1
|
Zhou H, Lau VM, Love JA. Colorimetric Detection of Sulfur Mustard with 4-( p-Nitrobenzyl)pyridine and Its Derivatives. Anal Chem 2024; 96:8406-8415. [PMID: 38728057 DOI: 10.1021/acs.analchem.3c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In this study, we present a simple, highly sensitive, and selective colorimetric method for detecting sulfur mustard (SM) and its simulants. This method relies on a nucleophilic substitution reaction between derivatives of 4-(p-nitrobenzyl)pyridine (NBP) and SM and subsequent treatment with an external base, resulting in a visible response. This reaction exhibits an impressively low detection threshold by the naked eye, as low as 10 ppm at room temperature. In contrast to the conventional use of NBP for detecting other alkylating agents, such as nitrogen mustard, our approach eliminates the need for prolonged heating or intricate extraction processes. Both computational and experimental investigations underscore the significance of water within our detection medium as it stabilizes crucial episulfonium cation intermediates. Furthermore, we demonstrate the practical applicability of this sensor by incorporating it onto cellulose and silica surfaces, which may provide guidance for the design and development of solid-state SM detectors.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Vivian M Lau
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, Alberta T1A 8K6, Canada
| | - Jennifer A Love
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
2
|
Liu S, Guo Y, Jiang Y, Gong Y, Hu Q, Yu L. Single-Chain Conjugated Polymer Guests Confined inside Metal-Organic Frameworks (MOFs): Boosting the Detection and Degradation of a Sulfur Mustard Simulant. Anal Chem 2024. [PMID: 38301156 DOI: 10.1021/acs.analchem.3c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Real-time detection and effective degradation of toxic gases have attracted considerable attention in environmental monitoring and human health. Here, we demonstrate a solvent-assisted dynamic assembly strategy to strongly enhance the detection and degradation performance for 2-chloroethyl ethyl sulfide (CEES, as a sulfur mustard simulant) via confinement of a conjugated polymer in metal-organic frameworks (MOFs). The conjugated polymer poly(9,9-di-n-octylfluorene-altbenzothiadiazole) (F8BT) is infiltrated into one-dimensional nanochannels of the Zr-based topological MOF NU-1000 in a single-chain manner, which is caused by the nanoconfinement effect and the steric hindrance between 9,9-dioctylfluorene units and benzothiadiazole units. The obtained F8BT⊂NU-1000 composites provide a high specific surface area and abundant active sites. Based on the cooperative effect of F8BT and NU-1000, rapid and sensitive detection of CEES has been achieved. Moreover, the F8BT⊂NU-1000 composites can selectively oxidize CEES into 2-chloroethyl ethyl sulfoxide (CEESO) under mild photooxidation conditions. Overall, this study opens a new avenue for the fabrication of conjugated polymer/MOF hybrid materials that show great potential for the sensitive detection and effective removal of hazardous chemicals.
Collapse
Affiliation(s)
- Shuya Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Yongxian Guo
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yanjun Gong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qiongzheng Hu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Hu X, Ke Y, Ye H, Zhu B, Rodrigues J, Sheng R. Toward public security monitoring: A perspective of optical molecular probes for phosgene and mustard gas detection. DYES AND PIGMENTS 2023; 216:111379. [DOI: https:/doi.org/10.1016/j.dyepig.2023.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
4
|
Liu S, Qian YS, Xu JL, Xu L, Xu YH. Copper-Catalyzed Regio- and Stereoselective Three-Component Coupling of Allenyl Ethers with gem-Dichlorocyclobutenones and B 2pin 2. Org Lett 2023. [PMID: 37289963 DOI: 10.1021/acs.orglett.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The three-component coupling method for regio- and stereoselective difunctionalization of allenes with allenyl ethers, bis(pinacolato)diboron, and gem-dichlorocyclobutenones as electrophiles was reported, yielding a variety of highly functionalized cyclobutenone products tethering with an alkenylborate fragment. The polysubstituted cyclobutenone products also underwent diverse transformations.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi-Sen Qian
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian-Lin Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Meng WQ, Sedgwick AC, Kwon N, Sun M, Xiao K, He XP, Anslyn EV, James TD, Yoon J. Fluorescent probes for the detection of chemical warfare agents. Chem Soc Rev 2023; 52:601-662. [PMID: 36149439 DOI: 10.1039/d2cs00650b] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.
Collapse
Affiliation(s)
- Wen-Qi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
6
|
Kumar V, Kim H, Pandey B, James TD, Yoon J, Anslyn EV. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem Soc Rev 2023; 52:663-704. [PMID: 36546880 DOI: 10.1039/d2cs00651k] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs. Fluorescent and colorimetric chemosensors are attractive tools that allow the selective, sensitive, cheap, portable, and real-time analysis of the potential presence of CWAs, where suitable combinations of selective recognition and transduction can be integrated. In this review, we provide a detailed discussion on recently reported molecular sensors with a specific focus on the sensing of each class of CWAs such as nerve agents, blister agents, blood agents, and other toxicants. We will also discuss the current technology used by military forces, and these discussions will include the type of instrumentation and established protocols. Finally, we will conclude this review with our outlook on the limitations and challenges in the area and summarize the potential of promising avenues for this field.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Bipin Pandey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| |
Collapse
|
7
|
Feng W, Liu XJ, Xue MJ, Song QH. Bifunctional Fluorescent Probes for the Detection of Mustard Gas and Phosgene. Anal Chem 2023; 95:1755-1763. [PMID: 36596643 DOI: 10.1021/acs.analchem.2c05178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mustard gas [sulfur mustard (SM)] and phosgene are the most frequently used chemical warfare agents (CWAs), which pose a serious threat to human health and national security, and their rapid and accurate detection is essential to respond to terrorist attacks and industrial accidents. Herein, we developed a fluorescent probe with o-hydroxythioketone as two sensing sites, AQso, which can detect and distinguish mustard gas and phosgene. The dual-sensing-site probe AQso reacts with mustard gas to form a cyclic product with high sensitivity [limit of detection (LOD) = 70 nM] and is highly selective to SM over phosgene, SM analogues, active alkylhalides, acylhalides, and nerve agent mimics, in ethanol solutions. When encountering phosgene, AQso rapidly converts to cyclic carbonate, which is sensitive (LOD = 14 nM) and highly selective. Their sensing mechanisms of AQso to mustard gas and phosgene were well demonstrated by separation and characterization of the sensing products. Furthermore, a facile test strip with the probe was prepared to distinguish 2-chloroethyl ethyl sulfide (CEES) and phosgene in the gas phase by different fluorescence colors and response rates. Not using the complicated instrument, the qualitative and quantitative detection of CEES or phosgene can be achieved only by measuring the red-green-blue (RGB) channel intensity of the test strip after being exposed to CEES or phosgene gas by the smartphone with an RGB color application.
Collapse
Affiliation(s)
- Wei Feng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Jun Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Min-Jie Xue
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
8
|
Grabka M, Witkiewicz Z, Jasek K, Piwowarski K. Acoustic Wave Sensors for Detection of Blister Chemical Warfare Agents and Their Simulants. SENSORS 2022; 22:s22155607. [PMID: 35957163 PMCID: PMC9371173 DOI: 10.3390/s22155607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
On-site detection and initial identification of chemical warfare agents (CWAs) remain difficult despite the many available devices designed for this type of analysis. Devices using well-established analytical techniques such as ion mobility spectrometry, gas chromatography coupled with mass spectrometry, or flame photometry, in addition to unquestionable advantages, also have some limitations (complexity, high unit cost, lack of selectivity). One of the emerging techniques of CWA detection is based on acoustic wave sensors, among which surface acoustic wave (SAW) devices and quartz crystal microbalances (QCM) are of particular importance. These devices allow for the construction of undemanding and affordable gas sensors whose selectivity, sensitivity, and other metrological parameters can be tailored by application of particular coating material. This review article presents the current state of knowledge and achievements in the field of SAW and QCM-based gas sensors used for the detection of blister agents as well as simulants of these substances. The scope of the review covers the detection of blister agents and their simulants only, as in the available literature no similar paper was found, in contrast to the detection of nerve agents. The article includes description of the principles of operation of acoustic wave sensors, a critical review of individual studies and solutions, and discusses development prospects of this analytical technique in the field of blister agent detection.
Collapse
|
9
|
Zheng P, Cao W, Zhang Y, Li F, Zhang M. Ultrafast Sulfur Mustard Simulant Gas Fluorescent Chemosensors Based on Triazole AIEE Material with High Selectivity and Sensitivity at Room Temperature. ACS Sens 2022; 7:1946-1957. [PMID: 35819023 DOI: 10.1021/acssensors.2c00708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, a novel blue aggregation-induced enhanced emission (AIEE) material 4-N-(naphthalen-l-yl)-3,5-bis(4-N-phenyl-1-naphthylamine)phenyl-4H-1,2,4-triazole (NDTAZ) is developed and used as a fluorescent chemosensor for sulfur mustard (SM) simulant 2-chloroethyl ethyl sulfide (2-CEES) vapor. The NDTAZ chemosensor is designed by introducing an electron-donating N-phenyl-1-naphthylamine group at 3 and 5 position of 4H-1,2,4-triazole (TAZ) to enhance the nucleophilicity of the TAZ group, and a naphthalene ring is connected to 4 position of the TAZ group to construct an AIEE molecule. The NDTAZ films show extraordinary stability and then are further used as reliable and portable fluorescent chemosensors. Upon exposure to 2-CEES vapor, the NDTAZ chemosensor exhibits an instantaneous fluorescence response (not more than 1 s). What should be noted is that this fluorescent chemosensor realizes the visualized detection of fluorescent color change from blue to green at "room temperature", which is rarely reported. The limit of detection is estimated to be 0.55 ppm, which is below the AEGL-1 (0.6 ppm for 1 min) safety ceiling level to SM exposure. Moreover, the NDTAZ chemosensor shows high selectivity toward 2-CEES vapor over closely related substances, including alkylating agents, aryl halide compounds, sulphur-containing compounds, and nerve agent mimics. More impressively, the NDTAZ chemosensor demonstrates good recyclability by water treatment. Also, the sensing mechanism is adequately proved by using multiple experimental methods and theoretical calculation. In addition, the NDTAZ-based facile filter paper-constructed test strips are fabricated for real-time and on-spot detection of leaked 2-CEES gas specifically. Therefore, this fluorescent chemosensor with excellent sensing performance greatly advances the practical detection of SM species at room temperature.
Collapse
Affiliation(s)
- Ping Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenjuan Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yimeng Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Zhu B, Sheng R, Chen T, Rodrigues J, Song QH, Hu X, Zeng L. Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: https://doi.org/10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Ma X, Lv M, Du F, Wu C, Lou B, Zeid AM, Xu G. Dimeric G-Quadruplex: An Efficient Probe for Ultrasensitive Fluorescence Detection of Mustard Compounds. Anal Chem 2022; 94:4112-4118. [PMID: 35196002 DOI: 10.1021/acs.analchem.2c00124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Some mustard compounds (mustards) are highly toxic chemical warfare agents. Some are explored as new anticancer drugs. Therefore, the fast, selective, and sensitive detection of mustards is extremely important for public security and cancer therapy. Mustards mostly target the N7 position on the guanine bases of DNA. The guanine-rich G-quadruplex DNA (G4) has been widely studied in the sensing area, and it was found that dimeric G4 (D-G4) could dramatically light up the fluorescence intensity of thioflavin T (ThT). Based on this, we used for the first time the D-G4 DNA as a selective probe for ultrasensitive fluorescence detection of nitrogen mustard (NM). When NM occupies the N7 on guanine, it can block the formation of the D-G4 structure due to the steric hindrance, and hence, it inhibits the combination of D-G4 with ThT, leading to a sharp decrease of fluorescence intensity. The proposed reaction mechanism is proved using ultraviolet-visible (UV-Vis) spectra, circular dichroism (CD) spectra, and polyacrylamide gel electrophoresis. Herein, the concentration of D-G4/ThT used is as low as 50 nM due to its highly fluorescent performance, enabling both high sensitivity and low cost. NM can be detected with a wide linear range from 10 to 2000 nM. The detection limit of NM reaches a surprisingly low concentration of 6 nM, which is 2 or 3 orders of magnitude lower than that of previously developed fluorescence methods for mustards and simulants.
Collapse
Affiliation(s)
- Xiangui Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Mengmeng Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Cunqi Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
13
|
Xue MJ, Wei XZ, Feng W, Xing ZF, Liu SL, Song QH. Sensitive and selective detections of mustard gas and its analogues by 4-mercaptocoumarins as fluorescent chemosensors in both solutions and gas phase. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125789. [PMID: 33894438 DOI: 10.1016/j.jhazmat.2021.125789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Mustard gas has been used as a chemical warfare agent for a century, and is the most likely chemical weapon used in wars or by terrorists. Thus, it is important to develop a facile, rapid and highly selective method for the detection of mustard gas. In this paper, two fluorescent probe molecules, 4-mercaptocoumarins, have been developed for rapid and sensitive detections of SM and its analogues (CEES and NH1) in both solutions and gas phase. The sensing reaction is a nucleophilic addition at three-membered hetercyclic sulfonium/ammonium formed from SM, CEES/NH1 in ethanol. Two fluorescent probes (4-mercaptocoumarins, ArSH) in ethanol deprotonate to form thiophenol anions (ArS-) resulting from their low pKa values (3.2-3.4), and the nucleophilic addition of the anion ArS- generates the corresponding thioethers, giving a turn-on fluorescence response. The thiophenol anion can fast sense SM, CEES and NH1 (within 1-4 min) with high sensitivity (~nM level) at 60 °C, and high selectivity through adding a tertiary amine, and two probes exhibit excellent chemical and photostability in detection systems. Furthermore, a facile test strip with the sensor was fabricated for the detection of CEES vapor with rapid response (3 min), high sensitivity (9 ppb) and high selectivity.
Collapse
Affiliation(s)
- Min-Jie Xue
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiu-Zhi Wei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Wei Feng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Zhong-Fang Xing
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, PR China
| | - Shi-Lei Liu
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, PR China
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
14
|
Kumar V. Design and development of a prototype for specific naked-eye detection of blister and nerve agents. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2248-2255. [PMID: 33955978 DOI: 10.1039/d1ay00449b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In view of the strong need to strengthen the national security arising from chemical terrorism, a rapid, specific, and onsite detection of chemical warfare agents (CWAs) employing a simple and easy-to-use kit is of utmost importance. Constant and sincere efforts are being carried out by the scientific community to find reliable techniques/methods for early warning detection. Herein, we designed a prototype technique in the form of a smart and portable chemical weapon detection kit (CWDK) to facilitate rapid and onsite detection. In this portable kit, a range of unique chemical probes were condensed to achieve the specific chromogenic and fluorogenic detection and discrimination of each member of blister and nerve agents. The embodiment of three chemical probes (Fc, SQ, and LH2) was eventually employed in a compact and flexible plastic packaging for detecting the presence of CWAs with the 'naked-eye' in the areas where laboratory services do not normally exist. The CWDK contains dye/reagent vials, sampling assembly, and a UV torch. The convenience and practicality of this technique suggest a great prospect for highly specific sensing of the complete class of CWAs with fast and accurate results in real-time scenarios with a sensitivity much below their lethal dose.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
15
|
Feng W, Li H, Xue MJ, Zhang QL, Liu SL, Song QH. Quinoline-2-thione-based fluorescent probes for selective and sensitive detections of mustard gas and its analogues. Anal Chim Acta 2021; 1159:338440. [PMID: 33867036 DOI: 10.1016/j.aca.2021.338440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/07/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Sulfur mustard (SM, also called as mustard gas (HD)) is a persistent and highly toxic gas used as chemical weapon in wars and military conflicts. Moreover, owing to its simple structure and easy synthesis, it is the most likely chemical agent used by terrorists. For this reason, it is vital important to develop a facile, rapid and reliable detection system for SM. In this paper, we have developed four quinoline-2-thiones as fluorescent probes, 2a-2d, for the detection of SM and its analogues, half sulfur mustard (CEES) and a nitrogen mustard NH1. In the presence of KOH, these quinoline-2-thiones deprotonated to quinoline-2-thiophenol anions, which react with SM and its analogues rapidly to form quinoline-2-thiethers with highly efficient fluorescence, giving turn-on fluorescence response. The sensing products with CEES were isolated and fully characterized, thereby, the sensing mechanism was firmly established. The fluorescent probes with 4-trifluoromethyl group, 2b and 2d, exhibit rapid response to SM, CEES and NH1 (within 1 min at 60 °C for CEES and NH1), high sensitivity (limit of detection, 50 nM for SM and 20 nM for NH1) and high selectivity. Furthermore, polymer film test strips were fabricated with probe-embedded poly(ethylene oxide) for the detection of CEES vapor. These test strips displayed a rapid response (<4 min) to gaseous CEES with high sensitivity (0.2 ppm) and high selectivity. These results show that fluorescent probes 2b and 2d have a good application prospect in the field detection of mustard gas.
Collapse
Affiliation(s)
- Wei Feng
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Hao Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Min-Jie Xue
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qiao-Li Zhang
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, PR China
| | - Shi-Lei Liu
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, PR China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
16
|
Jabbour CR, Parker LA, Hutter EM, Weckhuysen BM. Chemical targets to deactivate biological and chemical toxins using surfaces and fabrics. Nat Rev Chem 2021; 5:370-387. [PMID: 33969223 PMCID: PMC8097677 DOI: 10.1038/s41570-021-00275-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/03/2023]
Abstract
The most recent global health and economic crisis caused by the SARS-CoV-2 outbreak has shown us that it is vital to be prepared for the next global threat, be it caused by pollutants, chemical toxins or biohazards. Therefore, we need to develop environments in which infectious diseases and dangerous chemicals cannot be spread or misused so easily. Especially, those who put themselves in situations of most exposure - doctors, nurses and those protecting and caring for the safety of others - should be adequately protected. In this Review, we explore how the development of coatings for surfaces and functionalized fabrics can help to accelerate the inactivation of biological and chemical toxins. We start by looking at recent advancements in the use of metal and metal-oxide-based catalysts for the inactivation of pathogenic threats, with a focus on identifying specific chemical bonds that can be targeted. We then discuss the use of metal-organic frameworks on textiles for the capture and degradation of various chemical warfare agents and their simulants, their long-term efficacy and the challenges they face.
Collapse
Affiliation(s)
- Christia R. Jabbour
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Luke A. Parker
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eline M. Hutter
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Kumar V. Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation. Chem Commun (Camb) 2021; 57:3430-3444. [PMID: 33725077 DOI: 10.1039/d1cc00132a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The existence of chemical weapons (blister and nerve agents) is an unfortunate reality of the modern world. The usage of these chemical agents by rogue states or terrorist groups has showcased their ugly faces in the past and even in recent years. Despite extensive and strenuous efforts by the Organization for the Prohibition of Chemical Weapons (OPCW) to eliminate chemical warfare agents (CWAs) by the prohibition of their production and the destruction of their stockpiles, many countries still possess them in enormous quantities. Given the potential threat from these lethal agents, it is imperative to have a foolproof chemical sensor and detection system, which should consist of readily deployable chemical probes that can operate with high specificity and sensitivity. Over the last decade, our group has been engaged in designing and developing novel field-deployable sensing techniques by exploring approaches based on supramolecular tools, which can result in excellent specificity, sensitivity, high speed, portability and low cost. In this article, I describe our group's journey and success stories in the development of chemical warfare detection protocols, detailing the range of unique chemical probes and methods explored to achieve the specific detection of individual agents under real environmental conditions. It is interesting to note that the combination of three molecular probes (SQ, Fc and LH2) could simply achieve the detection of all CWAs at room temperature in one go without the need for nonportable and expensive instruments. The ease and generality of these techniques/methods suggest great promise for the highly specific chemical sensing of almost the entire class of CWAs. In this paper, a brief introduction is first provided to present the basic chemistry related to CWAs and the importance of supramolecular chemistry in the design of new protocols with new insights. The manipulation of molecular probes is then debated towards the development of a system for the chromo-fluorogenic sensing of CWAs without interference from most relevant analytes. Finally, the outlook of open challenges and the future developments of this rapidly evolving field is discussed.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
18
|
Abuzalat O, Homayoonnia S, Wong D, Tantawy HR, Kim S. Facile and rapid synthesis of functionalized Zr-BTC for the optical detection of the blistering agent simulant 2-chloroethyl ethyl sulfide (CEES). Dalton Trans 2021; 50:3261-3268. [PMID: 33586726 DOI: 10.1039/d0dt04382f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Chloroethyl ethyl sulfide (CEES) is a simulant for the chemical warfare agent, bis(2-chloroethyl) sulfide, also known as mustard gas. Here, we demonstrate a facile and rapid method to synthesize a functionalized metal-organic framework (MOF) material for the detection of CEES at trace level. During the synthesis of Zr-BTC, the in situ encapsulation of a fluorescent material (fluorescein) into Zr-BTC voids is performed by a simple solvothermal reaction. The produced F@Zr-BTC is used as a fluorescent probe for CEES detection. The synthesized material shows fluorescence quenching under illumination at an excitation wavelength of 470 nm when F@Zr-BTC is exposed to CEES. This sensing material shows the highest fluorescence quenching at an emission wavelength of 534 nm with a CEES concentration as low as 50 ppb. Therefore, the demonstrated sensing method with F@Zr-BTC is a fast and convenient protocol for the selective and sensitive detection of CEES in practical applications.
Collapse
Affiliation(s)
- Osama Abuzalat
- Department of Chemical Engineering, Military Technical College, Cairo, Egypt.
| | - Setareh Homayoonnia
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Danny Wong
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Hesham R Tantawy
- Department of Chemical Engineering, Military Technical College, Cairo, Egypt.
| | - Seonghwan Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
19
|
Li D, Xi H, Han S, Zhao S. A turn-on fluorescent probe based on N-(rhodamine-B)-thiolactam-2- n-butane with ionic liquids for selective and sensitive detection of mustard gas stimulant. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:484-490. [PMID: 33427830 DOI: 10.1039/d0ay02248a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulfur mustard (SM) is recognized as one of the most lethal warfare agents. It has the potential to seriously affect public health and safety. To employ appropriate medical countermeasures and treat victims as quickly as possible, the development of a rapid and simple SM detection technique is crucial. The aim of the present study was to explore novel detection systems exhibiting excellent selectivity and high sensitivity. An SM probe, namely N-(rhodamine-B)-thiolactam-2-n-butane (SRB-NB), which was based on a thiolactam structure, was effectively designed and synthesized. The rhodamine and thiourea moieties played the roles of the chromogenic and reacting groups, respectively. Subsequently, using ionic liquids (ILs) as the solvents, a turn-on fluorescence detection system was constructed. Notably, it was found that imidazole-based ILs displayed good solubility for an SM simulant, specifically 2-chloroethyl ethyl sulfide (2-CEES). Moreover, 1-butyl-3-methylimidazolium dicyandiamide ([BMIm]DCA) IL held the maximum amount of 2-CEES (132.5 g/100 g). The SRB-NB probe exhibited better ultraviolet (UV) absorption and fluorescence properties in ILs than in other organic solvents. SRB-NB/IL was able to detect 2-CEES in liquid form with remarkable selectivity and sensitivity. The limit of detection (LOD) was established at 3.0 × 10-6 M. Importantly, SRB-NB/ILs also showed good optical response to gaseous 2-CEES and SM.
Collapse
Affiliation(s)
- Daxue Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Shitong Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
20
|
Cui L, Gong Y, Cheng C, Guo Y, Xiong W, Ji H, Jiang L, Zhao J, Che Y. Highly Photostable and Luminescent Donor-Acceptor Molecules for Ultrasensitive Detection of Sulfur Mustard. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002615. [PMID: 33643792 PMCID: PMC7887598 DOI: 10.1002/advs.202002615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Indexed: 05/05/2023]
Abstract
Real-time, high signal intensity, and prolonged detection is challenging because of the rarity of fluorophores with both high photostability and luminescence efficiency. In this work, new donor-acceptor (D-A) molecules for overcoming these limitations are reported. A hybridized local and an intramolecular charge-transfer excited state is demonstrated to afford high photoluminescence efficiency of these D-A molecules in solution (≈100%). The twisted molecular structure and bulky alkyl chains effectively suppress π-π and dipole-dipole interactions, enabling high luminescence efficiency of 1 and 2 in the solid state (≈94% and 100%). Furthermore, two D-A aggregates exhibit high photostability as evidenced by 4% and 8% of the fluorescence decreasing after 6 h of continuous irradiation in air, which is in sharp contrast to ≈95% of fluorescence decreasing in a reference compound. Importantly, with these molecules, ultrasensitive detection of sulfur mustard (SM) with a record limit of 10 ppb and selective detection of SM in complex matrices are achieved.
Collapse
Affiliation(s)
- Linfeng Cui
- Beijing National Laboratory for Molecular SciencesKey Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yanjun Gong
- Key Laboratory of Colloid and Interface Chemistry Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Chuanqin Cheng
- Beijing National Laboratory for Molecular SciencesKey Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yongxian Guo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wei Xiong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Hongwei Ji
- Beijing National Laboratory for Molecular SciencesKey Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yanke Che
- Beijing National Laboratory for Molecular SciencesKey Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
21
|
Singh VV, Kumar V, Biswas U, Boopathi M, Ganesan K, Gupta AK. Luminol-Based Turn-On Fluorescent Sensor for Selective and Sensitive Detection of Sulfur Mustard at Ambient Temperature. Anal Chem 2021; 93:1193-1199. [PMID: 33289388 DOI: 10.1021/acs.analchem.0c04464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have explored a novel turn-on fluorescence detection of sulfur mustard (SM) at "room temperature". The innovative protocol that uses the combination of luminol and an ionic liquid in water exhibits fluorescence detection of SM within seconds. In this simple, fast, and low-cost chemosensing method, luminol acts as the receptor as well as a signaling element, and the ionic liquid (1-ethyl-3-methylimidazolium dicyanamide) provides the requisite and polarizing medium to realize the detection at "room temperature". Interestingly, with a higher concentration of a probe (0.56 mM), SM sensing can be visualized with the naked eye, leading to the formation of a fluorescent green color within a minute, thus expanding the application of the developed sensing technique for chromo-fluorogenic detection of SM. Excellent selectivity, sensitivity (LOD: 6 ppm), and chemosensing at ambient temperature make this methodology completely field-deployable.
Collapse
Affiliation(s)
- Virendra V Singh
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Vinod Kumar
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Utpal Biswas
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Mannan Boopathi
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Kumaran Ganesan
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Arvind K Gupta
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
22
|
Detection Papers with Chromogenic Chemosensors for Direct Visual Detection and Distinction of Liquid Chemical Warfare Agents. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work provides a summary of our results in the area of the experimental development of detection paper for the detection of liquid phase chemical warfare agents (drops, aerosol), the presence of which is demonstrated by the development of characteristic coloring visible to the naked eye. The basis of the detection paper is a cellulose carrier saturated with the dithienobenzotropone monomer (RM1a)–chromogenic chemosensor sensitive to nerve agents of the G type, blister agent lewisite, or choking agent diphosgene. We achieve a higher coloring brilliance and the limit certain interferences by using this chemosensor in the mix of the o-phenylendiamine-pyronine (PY-OPD). We prove that the addition of the Bromocresol Green pH indicator even enables detection of nerve agents of the V type, or, nitrogen mustards, while keeping a high stability of the detection paper and its functions for other chemical warfare agents. We resolve the resistance against the undesirable influence of water by providing a hydrophobic treatment of the carrier surface.
Collapse
|
23
|
Qiu C, Liu X, Cheng C, Gong Y, Xiong W, Guo Y, Wang C, Zhao J, Che Y. Ultrasensitive Detection of Sulfur Mustard via Differential Noncovalent Interactions. Anal Chem 2019; 91:6408-6412. [PMID: 31035744 DOI: 10.1021/acs.analchem.9b00709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this work, we fabricate two types of hierarchical microspheres, i.e., one coassembled from two fluorene-based oligomers (1 and 2) and one self-assembled from a fluorene-based oligomer (1), for ultrasensitive and selective detection of trace sulfur mustard (SM) vapor. On the basis of distinct fluorescence responses of 1-2 coassembled and individual 1 hierarchical microspheres that originate from differential noncovalent interactions between analytes and these sensors, SM vapor can be ultrasensitively detected (30 ppb) and easily discriminated from various sulfides and other potential interferents. Our work that utilizes differential noncovalent interactions to give sensitive and selective fluorescence response patterns represents a new detection approach for SM and other hazardous chemicals.
Collapse
Affiliation(s)
- Changkun Qiu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoling Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chuanqin Cheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Xiong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongxian Guo
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chen Wang
- HT-NOVA Company, Ltd. , Zhuyuan Road , Shunyi District, Beijing 101312 , China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
24
|
A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosens Bioelectron 2019; 129:15-23. [DOI: 10.1016/j.bios.2019.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/30/2018] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
|
25
|
Xiong W, Gong Y, Che Y, Zhao J. Sensitive Discrimination of Nerve Agent and Sulfur Mustard Simulants Using Fluorescent Coassembled Nanofibers with Förster Resonance Energy Transfer-Enhanced Photostability and Emission. Anal Chem 2019; 91:1711-1714. [DOI: 10.1021/acs.analchem.8b05225] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wei Xiong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Wang H, Guan J, Han X, Chen SW, Li T, Zhang Y, Yuan MS, Wang J. Benzothiazole modified rhodol as chemodosimeter for the detection of sulfur mustard simulant. Talanta 2018; 189:39-44. [DOI: 10.1016/j.talanta.2018.06.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 01/17/2023]
|
27
|
Hou Y, An H, Zhang Y, Hu T, Yang W, Chang S. Rapid Destruction of Two Types of Chemical Warfare Agent Simulants by Hybrid Polyoxomolybdates Modified by Carboxylic Acid Ligands. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00972] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yujiao Hou
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Haiyan An
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Yumeng Zhang
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Tao Hu
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Wei Yang
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Shenzhen Chang
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| |
Collapse
|
28
|
Weetman C, Notman S, Arnold PL. Destruction of chemical warfare agent simulants by air and moisture stable metal NHC complexes. Dalton Trans 2018; 47:2568-2574. [PMID: 29384545 DOI: 10.1039/c7dt04805j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cooperative effect of both NHC and metal centre has been found to destroy chemical warfare agent (CWA) simulants. Choice of both the metal and NHC is key to these transformations as simple, monodentate N-heterocyclic carbenes in combination with silver or vanadium can promote stoichiometric destruction, whilst bidentate, aryloxide-tethered NHC complexes of silver and alkali metals promote breakdown under mild heating. Iron-NHC complexes generated in situ are competent catalysts for the destruction of each of the three targetted CWA simulants.
Collapse
Affiliation(s)
- Catherine Weetman
- EaStCHEM School of Chemistry, The University of Edinburgh, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | | | | |
Collapse
|
29
|
Zhang Y, Lv Y, Wang X, Peng A, Zhang K, Jie X, Huang J, Tian Z. A Turn-On Fluorescent Probe for Detection of Sub-ppm Levels of a Sulfur Mustard Simulant with High Selectivity. Anal Chem 2018. [DOI: 10.1021/acs.analchem.8b01057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Kumar V, Rana H, Raviraju G, Gupta AK. Chemodosimeter for Selective and Sensitive Chromogenic and Fluorogenic Detection of Mustard Gas for Real Time Analysis. Anal Chem 2018; 90:1417-1422. [DOI: 10.1021/acs.analchem.7b04882] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vinod Kumar
- Process and Technology Development
Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Hemlata Rana
- Process and Technology Development
Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - G. Raviraju
- Process and Technology Development
Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Arvind K. Gupta
- Process and Technology Development
Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
31
|
Squaraine dyes: The hierarchical synthesis and its application in optical detection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.03.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Xiong L, Ma J, Huang Y, Wang Z, Lu Z. Highly Sensitive Squaraine-Based Water-Soluble Far-Red/Near-Infrared Chromofluorogenic Thiophenol Probe. ACS Sens 2017; 2:599-605. [PMID: 28723193 DOI: 10.1021/acssensors.7b00151] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A squaraine-based far-red/near-infrared fluorescent probe (SQ-DNBS) was exploited for thiophenol detection. SQ-DNBS is a colorimetric and "off-on" fluorometric dual-channel "naked-eye" chemosensor showing high selectivity, high sensitivity (detection limit: 9.9 nM), and rapid response to thiophenol in aqueous solution. SQ-DNBS also can be used in practical applications for the detection of thiophenol in water samples. Photophysical and spectral characterization results revealed that the probing mechanism of SQ-DNBS toward thiophenol lies in the thiolate-mediated cleavage reaction. Our discovery demonstrates the potential of the arylmethylene-squaraine skeleton as a promising fluorophore unit to construct high-performance far-red/near-infrared chemosensors.
Collapse
Affiliation(s)
- Li Xiong
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jun Ma
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Huang
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zihe Wang
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
33
|
Kumar V, Raviraju G, Rana H, Rao VK, Gupta AK. Highly selective and sensitive chromogenic detection of nerve agents (sarin, tabun and VX): a multianalyte detection approach. Chem Commun (Camb) 2017; 53:12954-12957. [DOI: 10.1039/c7cc07823d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel strategy using ferrocenyl dye (1) was developed for highly selective chromogenic detection of all nerve agents.
Collapse
Affiliation(s)
- Vinod Kumar
- Defence Research & Development Establishment
- Jhansi Road
- Gwalior 474002
- India
| | - G. Raviraju
- Defence Research & Development Establishment
- Jhansi Road
- Gwalior 474002
- India
| | - Hemlata Rana
- Defence Research & Development Establishment
- Jhansi Road
- Gwalior 474002
- India
| | - Vepa Kameswara Rao
- Defence Research & Development Establishment
- Jhansi Road
- Gwalior 474002
- India
| | - Arvind K. Gupta
- Defence Research & Development Establishment
- Jhansi Road
- Gwalior 474002
- India
| |
Collapse
|
34
|
Manna A, Jana K, Guchhait N, Goswami S. Discrimination of tabun mimic diethyl cyanophosphonate from sarin mimic diethyl chlorophosphate via Zn(ii)-triggered photoinduced electron transfer-decoupled excited state intramolecular proton transfer processes. NEW J CHEM 2017. [DOI: 10.1039/c7nj00598a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PET-coupled ESIPT platform and its Zn2+ complex are used for the discrimination of the nerve agent mimics DCNP and DCP.
Collapse
Affiliation(s)
- Abhishek Manna
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
- Department of Chemistry
| | - Kanyashree Jana
- Department of Chemistry
- Indian Institute of Engineering Science and Technology (Formerly Bengal Engineering & Science University)
- Shibpur
- India
| | - Nikhil Guchhait
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| | - Shyamaprosad Goswami
- Department of Chemistry
- Indian Institute of Engineering Science and Technology (Formerly Bengal Engineering & Science University)
- Shibpur
- India
| |
Collapse
|
35
|
Howarth AJ, Buru CT, Liu Y, Ploskonka AM, Hartlieb KJ, McEntee M, Mahle JJ, Buchanan JH, Durke EM, Al-Juaid SS, Stoddart JF, DeCoste JB, Hupp JT, Farha OK. Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal-Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard. Chemistry 2016; 23:214-218. [DOI: 10.1002/chem.201604972] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ashlee J. Howarth
- Department of Chemistry; Northwestern University; 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Cassandra T. Buru
- Department of Chemistry; Northwestern University; 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Yangyang Liu
- Department of Chemistry; Northwestern University; 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Ann M. Ploskonka
- Leidos, Inc., P.O. Box 68; Edgewood Chemical Biological Center; Aberdeen Proving Ground MD 21010 USA
| | - Karel J. Hartlieb
- Department of Chemistry; Northwestern University; 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Monica McEntee
- Edgewood Chemical Biological Center; US Army Research Development, and Engineering Command; 5183 Blackhawk Rd. Aberdeen Proving Ground MD 21010 USA
| | - John J. Mahle
- Edgewood Chemical Biological Center; US Army Research Development, and Engineering Command; 5183 Blackhawk Rd. Aberdeen Proving Ground MD 21010 USA
| | - James H. Buchanan
- Edgewood Chemical Biological Center; US Army Research Development, and Engineering Command; 5183 Blackhawk Rd. Aberdeen Proving Ground MD 21010 USA
| | - Erin M. Durke
- Edgewood Chemical Biological Center; US Army Research Development, and Engineering Command; 5183 Blackhawk Rd. Aberdeen Proving Ground MD 21010 USA
| | - Salih S. Al-Juaid
- Department of Chemistry, Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - J. Fraser Stoddart
- Department of Chemistry; Northwestern University; 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Jared B. DeCoste
- Edgewood Chemical Biological Center; US Army Research Development, and Engineering Command; 5183 Blackhawk Rd. Aberdeen Proving Ground MD 21010 USA
| | - Joseph T. Hupp
- Department of Chemistry; Northwestern University; 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Omar K. Farha
- Department of Chemistry; Northwestern University; 2145 Sheridan Road Evanston IL 60208-3113 USA
- Department of Chemistry, Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|
36
|
Xu J, Takai A, Takeuchi M. Red-Green-Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions. Chemistry 2016; 22:13014-8. [DOI: 10.1002/chem.201602759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jinjia Xu
- Molecular Design & Function Group; National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Science; University of Tsukuba; 1-1-1, Tennoudai Tsukuba Ibaraki 305-8571 Japan
| | - Atsuro Takai
- Molecular Design & Function Group; National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Masayuki Takeuchi
- Molecular Design & Function Group; National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Science; University of Tsukuba; 1-1-1, Tennoudai Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
37
|
Bidmanova S, Steiner MS, Stepan M, Vymazalova K, Gruber MA, Duerkop A, Damborsky J, Prokop Z, Wolfbeis OS. Enzyme-Based Test Strips for Visual or Photographic Detection and Quantitation of Gaseous Sulfur Mustard. Anal Chem 2016; 88:6044-9. [DOI: 10.1021/acs.analchem.6b01272] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarka Bidmanova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Center
for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 65691 Brno, Czech Republic
- Enantis,
spol. s
r.o., Kamenice 34, 62500 Brno, Czech Republic
| | - Mark-Steven Steiner
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Martin Stepan
- Military Research
Institute, Veslarska 230, 63700 Brno, Czech Republic
| | - Kamila Vymazalova
- Military Research
Institute, Veslarska 230, 63700 Brno, Czech Republic
| | - Michael A. Gruber
- Department
of Anesthesiology, University Hospital, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Axel Duerkop
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Center
for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 65691 Brno, Czech Republic
- Enantis,
spol. s
r.o., Kamenice 34, 62500 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and Research Center
for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 65691 Brno, Czech Republic
- Enantis,
spol. s
r.o., Kamenice 34, 62500 Brno, Czech Republic
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
38
|
Abstract
A fluorescent probe showed high selectivity and sensitivity for an organoarsenic blister agent simulant, arsenic trichloride.
Collapse
Affiliation(s)
- Doo-Hee Lee
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Dong-Nam Lee
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jong-In Hong
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
39
|
Kumar V, Rana H, Raviraju G, Garg P, Baghel A, Gupta AK. Chromogenic and fluorogenic multianalyte detection with a tuned receptor: refining selectivity for toxic anions and nerve agents. RSC Adv 2016. [DOI: 10.1039/c6ra07080a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the present study, a chemical probe was finely tuned for the highly selective and sensitive chromogenic and fluorogenic detection of toxic anions and a nerve agent.
Collapse
Affiliation(s)
- Vinod Kumar
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - Hemlata Rana
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - G. Raviraju
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - Prabhat Garg
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - Anuradha Baghel
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - A. K. Gupta
- Defence Research and Development Establishment
- Gwalior 474002
- India
| |
Collapse
|
40
|
Qian S, Leng Y, Lin H. Strong base pre-treatment for colorimetric sensor array detection and identification of N-methyl carbamate pesticides. RSC Adv 2016. [DOI: 10.1039/c5ra25805g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A strategy of strong base pre-treatment was developed and employed to the colorimetric sensor array detection and differentiation of N-methyl carbamate pesticides.
Collapse
Affiliation(s)
- Sihua Qian
- Ningbo Institute of Materials Technology & Engineering (NIMTE)
- Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Yumin Leng
- Ningbo Institute of Materials Technology & Engineering (NIMTE)
- Chinese Academy of Sciences
- Ningbo 315201
- China
- College of Physics and Electronic Engineering
| | - Hengwei Lin
- Ningbo Institute of Materials Technology & Engineering (NIMTE)
- Chinese Academy of Sciences
- Ningbo 315201
- China
| |
Collapse
|
41
|
Liu Y, Moon SY, Hupp JT, Farha OK. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. ACS NANO 2015; 9:12358-64. [PMID: 26482030 DOI: 10.1021/acsnano.5b05660] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Su-Young Moon
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Faculty of Science, King Abdulaziz University , Jeddah 22254, Saudi Arabia
| |
Collapse
|
42
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
43
|
Liu Y, Howarth AJ, Hupp JT, Farha OK. Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal-Organic Framework. Angew Chem Int Ed Engl 2015; 54:9001-5. [DOI: 10.1002/anie.201503741] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 11/09/2022]
|
44
|
Liu Y, Howarth AJ, Hupp JT, Farha OK. Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal-Organic Framework. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503741] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Qian S, Lin H. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Anal Chem 2015; 87:5395-400. [PMID: 25913282 DOI: 10.1021/acs.analchem.5b00738] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to relatively low persistence and high effectiveness for insect and pest eradication, organophosphates (OPs) and carbamates are the two major classes of pesticides that broadly used in agriculture. Hence, the sensitive and selective detection of OPs and carbamates is highly significant. In this current study, a colorimetric sensor array comprising five inexpensive and commercially available thiocholine and H2O2 sensitive indicators for the simultaneous detection and identification of OPs and carbamates is developed. The sensing mechanism of this array is based on the irreversible inhibition capability of OPs and carbamates to the activity of acetylcholinesterase (AChE), preventing production of thiocholine and H2O2 from S-acetylthiocholine and acetylcholine and thus resulting in decreased or no color reactions to thiocholine and H2O2 sensitive indicators. Through recognition patterns and standard statistical methods (i.e., hierarchical clustering analysis and principal component analysis), the as-developed array demonstrates not only discrimination of OPs and carbamates from other kinds of pesticides but, more interestingly, identification of them exactly from each other. Moreover, this array is experimentally confirmed to have high selectivity and sensitivity, good anti-interference capability, and potential applications in real samples for OPs and carbamates.
Collapse
Affiliation(s)
- Sihua Qian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Hengwei Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
46
|
A choline oxidase amperometric bioassay for the detection of mustard agents based on screen-printed electrodes modified with Prussian Blue nanoparticles. SENSORS 2015; 15:4353-67. [PMID: 25688587 PMCID: PMC4367415 DOI: 10.3390/s150204353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022]
Abstract
In this work a novel bioassay for mustard agent detection was proposed. The bioassay is based on the capability of these compounds to inhibit the enzyme choline oxidase. The enzymatic activity, which is correlated to the mustard agents, was electrochemically monitored measuring the enzymatic product, hydrogen peroxide, by means of a screen-printed electrode modified with Prussian Blue nanoparticles. Prussian Blue nanoparticles are able to electrocatalyse the hydrogen peroxide concentration reduction at low applied potential (-50 mV vs. Ag/AgCl), thus allowing the detection of the mustard agents with no electrochemical interferences. The suitability of this novel bioassay was tested with the nitrogen mustard simulant bis(2-chloroethyl)amine and the sulfur mustard simulants 2-chloroethyl ethyl sulfide and 2-chloroethyl phenyl sulfide. The bioassay proposed in this work allowed the detection of mustard agent simulants with good sensitivity and fast response, which are excellent premises for the development of a miniaturised sensor well suited for an alarm system in case of terrorist attacks.
Collapse
|
47
|
Zhou X, Lee S, Xu Z, Yoon J. Recent Progress on the Development of Chemosensors for Gases. Chem Rev 2015; 115:7944-8000. [PMID: 25651137 DOI: 10.1021/cr500567r] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xin Zhou
- †Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Republic of Korea.,‡Research Center for Chemical Biology, Department of Chemistry, Yanbian University, Yanjii 133002, People's Republic of China
| | - Songyi Lee
- †Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Zhaochao Xu
- §Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Shahekou, Dalian, Liaoning, People's Republic of China
| | - Juyoung Yoon
- †Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
48
|
Kumar V, Rana H. Selective and sensitive chromogenic and fluorogenic detection of sulfur mustard in organic, aqueous and gaseous medium. RSC Adv 2015. [DOI: 10.1039/c5ra18641b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A chromogenic and fluorogenic system based on a squaraine dye (SQ) was used for the highly selective and sensitive detection of the chemical warfare agent sulfur mustard.
Collapse
Affiliation(s)
- Vinod Kumar
- Synthetic Chemistry Division
- Defence Research & Development Establishment
- Gwalior 474002
- India
| | - Hemlata Rana
- Synthetic Chemistry Division
- Defence Research & Development Establishment
- Gwalior 474002
- India
| |
Collapse
|
49
|
Kumar V, Rana H. Chromogenic and fluorogenic detection and discrimination of nerve agents Tabun and Vx. Chem Commun (Camb) 2015; 51:16490-3. [DOI: 10.1039/c5cc06580a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chromogenic and fluorogenic detection and discrimination of nerve agents Tabun and Vx are presented.
Collapse
Affiliation(s)
- Vinod Kumar
- Synthetic Chemistry Division
- Defence Research & Development Establishment
- Gwalior 474002
- India
| | - Hemlata Rana
- Synthetic Chemistry Division
- Defence Research & Development Establishment
- Gwalior 474002
- India
| |
Collapse
|
50
|
Raghavender Goud D, Purohit AK, Tak V, Dubey DK, Kumar P, Pardasani D. A highly selective and sensitive “turn-on” fluorescence chemodosimeter for the detection of mustard gas. Chem Commun (Camb) 2014; 50:12363-6. [DOI: 10.1039/c4cc04801f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|