent developments in liquid chromatography, capillary electrophoresis, and ion mobility coupled to mass spectrometry for the analysis of nucleic acids and oligonucleotides.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
13
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
14
|
Wojtyniak M, Schmidtgall B, Kirsch P, Ducho C. Towards Zwitterionic Oligonucleotides with Improved Properties: the NAA/LNA-Gapmer Approach. Chembiochem 2020; 21:3234-3243. [PMID: 32662164 PMCID: PMC7754139 DOI: 10.1002/cbic.202000450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 01/21/2023]
Abstract
Oligonucleotides (ON) are promising therapeutic candidates, for instance by blocking endogenous mRNA (antisense mechanism). However, ON usually require structural modifications of the native nucleic acid backbone to ensure satisfying pharmacokinetic properties. One such strategy to design novel antisense oligonucleotides is to replace native phosphate diester units by positively charged artificial linkages, thus leading to (partially) zwitterionic backbone structures. Herein, we report a "gapmer" architecture comprised of one zwitterionic central segment ("gap") containing nucleosyl amino acid (NAA) modifications and two outer segments of locked nucleic acid (LNA). This NAA/LNA-gapmer approach furnished a partially zwitterionic ON with optimised properties: i) the formation of stable ON-RNA duplexes with base-pairing fidelity and superior target selectivity at 37 °C; and ii) excellent stability in complex biological media. Overall, the NAA/LNA-gapmer approach is thus established as a strategy to design partially zwitterionic ON for the future development of novel antisense agents.
Collapse
Affiliation(s)
- Melissa Wojtyniak
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Boris Schmidtgall
- Department of ChemistryUniversity of PaderbornWarburger Str. 10033098PaderbornGermany
| | - Philine Kirsch
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Christian Ducho
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
- Department of ChemistryUniversity of PaderbornWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
15
|
Peng Y, Wang Y, Wang X. Exploring the Thermodynamics of 7-Amino Actinomycin D-Induced Single-Stranded DNA Hairpin by Spectroscopic Techniques and Computational Simulations. J Phys Chem B 2020; 124:10007-10013. [PMID: 33136398 DOI: 10.1021/acs.jpcb.0c05593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NMR studies have indicated that the anti-tumor therapeutic agent actinomycin D (ACTD) can induce seemingly single-stranded DNA (ssDNA) oligomer 5'-CCGTT3GTGG-3' to form a hairpin structure with tandem GT mismatches at the stem region next to a loop of three stacked thymine bases. In an effort to uncover the preference of binding sequence and to elucidate the thermodynamics properties of the binding, a combination of spectroscopic techniques and computational simulation studies was performed with d(CCGTTnGTGG) and d(CCGAAnGAGG) (denoted as GTTn and GAAn, respectively; n = 3, 5, and 7) sequences. In the presence of 7-amino actinomycin D (7AACTD), all the six oligomers formed stable hairpin structures. The GTT5-7AACTD/GAA5-7AACTD hairpin structure was more stable than the corresponding GTTn-7AACTD and GAAn-7AACTD (n = 3, 7). No significant ΔG difference was observed between GTTn-7AACTD and GAAn-7AACTD complexes with the same loop length. In agreement with the 7AACTD-induced hairpin stability results, the binding affinity of GTTn and GAAn with 7AACTD increased from n = 3 to n = 5 and then decreased when n is 7. Moreover, GTTn and GAAn with the same loop length showed comparable binding affinities to 7AACTD. Furthermore, molecular dynamics simulations found that van der Waals interactions between GTTn/GAAn and 7AACTD were the primary attractive forces for 7AACTD binding, and the electrostatic interactions between the carbonyl groups of 7AACTD and bases in the hairpin were the major unfavorable forces. These findings furthered our understanding that 7AACTD is sensitive to the loop size and sequence as well as tandem GT/GA mismatches of their deoxyribonucleic acid (DNA) targets. A deep understanding of the thermodynamics and the molecular recognition mechanism of 7AACTD with ssDNAs would further the development of ACTD-like antitumor agents.
Collapse
Affiliation(s)
- Yinghua Peng
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130022, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Hossian AKMN, Jois SD, Jonnalagadda SC, Mattheolabakis G. Nucleic Acid Delivery with α-Tocopherol-Polyethyleneimine-Polyethylene Glycol Nanocarrier System. Int J Nanomedicine 2020; 15:6689-6703. [PMID: 32982227 PMCID: PMC7494428 DOI: 10.2147/ijn.s259724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Nucleic acid-based therapies are a promising therapeutic tool. The major obstacle in their clinical translation is their efficient delivery to the desired tissue. We developed a novel nanosized delivery system composed of conjugates of α-tocopherol, polyethyleneimine, and polyethylene glycol (TPP) to deliver nucleic acids. Methods We synthesized a panel of TPP molecules using different molecular weights of PEG and PEI and analyzed with various analytical approaches. The optimized version of TPP (TPP111 - the 1:1:1 molecular ratio) was self-assembled in water to produce nanostructures and then evaluated in diversified in vitro and in vivo studies. Results Through a panel of synthesized molecules, TPP111 conjugate components self-assembled in water, forming globular shaped nanostructures of ~90 nm, with high nucleic acid entrapment efficiency. The polymer had low cytotoxicity in vitro and protected nucleic acids from nucleases. Using a luciferase-expressing plasmid, TPP111-plasmid nano-complexes were rapidly up-taken by cancer cells in vitro and induced strong transfection, comparable to PEI. Colocalization of the nano-complexes and endosomes/lysosomes suggested an endosome-mediated uptake. Using a subcutaneous tumor model, intravenously injected nano-complexes preferentially accumulated to the tumor area over 24 h. Conclusion These results indicate that we successfully synthesized the TPP111 nanocarrier system, which can deliver nucleic acids in vitro and in vivo and merits further evaluation.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | | | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
17
|
|
18
|
Shen T, Zhang Y, Zhou S, Lin S, Zhang XB, Zhu G. Nucleic Acid Immunotherapeutics for Cancer. ACS APPLIED BIO MATERIALS 2020; 3:2838-2849. [PMID: 33681722 DOI: 10.1021/acsabm.0c00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The past decade has witnessed the blossom of two fields: nucleic acid therapeutics and cancer immunotherapy. Unlike traditional small molecule medicines or protein biologics, nucleic acid therapeutics have characteristic features such as storing genetic information, immunomodulation, and easy conformational recovery. Immunotherapy uses the patients' own immune system to treat cancer. A variety of strategies have been developed for cancer immunotherapy including immune checkpoint blockade, adoptive cell transfer therapy, therapeutic vaccines, and oncolytic virotherapy. Interestingly, nucleic acid therapeutics have emerged as a pivotal class of regimen for cancer immunotherapy. Examples of such nucleic acid immunotherapeutics include immunostimulatory DNA/RNA, mRNA/plasmids that can be translated into immunotherapeutic proteins/peptides, and genome-editing nucleic acids. Like many other therapeutic nucleic acids, nucleic acid immunotherapeutics often require chemical modifications to protect them from enzymatic degradation and need drug delivery systems for optimal delivery to target tissues and cells and subcellular locations. In this review, we attempted to summarize recent advancement in the interfacial field of nucleic acid immunotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Tingting Shen
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China; Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yu Zhang
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States; Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shurong Zhou
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Shuibin Lin
- Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Bing Zhang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Guizhi Zhu
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
19
|
Shu Z, Ota A, Takayama Y, Katsurada Y, Kusamori K, Abe N, Nakamoto K, Tomoike F, Tada S, Ito Y, Nishikawa M, Kimura Y, Abe H. Intracellular Delivery of Antisense DNA and siRNA with Amino Groups Masked with Disulfide Units. Chem Pharm Bull (Tokyo) 2020; 68:129-132. [DOI: 10.1248/cpb.c19-00811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhaoma Shu
- Department of Chemistry, Nagoya University
| | - Azumi Ota
- Department of Chemistry, Nagoya University
| | - Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yuri Katsurada
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Naoko Abe
- Department of Chemistry, Nagoya University
| | | | | | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Hiroshi Abe
- Department of Chemistry, Nagoya University
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science
- CREST, Japan Science and Technology Agency
| |
Collapse
|
20
|
Burakova EA, Derzhalova AS, Chelobanov BP, Fokina AA, Stetsenko DA. New Oligodeoxynucleotide Derivatives Containing N-(Sulfonyl)-Phosphoramide Groups. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Valeur E, Narjes F, Ottmann C, Plowright AT. Emerging modes-of-action in drug discovery. MEDCHEMCOMM 2019; 10:1550-1568. [PMID: 31673315 PMCID: PMC6786009 DOI: 10.1039/c9md00263d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
An increasing focus on complex biology to cure diseases rather than merely treat symptoms has transformed how drug discovery can be approached. Instead of activating or blocking protein function, a growing repertoire of drug modalities can be leveraged or engineered to hijack cellular processes, such as translational regulation or degradation mechanisms. Drug hunters can therefore access a wider arsenal of modes-of-action to modulate biological processes and this review summarises these emerging strategies by highlighting the most representative examples of these approaches.
Collapse
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry , Research and Early Development, Cardiovascular, Renal & Metabolism , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden .
| | - Frank Narjes
- Medicinal Chemistry , Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA) , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 , AZ , Eindhoven , the Netherlands
- Department of Chemistry , University of Duisburg-Essen , Universitätsstraße 7 , 45117 , Essen , Germany
| | - Alleyn T Plowright
- Integrated Drug Discovery , Sanofi-Aventis Deutschland GmbH , Industriepark Höchst , D-65926 Frankfurt am Main , Germany
| |
Collapse
|
22
|
Soler-Bistué A, Zorreguieta A, Tolmasky ME. Bridged Nucleic Acids Reloaded. Molecules 2019; 24:E2297. [PMID: 31234313 PMCID: PMC6630285 DOI: 10.3390/molecules24122297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, has led to the design of nucleotide analogs that, when part of these oligomers, enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs is the first-generation bridged nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second-generation BNA, BNANC (2'-O,4'-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but, in some cases, also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds have been researched, the promising results warrant more effort in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future, offering great hope to oligonucleotide-based fields of research and applications.
Collapse
Affiliation(s)
- Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús, CONICET, Universidad Nacional de San Martín, San Martín 1650, Argentina.
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires C1405BWE, Argentina.
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| |
Collapse
|
23
|
Shu Z, Tanaka I, Ota A, Fushihara D, Abe N, Kawaguchi S, Nakamoto K, Tomoike F, Tada S, Ito Y, Kimura Y, Abe H. Disulfide‐Unit Conjugation Enables Ultrafast Cytosolic Internalization of Antisense DNA and siRNA. Angew Chem Int Ed Engl 2019; 58:6611-6615. [DOI: 10.1002/anie.201900993] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/27/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Zhaoma Shu
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Iku Tanaka
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Azumi Ota
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Daichi Fushihara
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Naoko Abe
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Saki Kawaguchi
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Kosuke Nakamoto
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Fumiaki Tomoike
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team RIKEN Center for Emergent Matter Science 2-1, Hirosawa Wako-Shi Saitama 351-0198 Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team RIKEN Center for Emergent Matter Science 2-1, Hirosawa Wako-Shi Saitama 351-0198 Japan
| | - Yasuaki Kimura
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Hiroshi Abe
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
- Emergent Bioengineering Materials Research Team RIKEN Center for Emergent Matter Science 2-1, Hirosawa Wako-Shi Saitama 351-0198 Japan
- CREST (Japan) Science and Technology Agency Tokyo 102-0076 Japan
| |
Collapse
|
24
|
Shu Z, Tanaka I, Ota A, Fushihara D, Abe N, Kawaguchi S, Nakamoto K, Tomoike F, Tada S, Ito Y, Kimura Y, Abe H. Disulfide‐Unit Conjugation Enables Ultrafast Cytosolic Internalization of Antisense DNA and siRNA. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhaoma Shu
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Iku Tanaka
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Azumi Ota
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Daichi Fushihara
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Naoko Abe
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Saki Kawaguchi
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Kosuke Nakamoto
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Fumiaki Tomoike
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team RIKEN Center for Emergent Matter Science 2-1, Hirosawa Wako-Shi Saitama 351-0198 Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team RIKEN Center for Emergent Matter Science 2-1, Hirosawa Wako-Shi Saitama 351-0198 Japan
| | - Yasuaki Kimura
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
| | - Hiroshi Abe
- Chemistry Department Nagoya University, Furo-cho, Chikusa-Ku Nagoya Aichi 464-8602 Japan
- Emergent Bioengineering Materials Research Team RIKEN Center for Emergent Matter Science 2-1, Hirosawa Wako-Shi Saitama 351-0198 Japan
- CREST (Japan) Science and Technology Agency Tokyo 102-0076 Japan
| |
Collapse
|
25
|
Osawa T, Obika S, Hari Y. 2'-C,4'-C-Ethyleneoxy-Bridged 2'-Deoxyribonucleic Acids (EoDNAs) with Thymine Nucleobases: Synthesis, Duplex-Forming Ability, and Enzymatic Stability. Methods Mol Biol 2019; 1973:59-89. [PMID: 31016696 DOI: 10.1007/978-1-4939-9216-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This chapter describes procedures for (1) the synthesis of six 2'-C,4'-C-ethyleneoxy-bridged thymidine phosphoramidites, i.e., methylene-EoDNA-T, (R)-Me-methylene-EoDNA-T, (S)-Me-methylene-EoDNA-T, EoDNA-T, (R)-Me-EoDNA-T, and (S)-Me-EoDNA-T phosphoramidites, (2) the introduction of the phosphoramidites into oligonucleotides, (3) UV-melting experiments of the duplexes of the modified oligonucleotides and complementary RNA, and (4) nuclease degradation experiments of the modified oligonucleotides.
Collapse
Affiliation(s)
- Takashi Osawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan.
| |
Collapse
|
26
|
Vandavasi VG, Blakeley MP, Keen DA, Hu LR, Huang Z, Kovalevsky A. Temperature-Induced Replacement of Phosphate Proton with Metal Ion Captured in Neutron Structures of A-DNA. Structure 2018; 26:1645-1650.e3. [PMID: 30244969 PMCID: PMC6281803 DOI: 10.1016/j.str.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/02/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022]
Abstract
Nucleic acids can fold into well-defined 3D structures that help determine their function. Knowing precise nucleic acid structures can also be used for the design of nucleic acid-based therapeutics. However, locations of hydrogen atoms, which are key players of nucleic acid function, are normally not determined with X-ray crystallography. Accurate determination of hydrogen atom positions can provide indispensable information on protonation states, hydrogen bonding, and water architecture in nucleic acids. Here, we used neutron crystallography in combination with X-ray diffraction to obtain joint X-ray/neutron structures at both room and cryo temperatures of a self-complementary A-DNA oligonucleotide d[GTGG(CSe)CAC]2 containing 2'-SeCH3 modification on Cyt5 (CSe) at pH 5.6. We directly observed protonation of a backbone phosphate oxygen of Ade7 at room temperature. The proton is replaced with hydrated Mg2+ upon cooling the crystal to 100 K, indicating that metal binding is favored at low temperature, whereas proton binding is dominant at room temperature.
Collapse
Affiliation(s)
- Venu Gopal Vandavasi
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37922, USA
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, Grenoble 38000, France
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - Andrey Kovalevsky
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37922, USA.
| |
Collapse
|
27
|
Meng M, Schmidtgall B, Ducho C. Enhanced Stability of DNA Oligonucleotides with Partially Zwitterionic Backbone Structures in Biological Media. Molecules 2018; 23:molecules23112941. [PMID: 30423832 PMCID: PMC6278555 DOI: 10.3390/molecules23112941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022] Open
Abstract
Deficient stability towards nuclease-mediated degradation is one of the most relevant tasks in the development of oligonucleotide-derived biomedical agents. This hurdle can be overcome through modifications to the native oligonucleotide backbone structure, with the goal of simultaneously retaining the unique hybridization properties of nucleic acids. The nucleosyl amino acid (NAA)-modification is a recently introduced artificial cationic backbone linkage. Partially zwitterionic NAA-modified oligonucleotides had previously shown hybridization with DNA strands with retained base-pairing fidelity. In this study, we report the significantly enhanced stability of NAA-modified oligonucleotides towards 3′- and 5′-exonuclease-mediated degradation as well as in complex biological media such as human plasma and whole cell lysate. This demonstrates the potential versatility of the NAA-motif as a backbone modification for the development of biomedically active oligonucleotide analogues.
Collapse
Affiliation(s)
- Melissa Meng
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Boris Schmidtgall
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
- University of Paderborn, Department of Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Christian Ducho
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
- University of Paderborn, Department of Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
28
|
Lu X, Zhang K. PEGylation of therapeutic oligonucletides: From linear to highly branched PEG architectures. NANO RESEARCH 2018; 11:5519-5534. [PMID: 30740197 PMCID: PMC6366847 DOI: 10.1007/s12274-018-2131-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 05/12/2023]
Abstract
PEGylation, the attachment of poly(ethylene glycol) (PEG), has been adopted to improve the pharmacokinetic properties of oligonucleotide therapeutics for nearly 30 years. Prior efforts mainly focused on the investigation of linear or slightly branched PEG having different molecular weights, terminal functional groups, and possible oligonucleotide sites for functionalization. Recent studies on highly branched PEG (including brush, star, and micellar structures) indicate superior properties in several areas including cellular uptake, gene regulation efficacy, reduction of side effects, and biodistribution. This review focuses on comparing the effects of PEG architecture on the physiochemical and biological properties of the PEGylated oligonucleotide.
Collapse
Affiliation(s)
- Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Meng M, Ducho C. Oligonucleotide analogues with cationic backbone linkages. Beilstein J Org Chem 2018; 14:1293-1308. [PMID: 29977397 PMCID: PMC6009206 DOI: 10.3762/bjoc.14.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022] Open
Abstract
Their unique ability to selectively bind specific nucleic acid sequences makes oligonucleotides promising bioactive agents. However, modifications of the nucleic acid structure are an essential prerequisite for their application in vivo or even in cellulo. The oligoanionic backbone structure of oligonucleotides mainly hampers their ability to penetrate biological barriers such as cellular membranes. Hence, particular attention has been given to structural modifications of oligonucleotides which reduce their overall number of negative charges. One such approach is the site-specific replacement of the negatively charged phosphate diester linkage with alternative structural motifs which are positively charged at physiological pH, thus resulting in zwitterionic or even oligocationic backbone structures. This review provides a general overview of this concept and summarizes research on four according artificial backbone linkages: aminoalkylated phosphoramidates (and related systems), guanidinium groups, S-methylthiourea motifs, and nucleosyl amino acid (NAA)-derived modifications. The synthesis and properties of the corresponding oligonucleotide analogues are described.
Collapse
Affiliation(s)
- Melissa Meng
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| |
Collapse
|
30
|
Liu LS, Leung HM, Tam DY, Lo TW, Wong SW, Lo PK. α-l-Threose Nucleic Acids as Biocompatible Antisense Oligonucleotides for Suppressing Gene Expression in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9736-9743. [PMID: 29473733 DOI: 10.1021/acsami.8b01180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Because of the chemical simplicity of α-l-threose nucleic acid (TNA) and its ability to exchange genetic information between itself and RNA, it has attracted significant interest as the RNA ancestor. We herein explore the biological properties and evaluate the potency of sequence-designed TNA polymers to suppress the gene expression in living environments. We found that sequence-specific TNA macromolecules exhibit strong affinity and specificity toward the complementary RNA targets, are highly biocompatible and nontoxic in a living cell system, and readily enter a number of cell lines without using transfecting agents. Particularly, TNA exhibited much stronger enzymatic resistance toward fetal bovine serum or human serum as compared to traditional antisense oligonucleotides, which means that the intrinsic structure of TNA is thoroughly resistant to biological degradation. Importantly, the efficacy of the TNA molecule with green fluorescent protein (GFP) target sequence (anti-GFP TNAs) as antisense agents was first demonstrated in living cells in which these polymers revealed high antisense activity in terms of the degree of inhibition of GFP gene expression. The GFP gene inhibition studies in HeLa and HEK293 cells characterize sequence-controlled TNA as a functional biomaterial and a valuable alternative to traditional antisense oligonucleotides such as peptide nucleic acids, phosphorodiamidate morpholino oligomers, and locked nucleic acids for a wide range of applications in drug discovery and life science research. Additionally, we also first reported the cost-efficient approach to synthesize the four TNA phosphoramidite monomers using 2-cyanoethyl N, N, N', N'-tetraisopropylphosphoramidite as a key reagent. Furthermore, by increasing the frequency of the deblocking and coupling reactions together with extending their reaction time in each synthesis cycle, sequence-controlled TNAs can be easily synthesized in a quantitative yield and high purity.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong SAR , China
- Key Laboratory of Biochip Technology, Biotech and Health Care , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China
| | - Hoi Man Leung
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong SAR , China
- Key Laboratory of Biochip Technology, Biotech and Health Care , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China
| | - Dick Yan Tam
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong SAR , China
- Key Laboratory of Biochip Technology, Biotech and Health Care , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China
| | - Tsz Wan Lo
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong SAR , China
| | - Sze Wing Wong
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong SAR , China
| | - Pik Kwan Lo
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong SAR , China
- Key Laboratory of Biochip Technology, Biotech and Health Care , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China
| |
Collapse
|
31
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
32
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
33
|
Rungta P, Mangla P, Khatri V, Maity J, Prasad AK. Biocatalytic route to C-4′-spiro-oxetano-xylofuranosyl pyrimidine nucleosides. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1438416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pallavi Rungta
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, India
| | - Priyanka Mangla
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, India
| | - Vinod Khatri
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, India
| | - Jyotirmoy Maity
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, India
| | - Ashok K. Prasad
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, India
| |
Collapse
|
34
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
35
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
36
|
Schmidtgall B, Kuepper A, Meng M, Grossmann TN, Ducho C. Oligonucleotides with Cationic Backbone and Their Hybridization with DNA: Interplay of Base Pairing and Electrostatic Attraction. Chemistry 2017; 24:1544-1553. [PMID: 29048135 PMCID: PMC5814856 DOI: 10.1002/chem.201704338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/01/2023]
Abstract
Non‐natural oligonucleotides represent important (bio)chemical tools and potential therapeutic agents. Backbone modifications altering hybridization properties and biostability can provide useful analogues. Here, we employ an artificial nucleosyl amino acid (NAA) motif for the synthesis of oligonucleotides containing a backbone decorated with primary amines. An oligo‐T sequence of this cationic DNA analogue shows significantly increased affinity for complementary DNA. Notably, hybridization with DNA is still governed by Watson–Crick base pairing. However, single base pair mismatches are tolerated and some degree of sequence‐independent interactions between the cationic NAA backbone and fully mismatched DNA are observed. These findings demonstrate that a high density of positive charges directly connected to the oligonucleotide backbone can affect Watson–Crick base pairing. This provides a paradigm for the design of therapeutic oligonucleotides with altered backbone charge patterns.
Collapse
Affiliation(s)
- Boris Schmidtgall
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| | - Arne Kuepper
- Chemical Genomics Centre (CGC) of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Melissa Meng
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre (CGC) of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| |
Collapse
|
37
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
38
|
Morihiro K, Kasahara Y, Obika S. Biological applications of xeno nucleic acids. MOLECULAR BIOSYSTEMS 2017; 13:235-245. [PMID: 27827481 DOI: 10.1039/c6mb00538a] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Xeno nucleic acids (XNAs) are a group of chemically modified nucleic acid analogues that have been applied to various biological technologies such as antisense oligonucleotides, siRNAs and aptamers.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
39
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
40
|
Abstract
Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code.
Collapse
|
41
|
Gillingham D, Geigle S, Anatole von Lilienfeld O. Properties and reactivity of nucleic acids relevant to epigenomics, transcriptomics, and therapeutics. Chem Soc Rev 2017; 45:2637-55. [PMID: 26992131 DOI: 10.1039/c5cs00271k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Developments in epigenomics, toxicology, and therapeutic nucleic acids all rely on a precise understanding of nucleic acid properties and chemical reactivity. In this review we discuss the properties and chemical reactivity of each nucleobase and attempt to provide some general principles for nucleic acid targeting or engineering. For adenine-thymine and guanine-cytosine base pairs, we review recent quantum chemical estimates of their Watson-Crick interaction energy, π-π stacking energies, as well as the nuclear quantum effects on tautomerism. Reactions that target nucleobases have been crucial in the development of new sequencing technologies and we believe further developments in nucleic acid chemistry will be required to deconstruct the enormously complex transcriptome.
Collapse
Affiliation(s)
- Dennis Gillingham
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, CH-4056, Switzerland.
| | - Stefanie Geigle
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, CH-4056, Switzerland.
| | | |
Collapse
|
42
|
Le BH, Koo JC, Joo HN, Seo YJ. Diverse size approach to incorporate and extend highly fluorescent unnatural nucleotides into DNA. Bioorg Med Chem 2017; 25:3591-3596. [PMID: 28501432 DOI: 10.1016/j.bmc.2017.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022]
Abstract
We have prepared a series of size-diverse unnatural nucleotides containing fluorescent (dApyrTP, dUpyrTP, dUantTP, dUthiTP) and quencher (dUazoTP) units, as well as nucleotides presenting small functional groups (dAethTP, dAoctTP, dUethTP, dUiodTP), all based on deoxyadenosine and deoxyuridine, and examined their suitability for use in enzymatic incorporation and extension into DNA. We observed a size-dependence of the incorporation and extension capability (following the order dUiodTP=dUethTP=dUthiTP>dUazoTP>dUpyrTP>dUantTP) during primer extension. This result was supported by circular dichroism (CD) spectra, which revealed a trend in the different B-form DNA structures depending on the size of the unit at the 5-position of the deoxyuridine (dUiodTP>dUethTP>dUthiTP>dUpyrTP), obtained from the PCR products. Interestingly, dUthiTP could be incorporated and extended into long DNA strands during primer extension and even PCR amplification, with CD spectroscopy confirming a stable secondary B-form duplex DNA structure. We observed full-length extension products even when combining dUthiTP with a template containing 24 continuous dA units during the primer extension. Thus, we believe that dUthiTP is a promising fluorescent nucleotide for a diverse range of biological applications requiring multiple incorporation and extension directly without disruption of B-form DNA structures.
Collapse
Affiliation(s)
- Binh Huy Le
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju 54896, South Korea
| | - Ja Choon Koo
- Division of Science Education and Institute of Fusion Science, Chonbuk National University, Jeonju 54896, South Korea
| | - Han Na Joo
- Department of Chemistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju 54896, South Korea; Department of Chemistry, Chonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
43
|
Brescia M, Zaccolo M. Modulation of Compartmentalised Cyclic Nucleotide Signalling via Local Inhibition of Phosphodiesterase Activity. Int J Mol Sci 2016; 17:E1672. [PMID: 27706091 PMCID: PMC5085705 DOI: 10.3390/ijms17101672] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are the only enzymes that degrade the cyclic nucleotides cAMP and cGMP, and play a key role in modulating the amplitude and duration of the signal delivered by these two key intracellular second messengers. Defects in cyclic nucleotide signalling are known to be involved in several pathologies. As a consequence, PDEs have long been recognized as potential drug targets, and they have been the focus of intense research for the development of therapeutic agents. A number of PDE inhibitors are currently available for the treatment of disease, including obstructive pulmonary disease, erectile dysfunction, and heart failure. However, the performance of these drugs is not always satisfactory, due to a lack of PDE-isoform specificity and their consequent adverse side effects. Recent advances in our understanding of compartmentalised cyclic nucleotide signalling and the role of PDEs in local regulation of cAMP and cGMP signals offers the opportunity for the development of novel strategies for therapeutic intervention that may overcome the current limitation of conventional PDE inhibitors.
Collapse
Affiliation(s)
- Marcella Brescia
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3TP, UK.
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3TP, UK.
| |
Collapse
|
44
|
Zhou Y, Chi H, Wu Y, Marks RS, Steele TWJ. Organic additives stabilize RNA aptamer binding of malachite green. Talanta 2016; 160:172-182. [PMID: 27591602 DOI: 10.1016/j.talanta.2016.06.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/27/2022]
Abstract
Aptamer-ligand binding has been utilized for biological applications due to its specific binding and synthetic nature. However, the applications will be limited if the binding or the ligand is unstable. Malachite green aptamer (MGA) and its labile ligand malachite green (MG) were found to have increasing apparent dissociation constants (Kd) as determined through the first order rate loss of emission intensity of the MGA-MG fluorescent complex. The fluorescent intensity loss was hypothesized to be from the hydrolysis of MG into malachite green carbinol base (MGOH). Random screening organic additives were found to reduce or retain the fluorescence emission and the calculated apparent Kd of MGA-MG binding. The protective effect became more apparent as the percentage of organic additives increased up to 10% v/v. The mechanism behind the organic additive protective effects was primarily from a ~5X increase in first order rate kinetics of MGOH→MG (kMGOH→MG), which significantly changed the equilibrium constant (Keq), favoring the generation of MG, versus MGOH without organic additives. A simple way has been developed to stabilize the apparent Kd of MGA-MG binding over 24h, which may be beneficial in stabilizing other triphenylmethane or carbocation ligand-aptamer interactions that are susceptible to SN1 hydrolysis.
Collapse
Affiliation(s)
- Yubin Zhou
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Hong Chi
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Yuanyuan Wu
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Robert S Marks
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University50 Nanyang AvenueSingapore639798Singapore; Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben Gurion University of the NegevP.O. Box 653Beer Sheva84105Israel
| | - Terry W J Steele
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University50 Nanyang AvenueSingapore639798Singapore.
| |
Collapse
|
45
|
Uppuluri KB, Ayaz Ahmed KB, Jothi A, Veerappan A. Spectrofluorimetric and molecular docking investigation on the interaction of 6-azauridine, a pyrimidine nucleoside antimetabolite, with serum protein. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Wierzbicki AS, Viljoen A. Anti-sense oligonucleotide therapies for the treatment of hyperlipidaemia. Expert Opin Biol Ther 2016; 16:1125-34. [PMID: 27248482 DOI: 10.1080/14712598.2016.1196182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Anti-sense oligonucleotide (ASO) therapies are a new development in clinical pharmacology offering greater specificity compared to small molecule inhibitors and the ability to target intracellular process' not susceptible to antibody-based therapies. AREAS COVERED This article reviews the chemical biology of ASOs and related RNA therapeutics. It then reviews the data on their use to treat hyperlipidaemia. Data on mipomersen - an ASO to apolipoprotein B-100(apoB) licensed for treatment of homozygous familial hypercholesterolaemia (FH) is presented. Few effective therapies are available to reduce atehrogenic lipoprotein (a) levels. An ASO therapy to apolipoprotein(a) (ISIS Apo(a)Rx) specifically reduced lipoprotein (a) levels by up to 78%. Treatment options for patients with familial chylomicronaemia syndrome (lipoprotein lipase deficiency; LPLD) or lipodystrophies are highly limited and often inadequate. Volanesorsen, an ASO to apolipoprotein C-3, shows promise in the treatment of LPLD and severe hypertriglyceridaemia as it increases clearance of triglyceride-rich lipoproteins and can normalise triglycerides in these patients. EXPERT OPINION The uptake of the novel ASO therapies is likely to be limited to selected niche groups or orphan diseases. These will include homozygous FH, severe heterozygous FH for mipomersen; LPLD deficiency and lipodystrophy syndromes for volanesorsen and treatment of patients with high elevated Lp(a) levels.
Collapse
Affiliation(s)
- Anthony S Wierzbicki
- a Department of Metabolic Medicine/Chemical Pathology , Guy's and St Thomas' Hospitals , London , UK
| | - Adie Viljoen
- b Consultant in Metabolic Medicine/Chemical Pathology , Lister Hospital , Stevenage , UK
| |
Collapse
|
47
|
Srivastava S, Singh SK, Sharma VK, Mangla P, Olsen CE, Prasad AK. Design and Synthesis of Triazole-Linked xylo-Nucleoside Dimers. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:388-99. [PMID: 25965328 DOI: 10.1080/15257770.2015.1004341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Three triazole-linked nonionic xylo-nucleoside dimers T(L)-t-T(xL), T(L)-t-A(BzxL) and T(L)-t-C(BzxL) have been synthesized for the first time by Cu(I) catalyzed azide-alkyne [3 + 2] cycloaddition reaction (CuAAC) of 1-(3'-azido-3'-deoxy-2'-O,4'-C-methylene-β-D-ribo-furanosyl)thymine with different alkynes, i.e., 1-(5'-deoxy-5'-C-ethynyl-2'-O,4'-C-methylene-β-D-xylofuranosyl)thymine, 9-(5'-deoxy-5'-C-ethynyl-2'-O,4'-C-methylene-β-D-xylo-furanosyl)-N6-benzoyladenine and 1-(5'-deoxy-5'-C-ethynyl-2'-O,4'-C-methylene-β-D-xylofuranosyl)-N4-benzoylcytosine in 90%-92% yields. Among the two Cu(I) reagents, CuSO4.5H2O-sodium ascorbate in THF:(t)BuOH:H2O (1:1:1) and CuBr.SMe2 in THF used for cycloaddition (click) reaction, the former one was found to be better yielding than the latter one.
Collapse
Affiliation(s)
- Smriti Srivastava
- a Bioorganic Laboratory, Department of Chemistry , University of Delhi , Delhi , India
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Natsuhisa Oka
- Department of Biomolecular Science, Faculty of Engineering, Gifu University
| | - Takeshi Wada
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
49
|
Kumar M, Kumar R, Rana N, Prasad AK. Synthesis of 3′-azido/-amino-xylobicyclonucleosides. RSC Adv 2016. [DOI: 10.1039/c5ra25222a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipozyme® TL IM mediated the selective deacetylation of one of the two acetoxy groups in 4-C-acetoxymethyl-5-O-acetyl-3-azido-3-deoxy-1,2-O-isopropylidene-α-d-xylofuranose, leading to the first efficient syntheses of 3′-azido/3′-amino-xylobicyclonucleosides T, U, C and A.
Collapse
Affiliation(s)
- Manish Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Rajesh Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Neha Rana
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| |
Collapse
|
50
|
Osawa T, Obika S, Hari Y. Synthesis and properties of novel 2′-C,4′-C-ethyleneoxy-bridged 2′-deoxyribonucleic acids with exocyclic methylene groups. Org Biomol Chem 2016; 14:9481-9484. [DOI: 10.1039/c6ob01960a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three methylene-EoDNAs were synthesized from 5-methyluridine and their modified oligonucleotides showed strong binding affinity with ssRNA and high nuclease resistance.
Collapse
Affiliation(s)
- Takashi Osawa
- Faculty of Pharmaceutical Sciences
- Tokushima Bunri University
- Tokushima 770-8514
- Japan
- Graduate School of Pharmaceutical Sciences
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Osaka 565-0871
- Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences
- Tokushima Bunri University
- Tokushima 770-8514
- Japan
- Graduate School of Pharmaceutical Sciences
| |
Collapse
|