1
|
Teherpuria H, Jaiswal PK, Mogurampelly S. On the nature of ion aggregation in EC-LiTFSI electrolytes. Phys Chem Chem Phys 2025; 27:8426-8434. [PMID: 40191966 DOI: 10.1039/d4cp04606d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
We investigate the structural and dynamic properties of concentrated ethylene carbonate (EC)-LiTFSI (lithium bis(trifluoromethanesulfonyl)imide) electrolytes using molecular dynamics (MD) simulations to elucidate the molecular mechanisms governing ion aggregation and transport. Increasing salt concentration induces a transition in the local solvation environment, marked by reduced radial distribution functions for ion-ion and ion-solvent interactions. This shift reflects the formation of ion pairs and larger ionic clusters, altering electrostatic interactions and weakening Li+-EC solvation. Ion aggregation probability, P(n), which quantifies the probability of n anions aggregating around a cation, peaks at n = 0 for dilute salt concentrations, n = 1 for intermediate salt concentrations, and n = 2 or n = 3 for high salt concentrations. These structural changes significantly impact dynamics, as ion aggregation slows ion mobility and reduces diffusion coefficients for Li+ and TFSI- ions. We observe strong correlations between ion diffusion, ion-pair relaxation times, and viscosity signifying the interplay between ion pairing, cluster formation, and mobility. This study provides molecular-level insights into how salt concentration influences ionic transport, advancing the theoretical framework for transport in dense liquid systems and guiding the design of advanced electrolytes.
Collapse
Affiliation(s)
- Hema Teherpuria
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.
| | - Prabhat K Jaiswal
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.
| | - Santosh Mogurampelly
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.
| |
Collapse
|
2
|
Bamford JT, Gordon LW, Clément RJ, Segalman RA. Converting a Metal-Coordinating Polymer to a Polymerized Ionic Liquid Improves Li + Transport. ACS Macro Lett 2025; 14:87-92. [PMID: 39749941 DOI: 10.1021/acsmacrolett.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li+ batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li+ conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li+ coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im+) more efficiently solvates lithium salts and plasticizes the polymer. In addition, inverse Haven ratios as high as 10 indicate positively correlated Li+ transport, possibly due to percolation of nanochannels that significantly improve battery-relevant conductivity. From these combined effects, Li+ conductivity in PMS-Im+ (2.1 × 10-5 S/cm) is over an order of magnitude greater than in PMS-Im at 90 °C (1.6 × 10-6 S/cm).
Collapse
Affiliation(s)
- James T Bamford
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Leo W Gordon
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Raphaële J Clément
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Rachel A Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Al-Hussein M, Ehrlich L, Pospiech D, Uhlmann P. Structural Investigation of Chloride Ion-Containing Acrylate-Based Imidazolium Poly(Ionic Liquid) Homopolymers and Crosslinked Networks: Effect of Alkyl Spacer and N-Alkyl Substituents. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:40. [PMID: 39791799 PMCID: PMC11722141 DOI: 10.3390/nano15010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed structural characterization of a recently synthesized series of acrylate-based PIL homopolymers and networks with imidazolium cations and chloride anions with varying alkyl spacer and terminal group lengths designed for organic solid-state batteries based on X-ray scattering. The impact of the concentrations of both the crosslinker and added tetrabutylammonium chloride (TBACl) conducting salt on the structural characteristics is also investigated. The results reveal that the length of both the spacer and terminal group influence the chain packing and, in turn, the nanophase segregation of the polar domains. Long spacers and terminal groups seem to induce denser polar aggregates sandwiched between more compact alkyl spacer and terminal group domains. However, the large inter-backbone spacing achieved seems to limit the ionic conductivity of these PILs. More importantly, our findings show that the previously reported general relationships between the ionic conductivity and the structural parameters of the nanostructure of PILs are not always attainable for different molecular structures of the IL side group.
Collapse
Affiliation(s)
| | - Lisa Ehrlich
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
- School of Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Doris Pospiech
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
4
|
Chen Y, Xue T, Chen C, Jang S, Braun PV, Cheng J, Evans CM. Helical peptide structure improves conductivity and stability of solid electrolytes. NATURE MATERIALS 2024; 23:1539-1546. [PMID: 39107570 DOI: 10.1038/s41563-024-01966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/03/2024] [Indexed: 10/09/2024]
Abstract
Ion transport is essential to energy storage, cellular signalling and desalination. Polymers have been explored for decades as solid-state electrolytes by either adding salt to polar polymers or tethering ions to the backbone to create less flammable and more robust systems. New design paradigms are needed to advance the performance of solid polymer electrolytes beyond conventional systems. Here the role of a helical secondary structure is shown to greatly enhance the conductivity of solvent-free polymer electrolytes using cationic polypeptides with a mobile anion. Longer helices lead to higher conductivity, and random coil peptides show substantially lower conductivity. The macrodipole of the helix increases with peptide length, leading to larger dielectric constants. The hydrogen bonding of the helix also imparts thermal and electrochemical stability, while allowing for facile dissolution back to monomer in acid. Peptide polymer electrolytes present a promising platform for the design of next-generation ion-transporting materials.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tianrui Xue
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chen Chen
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Seongon Jang
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Paul V Braun
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- School of Engineering, Westlake University, Hangzhou, China
| | - Christopher M Evans
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Jeddi J, Niskanen J, Lessard BH, Sangoro J. Ion transport in polymerized ionic liquids: a comparison of polycation and polyanion systems. Faraday Discuss 2024; 253:426-440. [PMID: 39101858 DOI: 10.1039/d4fd00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The correlation among chemical structure, mesoscale structure, and ion transport in 1,2,3-triazole-based polymerized ionic liquids (polyILs) featuring comparable polycation and polyanion backbones is investigated by wide-angle X-ray scattering (WAXS), differential scanning calorimetry, and broadband dielectric spectroscopy (BDS). Above the glass transition temperature, Tg, higher ionic conductivity is observed in polycation polyILs compared to their polyanion counterparts, and ion conduction is enhanced by increasing the counterion volume in both polycation or polyanion polyILs. Below Tg, polyanions show lower activation energy associated with ion conduction. However, the validity of the Barton-Nakajima-Namikawa relation indicates that hopping conduction is the dominant charge transport mechanism in all the polyILs studied. While a significant transition from a Vogel-Fulcher-Tammann to Arrhenius type of thermal activation is observed below Tg, the decoupling index, often used to quantify the extent to which segmental dynamics and ion conduction are correlated, remains unaltered for the polyILs studied, suggesting that this index may not be a general parameter to characterize charge transport in polymerized ionic liquids. Furthermore, detailed analyses of the WAXS results indicate that both the mobile ion type and the structure of the pendant groups control mesoscale organization. These findings are discussed within the framework of recent models, which account for the subtle interplay between electrostatic and elastic forces in determining ion transport in polyILs. The findings demonstrate the intricate balance between the chemical structure and interactions in polyILs that determine ion conduction in this class of polymer electrolytes.
Collapse
Affiliation(s)
- Javad Jeddi
- Department of Chemical and Biomolecular Engineering Ohio State University, Columbus, Ohio 43210, USA.
| | - Jukka Niskanen
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave, Ottawa, ON, K1N 6N5, Canada
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
6
|
Drakopoulos SX, Vryonis O, Špitalský Z, Peidayesh H, Lendvai L. Thermoplastic Starch Processed under Various Manufacturing Conditions: Thermal and Electrical Properties. Biomacromolecules 2024; 25:5938-5948. [PMID: 39148453 DOI: 10.1021/acs.biomac.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Eco-friendly materials like carbohydrate-based polymers are important for a sustainable future. Starch is particularly promising because of its biodegradability and abundance but its processing to thermoplastic starch requires optimization. Here we developed thermoplastic maize starch materials based on three manufacturing protocols, namely: (1) starch/glycerol manual mixing and extrusion, (2) starch/glycerol manual mixing, extrusion, and kneading, (3) starch/glycerol/water manual mixing and kneading. The physical properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and broadband dielectric spectroscopy. As expected from a partially miscible blend, the dielectric spectra revealed two distinct α-relaxations for the glycerol-rich and the starch-rich phases, respectively. By employing kneading after extrusion, the miscibility between the two phases was found to improve based on thermal and dielectric methods. Moreover, the addition of water during the premixing stage was observed to facilitate phase separation between starch and glycerol, with the α-relaxation dynamics of the latter being comparable to pure glycerol.
Collapse
Affiliation(s)
- Stavros X Drakopoulos
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Orestis Vryonis
- Tony Davies High Voltage Laboratory, Department of Electronic and Computer Science, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Zdenko Špitalský
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta, 9, 845 41 Bratislava, Slovakia
| | - Hamed Peidayesh
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta, 9, 845 41 Bratislava, Slovakia
| | - László Lendvai
- Department of Materials Science and Engineering, Széchenyi István University, Egyetem tér 1, Győr H-9026, Hungary
| |
Collapse
|
7
|
Mohapatra S, Teherpuria H, Paul Chowdhury SS, Ansari SJ, Jaiswal PK, Netz RR, Mogurampelly S. Ion transport mechanisms in pectin-containing EC-LiTFSI electrolytes. NANOSCALE 2024; 16:3144-3159. [PMID: 38258993 DOI: 10.1039/d3nr04029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Using all-atom molecular dynamics simulations, we report the structure and ion transport characteristics of a new class of solid polymer electrolytes that contain the biodegradable and mechanically stable biopolymer pectin. We used highly conducting ethylene carbonate (EC) as a solvent for simulating lithium-trifluoromethanesulfonimide (LiTFSI) salt containing different weight percentages of pectin. Our simulations reveal that the pectin chains reduce the coordination number of lithium ions around their counterions (and vice versa) because of stronger lithium-pectin interactions compared to lithium-TFSI interactions. Furthermore, the pectin is found to promote smaller ionic aggregates over larger ones, in contrast to the results typically reported for liquid and polymer electrolytes. We observed that the loading of pectin in EC-LiTFSI electrolytes increases their viscosity (η) and relaxation timescales (τc), indicating higher mechanical stability, and, consequently, a decrease of the mean squared displacement, diffusion coefficient (D), and Nernst-Einstein conductivity (σNE). Interestingly, while the lithium diffusivities are related to the ion-pair relaxation timescales as D+ ∼ τc-3.1, the TFSI- diffusivities exhibit excellent correlations with ion-pair relaxation timescales as D- ∼ τc-0.95. On the other hand, the NE conductivities are dictated by distinct transport mechanisms and scales with ion-pair relaxation timescales as σNE ∼ τc-1.85.
Collapse
Affiliation(s)
- Sipra Mohapatra
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Hema Teherpuria
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Sapta Sindhu Paul Chowdhury
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Suleman Jalilahmad Ansari
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Prabhat K Jaiswal
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Santosh Mogurampelly
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
8
|
Mohapatra S, Halder S, Chaudhari SR, Netz RR, Mogurampelly S. Insights into the structure and Ion transport of pectin-[BMIM][PF6] electrolytes. J Chem Phys 2023; 159:154902. [PMID: 37843063 DOI: 10.1063/5.0158127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
We investigate the effect of pectin on the structure and ion transport properties of the room-temperature ionic liquid electrolyte 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) using molecular dynamics simulations. We find that pectin induces intriguing structural changes in the electrolyte that disrupt large ionic aggregates and promote the formation of smaller ionic clusters, which is a promising finding for ionic conductivity. Due to pectin in [BMIM][PF6] electrolytes, the diffusion coefficient of cations and anions is observed to decrease by a factor of four for a loading of 25 wt. % of pectin in [BMIM][PF6] electrolyte. A strong correlation between the ionic diffusivities (D) and ion-pair relaxation timescales (τc) is observed such that D ∼ τc-0.75 for cations and D ∼ τc-0.82 for anions. The relaxation timescale exponents indicate that the ion transport mechanisms in pectin-[BMIM][PF6] electrolytes are slightly distinct from those found in neat [BMIM][PF6] electrolytes (D∼τc-1). Since pectin marginally affects ionic diffusivities at the gain of smaller ionic aggregates and viscosity, our results suggest that pectin-ionic liquid electrolytes offer improved properties for battery applications, including ionic conductivity, mechanical stability, and biodegradability.
Collapse
Affiliation(s)
- Sipra Mohapatra
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sougata Halder
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sachin R Chaudhari
- Department of Spice and Flavour Science, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Santosh Mogurampelly
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
9
|
Yao B, Paluch M, Paturej J, McLaughlin S, McGrogan A, Swadzba-Kwasny M, Shen J, Ruta B, Rosenthal M, Liu J, Kruk D, Wojnarowska Z. Self-Assembled Nanostructures in Aprotic Ionic Liquids Facilitate Charge Transport at Elevated Pressure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39417-39425. [PMID: 37555825 PMCID: PMC10450691 DOI: 10.1021/acsami.3c08606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Ionic liquids (ILs), revealing a tendency to form self-assembled nanostructures, have emerged as promising materials in various applications, especially in energy storage and conversion. Despite multiple reports discussing the effect of structural factors and external thermodynamic variables on ion organization in a liquid state, little is known about the charge-transport mechanism through the self-assembled nanostructures and how it changes at elevated pressure. To address these issues, we chose three amphiphilic ionic liquids containing the same tetra(alkyl)phosphonium cation and anions differing in size and shape, i.e., thiocyanate [SCN]-, dicyanamide [DCA]-, and tricyanomethanide [TCM]-. From ambient pressure dielectric and mechanical experiments, we found that charge transport of all three examined ILs is viscosity-controlled at high temperatures. On the other hand, ion diffusion is much faster than structural dynamics in a nanostructured supercooled liquid (at T < 210 ± 3 K), which constitutes the first example of conductivity independent from viscosity in neat aprotic ILs. High-pressure measurements and MD simulations reveal that the created nanostructures depend on the anion size and can be modified by compression. For small anions, increasing pressure shapes immobile alkyl chains into lamellar-type phases, leading to increased anisotropic diffusivity of anions through channels. Bulky anions drive the formation of interconnected phases with continuous 3D curvature, which render ion transport independent of pressure. This work offers insight into the design of high-density electrolytes with percolating conductive phases providing efficient ion flow.
Collapse
Affiliation(s)
- Beibei Yao
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Marian Paluch
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Jaroslaw Paturej
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Shannon McLaughlin
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Road, BT9 5AG Belfast, NI, U.K.
| | - Anne McGrogan
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Road, BT9 5AG Belfast, NI, U.K.
| | - Malgorzata Swadzba-Kwasny
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Road, BT9 5AG Belfast, NI, U.K.
| | - Jie Shen
- Institut
Neel, 38000 Grenoble, France
- ESRF—The
European Synchrotron, CS 40220, 38043 Grenoble, France
| | - Beatrice Ruta
- Institut
Neel, 38000 Grenoble, France
- ESRF—The
European Synchrotron, CS 40220, 38043 Grenoble, France
| | - Martin Rosenthal
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
- Dual
Belgian
Beamline (DUBBLE), European Synchrotron
Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Jiliang Liu
- ESRF—The
European Synchrotron, CS 40220, 38043 Grenoble, France
| | - Danuta Kruk
- Faculty
of Mathematics and Computer Science, University
of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710, Poland
| | - Zaneta Wojnarowska
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
10
|
Coote J, Adotey SKJ, Sangoro JR, Stein GE. Interfacial Effects in Conductivity Measurements of Block Copolymer Electrolytes. ACS POLYMERS AU 2023; 3:331-343. [PMID: 37576709 PMCID: PMC10416321 DOI: 10.1021/acspolymersau.2c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
Abstract
The ionic conductivity in lamellar block copolymer electrolytes is often anisotropic, where the in-plane conductivity exceeds the through-plane conductivity by up to an order of magnitude. In a prior work, we showed significant anisotropy in the ionic conductivity of a lamellar block copolymer based on polystyrene (PS) and a polymer ionic liquid (PIL), and we proposed that the through-film ionic conductivity was depressed by layering of lamellar domains near the electrode surface. In the present work, we first tested that conclusion by measuring the through-plane ionic conductivity of two model PIL-based systems having controlled interfacial profiles using impedance spectroscopy. The measurements were not sensitive to changes in interfacial composition or structure, so anisotropy in the ionic conductivity of PS-block-PIL materials must arise from an in-plane enhancement rather than a through-plane depression. We then examined the origin of this in-plane enhancement with a series of PS-block-PIL materials, a P(S-r-IL) copolymer, and a PIL homopolymer, where impedance spectra were acquired with a top-contact electrode configuration. These studies show that enhanced in-plane ionic conductivities are correlated with the formation of an IL-rich wetting layer at the free surface, which presumably provides a low-resistance path for ion transport between the electrodes. Importantly, the enhanced in-plane ionic conductivities in these PS-block-PIL materials are consistent with simple geometric arguments based on properties of the PIL, while the through-plane values are an order of magnitude lower. Consequently, it is critical to understand how surface and bulk effects contribute to impedance spectroscopy measurements when developing structure-conductivity relations in this class of materials.
Collapse
Affiliation(s)
- Jonathan
P. Coote
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Samuel K. J. Adotey
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Joshua R. Sangoro
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gila E. Stein
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
11
|
Jeong KJ, Jeong S, Lee S, Son CY. Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204272. [PMID: 36373701 DOI: 10.1002/adma.202204272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Electrostatic interactions play a dominant role in charged materials systems. Understanding the complex correlation between macroscopic properties with microscopic structures is of critical importance to develop rational design strategies for advanced materials. But the complexity of this challenging task is augmented by interfaces present in the charged materials systems, such as electrode-electrolyte interfaces or biological membranes. Over the last decades, predictive molecular simulations that are founded in fundamental physics and optimized for charged interfacial systems have proven their value in providing molecular understanding of physicochemical properties and functional mechanisms for diverse materials. Novel design strategies utilizing predictive models have been suggested as promising route for the rational design of materials with tailored properties. Here, an overview of recent advances in the understanding of charged interfacial systems aided by predictive molecular simulations is presented. Focusing on three types of charged interfaces found in energy materials and biomacromolecules, how the molecular models characterize ion structure, charge transport, morphology relation to the environment, and the thermodynamics/kinetics of molecular binding at the interfaces is discussed. The critical analysis brings two prominent field of energy materials and biological science under common perspective, to stimulate crossover in both research field that have been largely separated.
Collapse
Affiliation(s)
- Kyeong-Jun Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Seungwon Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Sangmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
12
|
Livi S, Baudoux J, Gérard JF, Duchet-Rumeau J. Ionic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Liu J, Yang L, Pickett PD, Park B, Schaefer JL. Li + Transport in Single-Ion Conducting Side-Chain Polymer Electrolytes with Nanoscale Self-Assembly of Ordered Ionic Domains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiacheng Liu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lingyu Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Phillip D. Pickett
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Bumjun Park
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer L. Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Li J, He R, Yuan H, Fang F, Zhou G, Yang Z. Molecular Insights into the Effect of Asymmetric Anions on Lithium Coordination and Transport Properties in Salt-Doped Poly(ionic liquid) Electrolytes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiajia Li
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Ruiyao He
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Hao Yuan
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Fang Fang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
15
|
Abdurrokhman I, Martinelli A. Binary Mixtures of Imidazolium-Based Protic Ionic Liquids. Extended Temperature Range of the Liquid State Keeping High Ionic Conductivities. Front Chem 2022; 10:915683. [PMID: 35844661 PMCID: PMC9283952 DOI: 10.3389/fchem.2022.915683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Binary mixtures based on the two protic ionic liquids 1-ethylimidazolium triflate ([C2HIm][TfO]) and 1-ethylimidazolium bis(trifluoromethanesulfonyl)imide ([C2HIm][TFSI]) have been investigated, with focus on phase behavior, ionic conductivity, and intermolecular interactions as a function of composition (χTFSI indicating the mole fraction of the added compound). It is found that on addition of [C2HIm][TFSI] to [C2HIm][TfO], the melting temperature is first decreased (0 <χ≤ 0.3) and then suppressed (0.3 <χ≤ 0.8) resulting in mixtures with no phase transitions. These mixtures display a wide temperature range of the liquid state and should be interesting for use in devices operating at extreme temperatures. The ionic conductivity does not vary significantly across the composition range analyzed, as evidenced in the comparative Arrhenius plot. The activation energy, Ea, estimated by fitting with the Arrhenius relation in a limited temperature range (between 60 and 140 °C) varies marginally and keeps values between 0.17 and 0.21 eV. These marginal differences can be rationalized by the initially very similar values of the two neat protic ionic liquids. Vibrational spectroscopy, including both Raman and infrared spectroscopies, reveals weakening of the cation–anion interactions for increasing content of [C2HIm][TFSI], which is reflected by the blue shift of the average N-H stretching mode and the red shift of the S-O stretching mode in the TfO anion. These trends correlate with the higher disorder in the mixtures observed by DSC and are evidenced by the decrease and suppression of the melting temperature as the amount of [C2HIm][TFSI] is increased.
Collapse
|
16
|
Charge Transport and Glassy Dynamics in Blends Based on 1-Butyl-3-vinylbenzylimidazolium Bis(trifluoromethanesulfonyl)imide Ionic Liquid and the Corresponding Polymer. Polymers (Basel) 2022; 14:polym14122423. [PMID: 35745999 PMCID: PMC9227190 DOI: 10.3390/polym14122423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Charge transport, diffusion properties, and glassy dynamics of blends of imidazolium-based ionic liquid (IL) and the corresponding polymer (polyIL) were examined by Pulsed-Field-Gradient Nuclear Magnetic Resonance (PFG-NMR) and rheology coupled with broadband dielectric spectroscopy (rheo-BDS). We found that the mechanical storage modulus (G′) increases with an increasing amount of polyIL and G′ is a factor of 10,000 higher for the polyIL compared to the monomer (GIL′= 7.5 Pa at 100 rad s−1 and 298 K). Furthermore, the ionic conductivity (σ0) of the IL is a factor 1000 higher than its value for the polymerized monomer with 3.4×10−4 S cm−1 at 298 K. Additionally, we found the Haven Ratio (HR) obtained through PFG-NMR and BDS measurements to be constant around a value of 1.4 for the IL and blends with 30 wt% and 70 wt% polyIL. These results show that blending of the components does not have a strong impact on the charge transport compared to the charge transport in the pure IL at room temperature, but blending results in substantial modifications of the mechanical properties. Furthermore, it is highlighted that the increase in σ0 might be attributed to the addition of a more mobile phase, which also possibly reduces ion-ion correlations in the polyIL.
Collapse
|
17
|
Cheng S, Wojnarowska Z, Sangoro J, Paluch M. Ion dynamics in pendant and backbone polymerized ionic liquids: A view from high-pressure dielectric experiments and free-volume model. Phys Rev E 2022; 105:054502. [PMID: 35706269 DOI: 10.1103/physreve.105.054502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Polymerized ionic liquids (PILs) are typically single-ion conductors, where one kind of ionic species is either placed as the pendant group to the chain (pendant PILs) or directly incorporated into the polymeric backbone (backbone PILs). This paper compares the thermodynamics, ionic dynamics, and mechanical properties of pendant and backbone PILs. The results indicate that near the glass transition, the energy barrier for ion hopping is much lower for pendant PIL while the backbone PIL shows a much stronger sensitivity to pressure. At the same time, a free-volume based model was proposed here to understand the ion dynamics of both studied PILs at high-pressure conditions. The determined critical volume, quantifying the minimal volume required for ion hopping, of the pendant PIL is significantly reduced compared to the backbone PIL, which is most likely the reason for the enhanced ionic conductivity of the pendant PIL near the glass transition. We found that the proposed model is equivalent to the commonly used pressure counterpart of the Vogel-Fulcher-Tammann equation.
Collapse
Affiliation(s)
- Shinian Cheng
- Institute of Physics, University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Zaneta Wojnarowska
- Institute of Physics, University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
18
|
Li X, Cai L, Li M, Zhang M, Zhou Q, Chen K, Yin P. Gelation of metal oxide clusters for redox-active proton conductors in supercapacitor. Electrochim Acta 2022; 406:139844. [DOI: 10.1016/j.electacta.2022.139844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Yang Q, Zhang Q, Zhu S, Cai W. Exploration of Ion Transport in Blends of an Ionic Liquid and a Polymerized Ionic Liquid Graft Copolymer. J Phys Chem B 2022; 126:716-722. [PMID: 35042331 DOI: 10.1021/acs.jpcb.1c09582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we prepared a composite membrane consisting of a poly(1-butyl-3-vinylimidazolium-tetrafluoroborate) (poly([BVIM]-[BF4])) polymerized ionic liquid graft copolymer (PILGC) and a blend of PILGC and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-[BF4]) ionic liquid (IL) to explore techniques for improving the conductivity of PILGCs, which is normally three orders of magnitude lower than that of ILs. PILGCs, which are environmentally friendly, have attracted much interest. To gain a better understanding of ion transport in composites, the mechanisms of ion transport in composite components should be explored. We investigated anion transport in ILs and PILGCs and were able to obtain the correct ion transport mechanisms in IL-PILGC blends based on a previous work. We performed molecular dynamics (MD) simulations, which are commonly used to investigate molecular mechanisms. According to the MD simulation results, in most IL-PILGC blends of various compositions, the contributions of cations are greater than those of anions. This is one reason that blends have higher conductivities than their component PILGCs. To the best of our knowledge, we are the first to identify ion transport mechanisms in PILGCs and their blends with ILs by exploring subdiffusive ion motion regimes. The ratio of the number of cages with more than three cationic branch chains in the blend with 50 wt % PILGC, the blend with 80 wt % PILGC, and the PILGC was 0.26:0.39:0.65. Therefore, the ratio of firm cages gets a promotion as the PILGC content increases. Because the ratio of fast ions decreases as the ratio of firm cages increases, the blend with 80 wt % PILGC has lower anion diffusivities than the blend with 50 wt % PILGC. It was inappropriate to probe ion transport in PILGCs (or IL-PILGC blends) solely via analyzing ion association interactions. Analysis of only ion association interactions led to the incorrect conclusion that the time scales of ion transport in PILGCs are given by the continuous ion association time, which is the time when the ion association remains paired rather than the time when an ion is caught inside a cage. Proper methods should be used to obtain more accurate theories.
Collapse
Affiliation(s)
- Quan Yang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Qi Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shenlin Zhu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Weibin Cai
- School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
20
|
Zhao S, Song S, Wang Y, Keum J, Zhu J, He Y, Sokolov AP, Cao PF. Unraveling the Role of Neutral Units for Single-Ion Conducting Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51525-51534. [PMID: 34693714 DOI: 10.1021/acsami.1c15641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the cationic transference number close to unity, single-ion conducting polymer electrolytes (SICPEs) are recognized as an advanced electrolyte system with improved energy efficiency for battery application. The relatively low ionic conductivity for most of the SICPEs in comparison with liquid electrolytes remains the major "bottleneck" for their practical applications. Polyethylene oxide (PEO) has been recognized as a benchmark for solid polymer electrolytes due to its high salt solubility and reasonable ionic conductivity. PEO has two advantages: (i) the polar ether groups coordinate well with lithium ions (Li+) providing good dissociation from anions, and (ii) the low Tg provides fast segmental dynamics at ambient temperature and assists rapid charge transport. These properties lead to active use of PEO as neutral plasticizing units in SICPEs. Herein, we present a detailed comparison of new SICPEs copolymerized with PEO units vs SICPEs copolymerized with other types of neutral units possessing either flexible or polar structures. The presented analysis revealed that the polarity of side chains has a limited influence on ion dissociation for copolymer-type SICPEs. The Li+-ion dissociation seems to be controlled by the charge delocalization on the polymerized anion. With good miscibility between plasticizing neutral units and ionic conductive units, the ambient ionic conductivity of synthesized SICPEs is still mainly controlled by the Tg of the copolymer. This work sheds light on the dominating role of PEO in SICPE systems and provides helpful guidance for designing polymer electrolytes with new functionalities and structures. Furthermore, based on the presented results, we propose that designing polyanions with a highly delocalized charge may be another promising route for achieving sufficient lithium ionic conductivity in solvent-free SICPEs.
Collapse
Affiliation(s)
- Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shenghan Song
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yingqi Wang
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jong Keum
- Center for Nanophase Materials Science and Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jiadeng Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Peng-Fei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
21
|
Chen TL, Lathrop PM, Sun R, Elabd YA. Lithium-Ion Transport in Poly(ionic liquid) Diblock Copolymer Electrolytes: Impact of Salt Concentration and Cation and Anion Chemistry. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tzu-Ling Chen
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Patrick M. Lathrop
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Rui Sun
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yossef A. Elabd
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
22
|
Wang YL, Li B, Laaksonen A. Coarse-grained simulations of ionic liquid materials: from monomeric ionic liquids to ionic liquid crystals and polymeric ionic liquids. Phys Chem Chem Phys 2021; 23:19435-19456. [PMID: 34524303 DOI: 10.1039/d1cp02662c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquid (IL) materials are promising electrolytes with striking physicochemical properties for energy and environmental applications. Heterogeneous structures and transport quantities of monomeric and polymeric ILs are intrinsically intercorrelated and span multiple spatiotemporal scales, which is more feasible for coarse-grained (CG) simulations than atomistic modelling. Herein we constructed a novel CG model for ethyl-imidazolium tetrafluoroborate ILs with varied cation alkyl chains ranging from C2 to C20, and the interaction parameters were validated against representative static and dynamic properties that were obtained from atomistic reference simulations and experimental characterizations at relevant thermodynamic states. This CG model was extended to study thermotropic phase behaviors of monomeric ILs and to explore ion association structures and ion transport quantities in polymeric ILs with different architectures. A systematic analysis of structural and dynamical quantities identifies an evolution of liquid morphology from homogeneous to nanosegregated structures and then a smectic mesomorphism via a gradual lengthening of cation alkyl chains, and thereafter a distinct structural transition characterized by a monotonic decrease in orientational and translational order parameters in a sequential heating cascade. Backbone and pendant polymeric ILs exhibit evident anion association structures with cation monomers and polymer chains, and striking intra- and interchain coordinations between cation monomers owing to an intrinsic polymer architecture effect. Such a peculiar ion pairing association leads to a progressive increase in anion intrachain hopping probabilities, and a concomitant decrease in anion interchain hopping events with a gradual lengthening of polymeric ILs. The anion diffusivities in polymeric ILs are intrinsically correlated with ion pairing association lifetimes and ion structural relaxation times via a universal power law correlation D ∼ τ-1, irrespective of polymer architectures.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden. .,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
23
|
Bandegi A, Kim K, Foudazi R. Ion transport in polymerized lyotropic liquid crystals containing ionic liquid. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alireza Bandegi
- Department of Chemical and Materials Engineering New Mexico State University Las Cruces New Mexico USA
| | - Kyungtae Kim
- Materials Physics and Applications Division Center for Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos New Mexico USA
| | - Reza Foudazi
- Department of Chemical and Materials Engineering New Mexico State University Las Cruces New Mexico USA
- School of Chemical, Biological and Materials Engineering University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
24
|
Polarization of ionic liquid and polymer and its implications for polymerized ionic liquids: An overview towards a new theory and simulation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Wojnarowska Z, Lange A, Taubert A, Paluch M. Ion and Proton Transport In Aqueous/Nonaqueous Acidic Ionic Liquids for Fuel-Cell Applications-Insight from High-Pressure Dielectric Studies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30614-30624. [PMID: 34164974 PMCID: PMC8289238 DOI: 10.1021/acsami.1c06260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The use of acidic ionic liquids and solids as electrolytes in fuel cells is an emerging field due to their efficient proton conductivity and good thermal stability. Despite multiple reports describing conducting properties of acidic ILs, little is known on the charge-transport mechanism in the vicinity of liquid-glass transition and the structural factors governing the proton hopping. To address these issues, we studied two acidic imidazolium-based ILs with the same cation, however, different anions-bulk tosylate vs small methanesulfonate. High-pressure dielectric studies of anhydrous and water-saturated materials performed in the close vicinity of Tg have revealed significant differences in the charge-transport mechanism in these two systems being undetectable at ambient conditions. Thereby, we demonstrated the effect of molecular architecture on proton hopping, being crucial in the potential electrochemical applications of acidic ILs.
Collapse
Affiliation(s)
- Zaneta Wojnarowska
- Institute
of Physics, the University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41−500 Chorzow, Poland
| | - Alyna Lange
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam-Golm, Germany
| | - Andreas Taubert
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam-Golm, Germany
| | - Marian Paluch
- Institute
of Physics, the University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41−500 Chorzow, Poland
| |
Collapse
|
26
|
Affiliation(s)
- Swati Arora
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Julisa Rozon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E. Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Yokokoji A, Kitayama W, Wichai K, Urakawa O, Matsumoto A, Vao-Soongnern V, Inoue T. Viscoelastic Relaxation of Polymerized Ionic Liquid and Lithium Salt Mixtures: Effect of Salt Concentration. Polymers (Basel) 2021; 13:polym13111772. [PMID: 34071398 PMCID: PMC8199314 DOI: 10.3390/polym13111772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/10/2023] Open
Abstract
Polymerized ionic liquids (PILs) doped with lithium salts have recently attracted research interests as the polymer component in lithium-ion batteries because of their high ionic mobilities and lithium-ion transference numbers. To date, although the ion transport mechanism in lithium-doped PILs has been considerably studied, the role of lithium salts on the dynamics of PIL chains remains poorly understood. Herein, we examine the thermal and rheological behaviors of the mixture of poly(1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide (PC4-TFSI)/lithium TFSI (LiTFSI) in order to clarify the effect of the addition of LiTFSI. We show that the glass transition temperature Tg and the entanglement density decrease with the increase in LiTFSI concentration wLiTFSI. These results indicate that LiTFSI acts as a plasticizer for PC4-TFSI. Comparison of the frequency dependence of the complex modulus under the iso-frictional condition reveals that the addition of LiTFSI does not modify the stress relaxation mechanism of PC4-TFSI, including its characteristic time scale. This suggests that the doped LiTFSI, component that can be carrier ions, is not so firmly bound to the polymer chain as it modifies the chain dynamics. In addition, a broadening of the loss modulus spectrum in the glass region occurs at high wLiTFSI. This change in the spectrum can be caused by the responses of free TFSI and/or coordination complexes of Li and TFSI. Our detailed rheological analysis can extract the information of the dynamical features for PIL/salt mixtures and may provide helpful knowledge for the control of mechanical properties and ion mobilities in PILs.
Collapse
Affiliation(s)
- Arisa Yokokoji
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; (A.Y.); (W.K.); (K.W.)
| | - Wakana Kitayama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; (A.Y.); (W.K.); (K.W.)
| | - Kamonthira Wichai
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; (A.Y.); (W.K.); (K.W.)
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakon Ratchasima 30000, Thailand;
| | - Osamu Urakawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; (A.Y.); (W.K.); (K.W.)
- Correspondence: (O.U.); (T.I.)
| | - Atsushi Matsumoto
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan;
| | - Visit Vao-Soongnern
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakon Ratchasima 30000, Thailand;
| | - Tadashi Inoue
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; (A.Y.); (W.K.); (K.W.)
- Correspondence: (O.U.); (T.I.)
| |
Collapse
|
28
|
Pipertzis A, Papamokos G, Sachnik O, Allard S, Scherf U, Floudas G. Ionic Conductivity in Polyfluorene-Based Diblock Copolymers Comprising Nanodomains of a Polymerized Ionic Liquid and a Solid Polymer Electrolyte Doped with LiTFSI. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Achilleas Pipertzis
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - George Papamokos
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Oskar Sachnik
- Bergische Universität Wuppertal, Macromolecular Chemistry Group and Wuppertal Center for Smart Materials and Systems (cm@s), Gauss-Str. 20, D-42119 Wuppertal, Germany
| | - Sybille Allard
- Bergische Universität Wuppertal, Macromolecular Chemistry Group and Wuppertal Center for Smart Materials and Systems (cm@s), Gauss-Str. 20, D-42119 Wuppertal, Germany
| | - Ullrich Scherf
- Bergische Universität Wuppertal, Macromolecular Chemistry Group and Wuppertal Center for Smart Materials and Systems (cm@s), Gauss-Str. 20, D-42119 Wuppertal, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- University Research Center of Ioannina (URCI) − Institute of Materials Science and Computing, 451 10 Ioannina, Greece
| |
Collapse
|
29
|
Haddad B, Kachroudi A, Turky G, Belarbi EH, Lamouri A, Villemin D, Rahmouni M, Sylvestre A. The interplay between molecular structure and dielectric propertiesin ionic liquids: A comparative study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Liu H, Luo X, Sokolov AP, Paddison SJ. Quantitative Evidence of Mobile Ion Hopping in Polymerized Ionic Liquids. J Phys Chem B 2021; 125:372-381. [PMID: 33393762 DOI: 10.1021/acs.jpcb.0c06916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomistic molecular dynamics simulations were performed, and an extensive set of analyses were undertaken to understand the ion transport mechanism in the polymerized ionic liquid poly(C2VIm)Tf2N. The ion hopping events were investigated at different time scales. Ion hopping was examined by monitoring the instantaneous cation-anion association and dissociation. Ion diffusion was subsequently evaluated with correlation functions and the calculation of relaxation times at different time scales. Dynamical heterogeneity in the mobility of the ions was observed with only a small portion of the anions classified as fast mobile ions. The mobile ions were characterized as the ones traveling farther than a certain distance during a characteristic period, which was much longer than the time scale of the instant ion pair dissociation. Effective hopping of the mobile ions contributed to the diffusivity which was dominated by interchain hopping and generally facilitated with five associating cations from two different polymer chains. Mobile anions had relatively fewer associating cations from more associating chains than immobile anions. The stringlike cooperative motion was observed in the mobile anions. The string length was determined to decrease with increasing temperature. These findings provided an in-depth understanding of the ion transport in polymerized ionic liquids and important information for the rational design of novel materials.
Collapse
Affiliation(s)
- Hongjun Liu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xubo Luo
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephen J Paddison
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
31
|
Shan N, Shen C, Evans CM. Critical Role of Ion Exchange Conditions on the Properties of Network Ionic Polymers. ACS Macro Lett 2020; 9:1718-1725. [PMID: 35653674 DOI: 10.1021/acsmacrolett.0c00678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionic polymers are important in a wide range of applications and can exhibit widely different properties depending on the ionic species. In the case of single ion conducting polymers, where one charge is attached to the backbone or as a side group, ion exchange is performed to control the mobile species. While the conditions are often specified, the final ion content is not always quantified, and there are no clear criteria for what concentration of salt is needed in the exchange. A series of ammonium network ionic polymers with different precise carbon spacers (C4-C7) between ionic junctions were synthesized as model systems to understand how the ion exchange conditions impact the resultant polymer properties. The initial networks with free bromide anions were exchanged with 1.5, 3, or 10 equiv of lithium bis(trifluoromethane)sulfonimide (LiTFSI) salt in solution. For networks with seven carbons between cross-links, increasing the LiTFSI concentration led to an increase in ion exchange efficiency from 83.6 to 97.6 mol %. At the highest conversion, the C7 network showed a 4 °C decrease in glass transition temperature (Tg), a 50 °C increase in degradation temperature, 12-fold lower water uptake from air, and a greater than 10-fold increase in conductivity at 90 °C. These results illustrate that properties such as Tg are less sensitive to residual ion impurities, whereas the conductivity is highly dependent on the final exchange conversion.
Collapse
Affiliation(s)
- Naisong Shan
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chengtian Shen
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Christopher M. Evans
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Thomann CA, Münzner P, Moch K, Jacquemin J, Goodrich P, Sokolov AP, Böhmer R, Gainaru C. Tuning the dynamics of imidazolium-based ionic liquids via hydrogen bonding. I. The viscous regime. J Chem Phys 2020; 153:194501. [DOI: 10.1063/5.0026144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- C. A. Thomann
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - P. Münzner
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - K. Moch
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J. Jacquemin
- Faculté des Sciences et Techniques, Université de Tours, 37200 Tours, France
- QUILL Center, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - P. Goodrich
- QUILL Center, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - A. P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, USA and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - R. Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C. Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
33
|
Li W, Carrillo JMY, Sumpter BG, Kumar R. Modulating Microphase Separation of Lamellae-Forming Diblock Copolymers via Ionic Junctions. ACS Macro Lett 2020; 9:1667-1673. [PMID: 35617068 DOI: 10.1021/acsmacrolett.0c00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a molecular dynamics simulation study investigating the phase behavior of lamellae-forming diblock copolymers with a single ionic junction on the backbone. Our results show qualitative agreement with experimental findings regarding enhanced microphase separation with the introduction of an ionic junction at the conjunction point, while further revealing nonmonotonic changes in domain spacing and order-disorder transition as a function of the electrostatic interaction strength. This highlights the dominant roles of entropic and binding effects of counterions under weak and strong ionic correlations, respectively. The location of the ionic junction is found to effectively modulate the charge distribution and chain conformation in the ordered domains; its presence in the middle of a block promotes folding of the block, leading to a smaller domain size. These findings demonstrate the interplay of ionic coupling with steric hindrance and chain end effects, which enhances our understanding of the delicate control over the microphase domain features.
Collapse
Affiliation(s)
- Wei Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
34
|
Bocharova V, Genix AC, Kisliuk A, Sala G, Osti NC, Mamontov E, Sokolov AP. Role of Fast Dynamics in Conductivity of Polymerized Ionic Liquids. J Phys Chem B 2020; 124:10539-10545. [PMID: 33164513 DOI: 10.1021/acs.jpcb.0c07549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymerized ionic liquids (PolyILs) are promising candidates for a broad range of technologies. However, the relatively low conductivity of PolyILs at room temperature has strongly limited their applications. In this work, we provide new insights into the roles of various microscopic parameters controlling ion transport in these polymers, which are crucial for their rational design and practical applications. Using broadband dielectric spectroscopy and neutron and light scattering techniques, we found a clear connection between the activation energy for conductivity, fast dynamics, and high-frequency shear modulus in PolyILs at their glass transition temperature (Tg). In particular, our analysis reveals a correlation between conductivity and the amplitude of fast picosecond fluctuations at Tg, suggesting the possible involvement of fast dynamics in lowering the energy barrier for ion conductivity. We also demonstrate that both the activation energy for ion transport and the amplitude of the fast fluctuations depend on the high-frequency shear moduli of PolyILs, thus identifying a practically important parameter for tuning conductivity. The parameters recognized in this work and their connection to the ionic conductivity of PolyILs set the stage for a deeper understanding of the mechanism of ion transport in PolyILs in the glassy state.
Collapse
Affiliation(s)
- Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anne-Caroline Genix
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, F-34095 Montpellier, France
| | - Alexander Kisliuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gabriele Sala
- Spallation Neutron Source, Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
35
|
Kinsey T, Glynn K, Cosby T, Iacob C, Sangoro J. Ion Dynamics of Monomeric Ionic Liquids Polymerized In Situ within Silica Nanopores. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44325-44334. [PMID: 32886472 DOI: 10.1021/acsami.0c12381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymerized ionic liquids are a promising class of versatile solid-state electrolytes for applications ranging from electrochemical energy storage to flexible smart materials that remain limited by their relatively low ionic conductivities compared to conventional electrolytes. Here, we show that the in situ polymerization of the vinyl cationic monomer, 1-ethyl-3-vinylimidazolium with the bis(trifluoromethanesulfonyl)imide counteranion, under nanoconfinement within 7.5 ± 1.0 nm diameter nanopores results in a nearly 1000-fold enhancement in the ionic conductivity compared to the material polymerized in bulk. Using insights from broadband dielectric and Raman spectroscopic techniques, we attribute these results to the role of confinement on molecular conformations, ion coordination, and subsequently the ionic conductivity in the polymerized ionic liquid. These results contribute to the understanding of the dynamics of nanoconfined molecules and show that in situ polymerization under nanoscale geometric confinement is a promising path toward enhancing ion conductivity in polymer electrolytes.
Collapse
Affiliation(s)
- Thomas Kinsey
- The Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37916, United States
| | - Kaitlin Glynn
- The Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37916, United States
| | - Tyler Cosby
- Department of Chemistry, US Naval Academy, Annapolis, Maryland 21402, United States
| | - Ciprian Iacob
- National Research and Development Institute for Cryogenic and Isotopic Technologies, ICSI Rm, Valcea, Romania 240050
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, Karlsruhe, Germany 76128
| | - Joshua Sangoro
- The Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37916, United States
| |
Collapse
|
36
|
Steinrücken E, Becher M, Vogel M. On the molecular mechanisms of α and β relaxations in ionic liquids. J Chem Phys 2020; 153:104507. [DOI: 10.1063/5.0019271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Elisa Steinrücken
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Manuel Becher
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
37
|
Abstract
Solid-state polymer electrolytes and high-concentration liquid electrolytes, such as water-in-salt electrolytes and ionic liquids, are emerging materials to replace the flammable organic electrolytes widely used in industrial lithium-ion batteries. Extensive efforts have been made to understand the ion transport mechanisms and optimize the ion transport properties. This perspective reviews the current understanding of the ion transport and polymer dynamics in liquid and polymer electrolytes, comparing the similarities and differences in the two types of electrolytes. Combining recent experimental and theoretical findings, we attempt to connect and explain ion transport mechanisms in different types of small-molecule and polymer electrolytes from a theoretical perspective, linking the macroscopic transport coefficients to the microscopic, molecular properties such as the solvation environment of the ions, salt concentration, solvent/polymer molecular weight, ion pairing, and correlated ion motion. We emphasize universal features in the ion transport and polymer dynamics by highlighting the relevant time and length scales. Several outstanding questions and anticipated developments for electrolyte design are discussed, including the negative transference number, control of ion transport through precision synthesis, and development of predictive multiscale modeling approaches.
Collapse
Affiliation(s)
- Chang Yun Son
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
38
|
Compañ V, Escorihuela J, Olvera J, García-Bernabé A, Andrio A. Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Röchow ET, Coeler M, Pospiech D, Kobsch O, Mechtaeva E, Vogel R, Voit B, Nikolowski K, Wolter M. In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems. Polymers (Basel) 2020; 12:E1707. [PMID: 32751500 PMCID: PMC7466031 DOI: 10.3390/polym12081707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
Solid polymer electrolytes for bipolar lithium ion batteries requiring electrochemical stability of 4.5 V vs. Li/Li+ are presented. Thus, imidazolium-containing poly(ionic liquid) (PIL) networks were prepared by crosslinking UV-photopolymerization in an in situ approach (i.e., to allow preparation directly on the electrodes used). The crosslinks in the network improve the mechanical stability of the samples, as indicated by the free-standing nature of the materials and temperature-dependent rheology measurements. The averaged mesh size calculated from rheologoical measurements varied between 1.66 nm with 10 mol% crosslinker and 4.35 nm without crosslinker. The chemical structure of the ionic liquid (IL) monomers in the network was varied to achieve the highest possible ionic conductivity. The systematic variation in three series with a number of new IL monomers offers a direct comparison of samples obtained under comparable conditions. The ionic conductivity of generation II and III PIL networks was improved by three orders of magnitude, to the range of 7.1 × 10-6 S·cm-1 at 20 °C and 2.3 × 10-4 S·cm-1 at 80 °C, compared to known poly(vinylimidazolium·TFSI) materials (generation I). The transition from linear homopolymers to networks reduces the ionic conductivity by about one order of magnitude, but allows free-standing films instead of sticky materials. The PIL networks have a much higher voltage stability than PEO with the same amount and type of conducting salt, lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). GII-PIL networks are electrochemically stable up to a potential of 4.7 V vs. Li/Li+, which is crucial for a potential application as a solid electrolyte. Cycling (cyclovoltammetry and lithium plating-stripping) experiments revealed that it is possible to conduct lithium ions through the GII-polymer networks at low currents. We concluded that the synthesized PIL networks represent suitable candidates for solid-state electrolytes in lithium ion batteries or solid-state batteries.
Collapse
Affiliation(s)
- Eike T. Röchow
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany; (E.T.R.); (O.K.); (R.V.); (B.V.)
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Matthias Coeler
- Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Winterbergstr. 28, 01277 Dresden, Germany; (M.C.); (K.N.); (M.W.)
| | - Doris Pospiech
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany; (E.T.R.); (O.K.); (R.V.); (B.V.)
| | - Oliver Kobsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany; (E.T.R.); (O.K.); (R.V.); (B.V.)
| | - Elizaveta Mechtaeva
- Department of High-Molecular Compounds Chemistry, St. Petersburg University, Universitetskaya Emb., 7/9, Saint-Petersburg 199034, Russia;
| | - Roland Vogel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany; (E.T.R.); (O.K.); (R.V.); (B.V.)
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany; (E.T.R.); (O.K.); (R.V.); (B.V.)
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Kristian Nikolowski
- Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Winterbergstr. 28, 01277 Dresden, Germany; (M.C.); (K.N.); (M.W.)
| | - Mareike Wolter
- Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Winterbergstr. 28, 01277 Dresden, Germany; (M.C.); (K.N.); (M.W.)
| |
Collapse
|
40
|
Bocharova V, Jayakody N, Yang J, Sacci RL, Yang W, Cheng S, Doughty B, Greenbaum S, Jeong SP, Popov I, Zhao S, Gainaru C, Wojnarowska Z. Modulation of Cation Diffusion by Reversible Supramolecular Assemblies in Ionic Liquid-Based Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31842-31851. [PMID: 32567831 PMCID: PMC7588017 DOI: 10.1021/acsami.0c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Ionic liquid (IL) properties, such as high ionic conductivity under ambient conditions combined with nontoxicity and nonflammability, make them important materials for future technologies. Despite high ion conductivity desired for battery applications, cation transport numbers in ILs are not sufficient enough to attain high power density batteries. Thus, developing novel approaches directed toward improvement of cation transport properties is required for the application of ILs in energy-storing devices. In this effort, we used various experimental techniques to demonstrate that the strategy of mixing ILs with ultrasmall (1.8 nm) nanoparticles (NPs) resulted in melt-processable composites with improved transport numbers for cations at room temperature. This significant enhancement in the transport number was attributed to the specific chemistry of NPs exhibiting a weaker cation and stronger anion coordination at ambient temperature. At high temperature, significantly weakened NP-anion associations promoted a liquid-like behavior of composites, highlighting the melt-processability of these composites. These results show that designing a reversible dynamic noncovalent NP-anion association controlled by the temperature may constitute an effective strategy to control ion diffusion. Our studies provide fundamental insights into mechanisms driving the charge transport and offer practical guidance for the design of melt-processable composites with an improved cation transport number under ambient conditions.
Collapse
Affiliation(s)
- Vera Bocharova
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nishani Jayakody
- Department
of Physics & Astronomy, Hunter College
of the City University of New York, New York, New York 10065, United States
| | - Jie Yang
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48864, United States
- College
of Polymer Science and Engineering, Sichuan
University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Robert L. Sacci
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Wei Yang
- College
of Polymer Science and Engineering, Sichuan
University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Shiwang Cheng
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48864, United States
| | - Benjamin Doughty
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Steven Greenbaum
- Department
of Physics & Astronomy, Hunter College
of the City University of New York, New York, New York 10065, United States
| | - Seung Pyo Jeong
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ivan Popov
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Zhao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Catalin Gainaru
- Fakultät
Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Zaneta Wojnarowska
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute
of Physics, The University of Silesia in
Katowice, SMCEBI 75 Pulku
Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
41
|
Anton AM, Frenzel F, Yuan J, Tress M, Kremer F. Hydrogen bonding and charge transport in a protic polymerized ionic liquid. SOFT MATTER 2020; 16:6091-6101. [PMID: 32542249 DOI: 10.1039/d0sm00337a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen bonding and charge transport in the protic polymerized ionic liquid poly[tris(2-(2-methoxyethoxy)ethyl)ammoniumacryloxypropyl sulfonate] (PAAPS) are studied by combining Fourier transform infrared (FTIR) and broadband dielectric spectroscopy (BDS) in a wide temperature range from 170 to 300 K. While the former enables to determine precisely the formation of hydrogen bonds and other moiety-specific quantized vibrational states, the latter allows for recording the complex conductivity in a spectral range from 10-2 to 10+9 Hz. A pronounced thermal hysteresis is observed for the H-bond network formation in distinct contrast to the reversibility of the effective conductivity measured by BDS. On the basis of this finding and the fact that the conductivity changes with temperature by orders of magnitude, whereas the integrated absorbance of the N-H stretching vibration (being proportional to the number density of protons in the hydrogen bond network) changes only by a factor of 4, it is concluded that charge transport takes place predominantly due to hopping conduction assisted by glassy dynamics (dynamic glass transition assisted hopping) and is not significantly affected by the establishment of H-bonds.
Collapse
Affiliation(s)
- Arthur Markus Anton
- Leipzig University, Peter Debye Institute for Soft Matter Physics, Linnéstraße 5, 04103 Leipzig, Germany. and The University of Sheffield, Department of Physics and Astronomy, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Falk Frenzel
- Leipzig University, Peter Debye Institute for Soft Matter Physics, Linnéstraße 5, 04103 Leipzig, Germany.
| | - Jiayin Yuan
- Stockholm University, Department of Materials and Environmental Chemistry, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Martin Tress
- Leipzig University, Peter Debye Institute for Soft Matter Physics, Linnéstraße 5, 04103 Leipzig, Germany. and University of Tennessee, Department of Chemistry, 1420 Circle Drive,, Knoxville, Tennessee 37996, USA
| | - Friedrich Kremer
- Leipzig University, Peter Debye Institute for Soft Matter Physics, Linnéstraße 5, 04103 Leipzig, Germany.
| |
Collapse
|
42
|
Bandegi A, Bañuelos JL, Foudazi R. Formation of ion gels by polymerization of block copolymer/ionic liquid/oil mesophases. SOFT MATTER 2020; 16:6102-6114. [PMID: 32638811 DOI: 10.1039/d0sm00850h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we introduce a new method of developing ion gels through polymerization of lyotropic liquid crystal (LLC) templates of monomer (styrene), cross-linker (divinylbenzene), ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate), and amphiphilic block copolymers (Pluronic F127). The polymerization of the oil phase boosts the mechanical properties of the ion-conducting electrolytes. We discuss the effect of tortuosity induced by crystalline domains and LLC structure on the conductivity of ion gels. The ion transport in polymerized LLCs (polyLLCs) can be controlled by changing the composition of the mesophases. Increasing the block copolymer concentration enhances the crystallinity of PEO blocks in the conductive domains, which slows down the dynamics of PEO chain and ion transport. We show that by adjusting the composition of LLC mesophases, the mechanical strength of ion gels can be increased one order of magnitude without compromising the ionic conductivity. The polyLLCs with 45/25/30 wt% (block copolymer/IL/oil) composition has storage modulus and ionic conductivity higher than 1 MPa and 3 mS cm-1 at 70 °C, respectively. The results suggest that LLC templating is a promising method to develop highly conductive ion gels, which provides advantages in terms of variety and processing.
Collapse
Affiliation(s)
- Alireza Bandegi
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Jose L Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Reza Foudazi
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
43
|
Xiao W, Yang Q, Zhu S. Comparing ion transport in ionic liquids and polymerized ionic liquids. Sci Rep 2020; 10:7825. [PMID: 32385380 PMCID: PMC7210282 DOI: 10.1038/s41598-020-64689-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/06/2020] [Indexed: 11/08/2022] Open
Abstract
Polymerized ionic liquids (polyILs) combine the unique properties of ionic liquids (ILs) with macromolecular polymers. But anion diffusivities in polyILs can be three orders of magnitude lower than that in ILs. Endeavors to improve ion transport in polyILs urgently need in-depth insights of ion transport in polyILs. As such in the work we compared ion transport in poly (1-butyl-3-vinylimidazolium-tetrafluoroborate) (poly ([BVIM]-[BF4])) polyIL and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-[BF4]) IL. The diffusivities of ions in the polyIL and IL were measured and computed. According to the results of the molecular dynamics simulations performed, in the IL the coupling motion between an anion and the ions around determines the ion diffusivities, and the ion association lifetime gives the time scale of ion transport. But in the polyIL, the hopping of an anion among cages composed of cationic branch chains determines the diffusivity, and the associated anion transport time scale is the trap time, which is the time when an anion is caught inside a cage, not the ion association lifetime, as Mogurampelly et al. regarded. The calculation results of average displacements (ADs) of the polyIL chains show that, besides free volume fraction, average amplitudes of the oscillation of chains and chain translation speed lead to various diffusivities at various temperatures.
Collapse
Affiliation(s)
- Wangchuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Fujian, 365004, China
| | - Quan Yang
- School of Resources and Chemical Engineering, Sanming University, Fujian, 365004, China.
| | - Shenlin Zhu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
44
|
Bocharova V, Sokolov AP. Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02742] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- V. Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - A. P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
45
|
Pipertzis A, Papamokos G, Mühlinghaus M, Mezger M, Scherf U, Floudas G. What Determines the Glass Temperature and dc-Conductivity in Imidazolium-Polymerized Ionic Liquids with a Polythiophene Backbone? Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Achilleas Pipertzis
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - George Papamokos
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | | | - Markus Mezger
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ullrich Scherf
- Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
46
|
Liu J, Pickett PD, Park B, Upadhyay SP, Orski SV, Schaefer JL. Non-solvating, side-chain polymer electrolytes as lithium single-ion conductors: synthesis and ion transport characterization. Polym Chem 2020. [DOI: 10.1039/c9py01035a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Non-solvating, side-chain polymer electrolytes with more dissociable pendent anion chemistries exhibit a dielectric relaxation dominated lithium ion transport mechanism.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- Notre Dame
- USA
| | - Phillip D. Pickett
- Materials Science and Engineering Division
- Material Measurement Laboratory
- National Institute of Standards and Technology
- Gaithersburg
- USA
| | - Bumjun Park
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- Notre Dame
- USA
| | - Sunil P. Upadhyay
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- Notre Dame
- USA
| | - Sara V. Orski
- Materials Science and Engineering Division
- Material Measurement Laboratory
- National Institute of Standards and Technology
- Gaithersburg
- USA
| | - Jennifer L. Schaefer
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|
47
|
Jing BB, Evans CM. Catalyst-Free Dynamic Networks for Recyclable, Self-Healing Solid Polymer Electrolytes. J Am Chem Soc 2019; 141:18932-18937. [PMID: 31743006 DOI: 10.1021/jacs.9b09811] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polymer networks with dynamic covalent cross-links act as solids but can flow at high temperatures. They have been widely explored as reprocessable and self-healing materials, but their use as solid electrolytes is limited. Here we report poly(ethylene oxide)-based networks with varying amounts of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to understand the impact of a salt on the ion transport and network dynamics. We observed that the conductivity of our dynamic networks reached a maximum of 3.5 × 10-4 S/cm at an optimal LiTFSI concentration. Rheological measurements showed that the amount of LiTFSI significantly affects the mechanical properties, as the shear modulus varies between 1 and 10 MPa and the stress relaxation by 2 orders of magnitude. Additionally, we found that these networks can efficiently dissolve back to pure monomers and heal to recover their conductivity after damage, showing the potential of dynamic networks as sustainable solid electrolytes.
Collapse
|
48
|
Becher M, Steinrücken E, Vogel M. On the relation between reorientation and diffusion in glass-forming ionic liquids with micro-heterogeneous structures. J Chem Phys 2019; 151:194503. [DOI: 10.1063/1.5128420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Manuel Becher
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Elisa Steinrücken
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
49
|
Kuray P, Noda T, Matsumoto A, Iacob C, Inoue T, Hickner MA, Runt J. Ion Transport in Pendant and Backbone Polymerized Ionic Liquids. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Takeru Noda
- Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Atsushi Matsumoto
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Ciprian Iacob
- National Research and Development Institute for Cryogenic and Isotopic Technologies, ICSI, Rm. Valcea 240050, Romania
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Tadashi Inoue
- Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
50
|
Cheng S, Wojnarowska Z, Musiał M, Flachard D, Drockenmuller E, Paluch M. Access to Thermodynamic and Viscoelastic Properties of Poly(ionic liquid)s Using High-Pressure Conductivity Measurements. ACS Macro Lett 2019; 8:996-1001. [PMID: 35619493 DOI: 10.1021/acsmacrolett.9b00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we examine the transport properties of a 1,2,3-triazolium-based poly(ionic liquid) (PIL) at ambient and elevated pressure up to 475 MPa. We show that the isothermal and isobaric conductivity measurements analyzed in the 3D plane give a unique possibility to estimate the thermodynamic (isothermal compressibility and thermal expansion coefficient) properties for PILs having a charge transport fully controlled by viscosity. This result, providing a direct connection between thermodynamic and dynamic properties of PILs, is of significant importance for both material scientists and practical applications.
Collapse
Affiliation(s)
- Shinian Cheng
- Institute of Physics, University of Silesia, SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Zaneta Wojnarowska
- Institute of Physics, University of Silesia, SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Małgorzata Musiał
- Institute of Physics, University of Silesia, SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Dimitri Flachard
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
| | - Marian Paluch
- Institute of Physics, University of Silesia, SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|