1
|
Wang G, Nowakowski P, Farahmand Bafi N, Midtvedt B, Schmidt F, Callegari A, Verre R, Käll M, Dietrich S, Kondrat S, Volpe G. Nanoalignment by critical Casimir torques. Nat Commun 2024; 15:5086. [PMID: 38876993 PMCID: PMC11178905 DOI: 10.1038/s41467-024-49220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
The manipulation of microscopic objects requires precise and controllable forces and torques. Recent advances have led to the use of critical Casimir forces as a powerful tool, which can be finely tuned through the temperature of the environment and the chemical properties of the involved objects. For example, these forces have been used to self-organize ensembles of particles and to counteract stiction caused by Casimir-Liftshitz forces. However, until now, the potential of critical Casimir torques has been largely unexplored. Here, we demonstrate that critical Casimir torques can efficiently control the alignment of microscopic objects on nanopatterned substrates. We show experimentally and corroborate with theoretical calculations and Monte Carlo simulations that circular patterns on a substrate can stabilize the position and orientation of microscopic disks. By making the patterns elliptical, such microdisks can be subject to a torque which flips them upright while simultaneously allowing for more accurate control of the microdisk position. More complex patterns can selectively trap 2D-chiral particles and generate particle motion similar to non-equilibrium Brownian ratchets. These findings provide new opportunities for nanotechnological applications requiring precise positioning and orientation of microscopic objects.
Collapse
Affiliation(s)
- Gan Wang
- Department of Physics, University of Gothenburg, SE-41296, Gothenburg, Sweden
| | - Piotr Nowakowski
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, D-70569, Stuttgart, Germany
- IV th Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
- Group of Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Nima Farahmand Bafi
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, D-70569, Stuttgart, Germany
- IV th Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland
| | - Benjamin Midtvedt
- Department of Physics, University of Gothenburg, SE-41296, Gothenburg, Sweden
| | - Falko Schmidt
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Enginnering, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Agnese Callegari
- Department of Physics, University of Gothenburg, SE-41296, Gothenburg, Sweden
| | - Ruggero Verre
- Department of Physics, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - S Dietrich
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, D-70569, Stuttgart, Germany
- IV th Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
| | - Svyatoslav Kondrat
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, D-70569, Stuttgart, Germany.
- IV th Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany.
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland.
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569, Stuttgart, Germany.
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, SE-41296, Gothenburg, Sweden.
| |
Collapse
|
2
|
Marino E, Vasilyev OA, Kluft BB, Stroink MJB, Kondrat S, Schall P. Controlled deposition of nanoparticles with critical Casimir forces. NANOSCALE HORIZONS 2021; 6:751-758. [PMID: 34268545 PMCID: PMC8381518 DOI: 10.1039/d0nh00670j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/20/2021] [Indexed: 05/28/2023]
Abstract
Nanocrystal assembly represents the key fabrication step to develop next-generation optoelectronic devices with properties defined from the bottom-up. Despite numerous efforts, our limited understanding of nanoscale interactions has so far delayed the establishment of assembly conditions leading to reproducible superstructure morphologies, therefore hampering integration with large-scale, industrial processes. In this work, we demonstrate the deposition of a layer of semiconductor nanocrystals on a flat and unpatterned silicon substrate as mediated by the interplay of critical Casimir attraction and electrostatic repulsion. We show experimentally and rationalize with Monte Carlo and molecular dynamics simulations how this assembly process can be biased towards the formation of 2D layers or 3D islands and how the morphology of the deposited superstructure can be tuned from crystalline to amorphous. Our findings demonstrate the potential of the critical Casimir interaction to direct the growth of future artificial solids based on nanocrystals as the ultimate building blocks.
Collapse
Affiliation(s)
- Emanuele Marino
- Department of Chemistry, University of PennsylvaniaPhiladelphiaPennsylvania 19104USA
- van der Waals-Zeeman Institute, University of AmsterdamAmsterdamThe Netherlands
| | - Oleg A. Vasilyev
- Max-Planck-Institut für Intelligente SystemeHeisenbergstraße 3D-70569 StuttgartGermany
- IV. Institut für Theoretische Physik, Universität StuttgartPfaffenwaldring 57D-70569 StuttgartGermany
| | - Bas B. Kluft
- van der Waals-Zeeman Institute, University of AmsterdamAmsterdamThe Netherlands
| | - Milo J. B. Stroink
- van der Waals-Zeeman Institute, University of AmsterdamAmsterdamThe Netherlands
| | - Svyatoslav Kondrat
- Max-Planck-Institut für Intelligente SystemeHeisenbergstraße 3D-70569 StuttgartGermany
- IV. Institut für Theoretische Physik, Universität StuttgartPfaffenwaldring 57D-70569 StuttgartGermany
- Institute of Physical Chemistry, Polish Academy of SciencesKasprzaka 44/5201-224 WarsawPoland
| | - Peter Schall
- van der Waals-Zeeman Institute, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
Litniewski M, Ciach A. Adsorption in Mixtures with Competing Interactions. Molecules 2021; 26:molecules26154532. [PMID: 34361684 PMCID: PMC8347297 DOI: 10.3390/molecules26154532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
A binary mixture of oppositely charged particles with additional short-range attraction between like particles and short-range repulsion between different ones in the neighborhood of a substrate preferentially adsorbing the first component is studied by molecular dynamics simulations. The studied thermodynamic states correspond to an approach to the gas–crystal coexistence. Dependence of the near-surface structure, adsorption and selective adsorption on the strength of the wall–particle interactions and the gas density is determined. We find that alternating layers or bilayers of particles of the two components are formed, but the number of the adsorbed layers, their orientation and the ordered patterns formed inside these layers could be quite different for different substrates and gas density. Different structures are associated with different numbers of adsorbed layers, and for strong attraction the thickness of the adsorbed film can be as large as seven particle diameters. In all cases, similar amount of particles of the two components is adsorbed, because of the long-range attraction between different particles.
Collapse
|
4
|
Jonas HJ, Stuij SG, Schall P, Bolhuis PG. A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment. J Chem Phys 2021; 155:034902. [PMID: 34293902 DOI: 10.1063/5.0055012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synthetic colloidal patchy particles immersed in a binary liquid mixture can self-assemble via critical Casimir interactions into various superstructures, such as chains and networks. Up to now, there are no quantitatively accurate potential models that can simulate and predict this experimentally observed behavior precisely. Here, we develop a protocol to establish such a model based on a combination of theoretical Casimir potentials and angular switching functions. Using Monte Carlo simulations, we optimize several material-specific parameters in the model to match the experimental chain length distribution and persistence length. Our approach gives a systematic way to obtain accurate potentials for critical Casimir induced patchy particle interactions and can be used in large-scale simulations.
Collapse
Affiliation(s)
- H J Jonas
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - S G Stuij
- Institute of Physics, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - P Schall
- Institute of Physics, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - P G Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ciach A, Patsahan O. Correct scaling of the correlation length from a theory for concentrated electrolytes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:37LT01. [PMID: 34186526 DOI: 10.1088/1361-648x/ac0f9e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Self-consistent theory for concentrated electrolytes is developed. Oscillatory decay of the charge-charge correlation function with the decay length that shows perfect agreement with the experimentally discovered and so far unexplained scaling is obtained. For the density-density correlations, monotonic asymptotic decay with the decay length comparable with the decay length of the charge correlations is found. We show that the correlation lengths in concentrated electrolytes depend crucially on the local variance of the charge density.
Collapse
Affiliation(s)
- A Ciach
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland
| | - O Patsahan
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Lviv, Ukraine
| |
Collapse
|
6
|
Cruz C, Ciach A. Phase Transitions and Electrochemical Properties of Ionic Liquids and Ionic Liquid-Solvent Mixtures. Molecules 2021; 26:3668. [PMID: 34208542 PMCID: PMC8234089 DOI: 10.3390/molecules26123668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in studies of ionic liquids (IL) and ionic liquid-solvent mixtures are reviewed. Selected experimental, simulation, and theoretical results for electrochemical, thermodynamical, and structural properties of IL and IL-solvent mixtures are described. Special attention is paid to phenomena that are not predicted by the classical theories of the electrical double layer or disagree strongly with these theories. We focus on structural properties, especially on distribution of ions near electrodes, on electrical double layer capacitance, on effects of confinement, including decay length of a dissjoining pressure between confinig plates, and on demixing phase transition. In particular, effects of the demixing phase transition on electrochemical properties of ionic liquid-solvent mixtures for different degrees of confinement are presented.
Collapse
Affiliation(s)
| | - Alina Ciach
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52, 01-224 Warsaw, Poland;
| |
Collapse
|
7
|
Mahdisoltani S, Golestanian R. Long-Range Fluctuation-Induced Forces in Driven Electrolytes. PHYSICAL REVIEW LETTERS 2021; 126:158002. [PMID: 33929248 DOI: 10.1103/physrevlett.126.158002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
We study the stochastic dynamics of an electrolyte driven by a uniform external electric field and show that it exhibits generic scale invariance despite the presence of Debye screening. The resulting long-range correlations give rise to a Casimir-like fluctuation-induced force between neutral boundaries that confine the ions; this force is controlled by the external electric field, and it can be both attractive and repulsive with similar boundary conditions, unlike other long-range fluctuation-induced forces. This work highlights the importance of nonequilibrium correlations in electrolytes and shows how they can be used to tune interactions between uncharged biological or synthetic structures at large separations.
Collapse
Affiliation(s)
- Saeed Mahdisoltani
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
| |
Collapse
|
8
|
Glende G, de Wijn AS, Pousaneh F. The Vanishing water/oil interface in the presence of antagonistic salt. J Chem Phys 2020; 152:124707. [DOI: 10.1063/1.5142811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Gudrun Glende
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Astrid S. de Wijn
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Faezeh Pousaneh
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
9
|
|
10
|
Nguyen VD, Dang MT, Nguyen TA, Schall P. Critical Casimir forces for colloidal assembly. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:043001. [PMID: 26750980 DOI: 10.1088/0953-8984/28/4/043001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium.
Collapse
Affiliation(s)
- V D Nguyen
- Van der Waals-Zeeman Institute, University of Amsterdam, The Netherlands. Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
11
|
Ciach A. Competition Between Electrostatic and Thermodynamic Casimir Potentials in Near-Critical Mixtures with Ions. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2016. [DOI: 10.1016/bs.abl.2015.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Witala M, Nervo R, Konovalov O, Nygård K. Microscopic segregation of hydrophilic ions in critical binary aqueous solvents. SOFT MATTER 2015; 11:5883-5888. [PMID: 26107528 DOI: 10.1039/c5sm01219h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Solid surfaces suspended in critical aqueous binary mixtures containing hydrophilic salt have recently been found to exhibit anomalous interactions, and a possible mechanism is provided by the asymmetric solvation preferences of weakly and strongly hydrophilic cations and anions, respectively. Here we address this mechanism by studying interfacial ion distributions in a critical binary mixture of water and 2,6-dimethylpyridine containing potassium chloride at temperatures below the lower critical point, using grazing-incidence X-ray fluorescence from the liquid-vapour interface. Our data provide direct and unambiguous experimental evidence for microscopic segregation of hydrophilic ions in critical aqueous binary mixtures, thereby supporting the important role of asymmetric ion solvation in the above mentioned anomalous force. However, the experimental data are only qualitatively reproduced by state-of-the-art theoretical calculations, demonstrating the need of a microscopic theoretical model including asymmetric ion solvation.
Collapse
Affiliation(s)
- Monika Witala
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden.
| | | | | | | |
Collapse
|
13
|
Pousaneh F, Ciach A. The effect of antagonistic salt on a confined near-critical mixture. SOFT MATTER 2014; 10:8188-8201. [PMID: 25171785 DOI: 10.1039/c4sm01264j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We consider a near-critical binary mixture with addition of antagonistic salt (hydrophilic cations and hydrophobic anions) confined between weakly charged and selective surfaces. A mesoscopic functional for this system is developed from a microscopic description by a systematic coarse-graining procedure. The functional reduces to the Landau-Brazovskii functional for amphiphilic systems for a sufficiently large ratio between the correlation length in the critical binary mixture and the screening length. Our theoretical result agrees with the experimental observation [Sadakane et al., J. Chem. Phys., 2013, 139, 234905] that the antagonistic salt and the surfactant both lead to a similar mesoscopic structure. For very low salt concentration ρion the Casimir potential is the same as in the presence of inorganic salt. For larger ρion the Casimir potential takes a minimum followed by a maximum for separations of order of tens of nanometers, and exhibits an oscillatory decay very close to the critical point. For separations of tens of nanometers the potential between surfaces with a linear size of hundreds of nanometers can be of order of kBT. We have verified that in the experimentally studied samples [Sadakane et al., J. Chem. Phys., 2013, 139, 234905, Leys et al., Soft Matter, 2013, 9, 9326] the decay length is too small compared to the period of oscillations of the Casimir potential, but the oscillatory force could be observed closer to the critical point.
Collapse
Affiliation(s)
- Faezeh Pousaneh
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland.
| | | |
Collapse
|