1
|
Abdellatef SA, Bard F, Nakanishi J. Photoactivatable substrates show diverse phenotypes of leader cells in collective migration when moving along different extracellular matrix proteins. Biomater Sci 2024; 12:3446-3457. [PMID: 38832531 DOI: 10.1039/d4bm00225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In cancer metastasis, collectively migrating clusters are discriminated into leader and follower cells that move through extracellular matrices (ECMs) with different characteristics. The impact of changes in ECM protein types on leader cells and migrating clusters is unknown. To address this, we investigated the response of leader cells and migrating clusters upon moving from one ECM protein to another using a photoactivatable substrate bearing photocleavable PEG (PCP), whose surface changes from protein-repellent to protein-adhesive in response to light. We chose laminin and collagen I for our study since they are abundant in two distinct regions in living tissues, namely basement membrane and connective tissue. Using the photoactivatable substrates, the precise deposition of the first ECM protein in the irradiated areas was achieved, followed by creating well-defined cellular confinements. Secondary irradiation enabled the deposition of the second ECM protein in the new irradiated regions, resulting in region-selective heterogeneous and homogenous ECM protein-coated surfaces. Different tendencies in leader cell formation from laminin into laminin compared to those migrating from laminin into collagen were observed. The formation of focal adhesion and actin structures for cells within the same cluster in the ECM proteins responded according to the underlying ECM protein type. Finally, integrin β1 was crucial for the appearance of leader cells for clusters migrating from laminin into collagen. However, when it came to laminin into laminin, integrin β1 was not responsible. This highlights the correlation between leader cells in collective migration and the biochemical signals that arise from underlying extracellular matrix proteins.
Collapse
Affiliation(s)
- Shimaa A Abdellatef
- Mechanobiology group, Research Centre for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan.
| | - Francesca Bard
- Mechanobiology group, Research Centre for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan.
- Department of Material Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Jun Nakanishi
- Mechanobiology group, Research Centre for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan.
- Waseda University Graduate School of Advanced Science and Engineering Department of Nanoscience and Engineering, Tokyo, Japan
- Tokyo University of Science, advanced Graduate School of Engineering Materials Innovation Engineering, Japan
| |
Collapse
|
2
|
Wu K, Sun J, Ma Y, Wei D, Lee O, Luo H, Fan H. Spatiotemporal regulation of dynamic cell microenvironment signals based on an azobenzene photoswitch. J Mater Chem B 2020; 8:9212-9226. [PMID: 32929441 DOI: 10.1039/d0tb01737j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dynamic biochemical and biophysical signals of cellular matrix define and regulate tissue-specific cell functions and fate. To recapitulate this complex environment in vitro, biomaterials based on structural- or degradation-tunable polymers have emerged as powerful platforms for regulating the "on-demand" cell-material dynamic interplay. As one of the most prevalent photoswitch molecules, the photoisomerization of azobenzene demonstrates a unique advantage in the construction of dynamic substrates. Moreover, the development of azobenzene-containing biomaterials is particularly helpful in elucidating cells that adapt to a dynamic microenvironment or integrate spatiotemporal variations of signals. Herein, this minireview, places emphasis on the research progress of azobenzene photoswitches in the dynamic regulation of matrix signals. Some techniques and material design methods have been discussed to provide some theoretical guidance for the rational and efficient design of azopolymer-based material platforms. In addition, considering that the UV-light response of traditional azobenzene photoswitches is not conducive to biological applications, we have summarized the recent approaches to red-shifting the light wavelength for azobenzene activation.
Collapse
Affiliation(s)
- Kai Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yanzhe Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Oscar Lee
- Institute of Clinical Medicine National Yang-Ming University, Taipei, Taiwan
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
3
|
Wang D, Schellenberger F, Pham JT, Butt HJ, Wu S. Orthogonal photo-switching of supramolecular patterned surfaces. Chem Commun (Camb) 2018; 54:3403-3406. [PMID: 29557451 DOI: 10.1039/c8cc00770e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We used Azo/α-CD and ipAzo/γ-CD host-guest complexes to demonstrate that four independent stable states can be orthogonally photo-switched by UV (365 nm), blue (470 nm), green (530 nm) and red light (625 nm). A supramolecular patterned surface was fabricated and orthogonally photo-switched by light with different wavelengths.
Collapse
Affiliation(s)
- Dongsheng Wang
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, 610054, Chengdu, China
| | - Frank Schellenberger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Jonathan T Pham
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Si Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei, 230026, China.
| |
Collapse
|
4
|
Rosales AM, Rodell CB, Chen MH, Morrow MG, Anseth KS, Burdick JA. Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. Bioconjug Chem 2018; 29:905-913. [PMID: 29406696 DOI: 10.1021/acs.bioconjchem.7b00802] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biomimetic hydrogels fabricated from biologically derived polymers, such as hyaluronic acid (HA), are useful for numerous biomedical applications. Due to the dynamic nature of biological processes, it is of great interest to synthesize hydrogels with dynamically tunable network properties where various functions (e.g., cargo delivery, mechanical signaling) can be changed over time. Among the various stimuli developed to control hydrogel properties, light stands out for its exquisite spatiotemporal control; however, most light-based chemistries are unidirectional in their ability to manipulate network changes. Here, we report a strategy to reversibly modulate HA hydrogel properties with light, using supramolecular cross-links formed via azobenzene bound to β-cyclodextrin. Upon isomerization with 365 nm or 400-500 nm light, the binding affinity between azobenzene and β-cyclodextrin changed and altered the network connectivity. The hydrogel mechanical properties depended on both the azobenzene modification and isomeric state (lower for cis state), with up to a 60% change in storage modulus with light exposure. Furthermore, the release of a fluorescently labeled protein was accelerated with light exposure under conditions that were cytocompatible to encapsulated cells. These results indicate that the developed hydrogels may be suitable for applications in which temporal regulation of material properties is important, such as drug delivery or mechanobiology studies.
Collapse
Affiliation(s)
- Adrianne M Rosales
- Department of Chemical and Biological Engineering & BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80303 , United States
| | - Christopher B Rodell
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Minna H Chen
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Matthew G Morrow
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering & BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80303 , United States
| | - Jason A Burdick
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
5
|
Prochowicz D, Kornowicz A, Lewiński J. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chem Rev 2017; 117:13461-13501. [DOI: 10.1021/acs.chemrev.7b00231] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel Prochowicz
- Institute of Physical
Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Arkadiusz Kornowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical
Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
6
|
Lee CW, Lee SH, Yang YK, Ryu GC, Kim HJ. Fabrication of photochromic hydrogels using an interpenetrating chitosan network. J Appl Polym Sci 2017. [DOI: 10.1002/app.45120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cheol Woo Lee
- Department of Optometry and Optic Science; Dongshin University, Naju; Jeonnam 520-714 Korea
| | - Seung Hwan Lee
- Center for Genome Engineering; Institute for Basic Science; Seoul 151-747 Korea
| | | | - Geun-Chang Ryu
- Center for Genome Engineering; Institute for Basic Science; Seoul 151-747 Korea
| | - Ho-Joong Kim
- Department of Chemistry; Chosun University; Gwangju 501-759 Korea
| |
Collapse
|
7
|
Zhan W, Wei T, Cao L, Hu C, Qu Y, Yu Q, Chen H. Supramolecular Platform with Switchable Multivalent Affinity: Photo-Reversible Capture and Release of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3505-3513. [PMID: 28071051 DOI: 10.1021/acsami.6b15446] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surfaces having dynamic control of interactions at the biological system-material interface are of great scientific and technological interest. In this work, a supramolecular platform with switchable multivalent affinity was developed to efficiently capture bacteria and on-demand release captured bacteria in response to irradiation with light of different wavelengths. The system consists of a photoresponsive self-assembled monolayer containing azobenzene (Azo) groups as guest and β-cyclodextrin (β-CD)-mannose (CD-M) conjugates as host with each CD-M containing seven mannose units to display localized multivalent carbohydrates. Taking the advantage of multivalent effect of CD-M, this system exhibited high capacity and specificity for the capture of mannose-specific type 1-fimbriated bacteria. Moreover, ultraviolet (UV) light irradiation caused isomerization of the Azo groups from trans-form to cis-form, resulting in the dissociation of the host-guest Azo/CD-M inclusion complexes and localized release of the captured bacteria. The capture and release process could be repeated for multiple cycles, suggesting good reproducibility. This platform provides the basis for development of reusable biosensors and diagnostic devices for the detection and measurement of bacteria and exhibits great potential for use as a standard protocol for the on-demand switching of surface functionalities.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| |
Collapse
|
8
|
Shi P, Ju E, Yan Z, Gao N, Wang J, Hou J, Zhang Y, Ren J, Qu X. Spatiotemporal control of cell-cell reversible interactions using molecular engineering. Nat Commun 2016; 7:13088. [PMID: 27708265 PMCID: PMC5059747 DOI: 10.1038/ncomms13088] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 09/01/2016] [Indexed: 01/09/2023] Open
Abstract
Manipulation of cell-cell interactions has potential applications in basic research and cell-based therapy. Herein, using a combination of metabolic glycan labelling and bio-orthogonal click reaction, we engineer cell membranes with β-cyclodextrin and subsequently manipulate cell behaviours via photo-responsive host-guest recognition. With this methodology, we demonstrate reversible manipulation of cell assembly and disassembly. The method enables light-controllable reversible assembly of cell-cell adhesion, in contrast with previously reported irreversible effects, in which altered structure could not be reused. We also illustrate the utility of the method by designing a cell-based therapy. Peripheral blood mononuclear cells modified with aptamer are effectively redirected towards target cells, resulting in enhanced cell apoptosis. Our approach allows precise control of reversible cell-cell interactions and we expect that it will promote further developments of cell-based therapy.
Collapse
Affiliation(s)
- Peng Shi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhengqing Yan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiasi Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianwen Hou
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yan Zhang
- College of life science, Jilin University, Changchun 130012, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
9
|
Wang D, Wagner M, Butt HJ, Wu S. Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue. SOFT MATTER 2015; 11:7656-7662. [PMID: 26292617 DOI: 10.1039/c5sm01888a] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a novel red-light-responsive supramolecule. The tetra-ortho-methoxy-substituted azobenzene (mAzo) and β-cyclodextrin (β-CD) spontaneously formed a supramolecular complex. The substituted methoxy groups shifted the responsive wavelength of the azo group to the red light region, which is in the therapeutic window and desirable for biomedical applications. Red light induced the isomerization of mAzo and the disassembly of the mAzo/β-CD supramolecular complex. We synthesized a mAzo-functionalized polymer and a β-CD-functionalized polymer. Mixing the two polymers in an aqueous solution generated a supramolecular hydrogel. Red light irradiation induced a gel-to-sol transition as a result of the disassembly of the mAzo/β-CD complexes. Proteins were loaded in the hydrogel. Red light could control protein release from the hydrogel in tissue due to its deep penetration depth in tissue. We envision the use of red-light-responsive supramolecules for deep-tissue biomedical applications.
Collapse
Affiliation(s)
- Dongsheng Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | | | | | |
Collapse
|
10
|
Dhowre HS, Rajput S, Russell NA, Zelzer M. Responsive cell–material interfaces. Nanomedicine (Lond) 2015; 10:849-71. [DOI: 10.2217/nnm.14.222] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Major design aspects for novel biomaterials are driven by the desire to mimic more varied and complex properties of a natural cellular environment with man-made materials. The development of stimulus responsive materials makes considerable contributions to the effort to incorporate dynamic and reversible elements into a biomaterial. This is particularly challenging for cell–material interactions that occur at an interface (biointerfaces); however, the design of responsive biointerfaces also presents opportunities in a variety of applications in biomedical research and regenerative medicine. This review will identify the requirements imposed on a responsive biointerface and use recent examples to demonstrate how some of these requirements have been met. Finally, the next steps in the development of more complex biomaterial interfaces, including multiple stimuli-responsive surfaces, surfaces of 3D objects and interactive biointerfaces will be discussed.
Collapse
Affiliation(s)
- Hala S Dhowre
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Sunil Rajput
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Noah A Russell
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
| | - Mischa Zelzer
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
- Interface & Surface Analysis Centre, Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| |
Collapse
|
11
|
Wei D, Xiao W, Sun J, Zhong M, Guo L, Fan H, Zhang X. A biocompatible hydrogel with improved stiffness and hydrophilicity for modular tissue engineering assembly. J Mater Chem B 2015; 3:2753-2763. [DOI: 10.1039/c5tb00129c] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflexible hydrophilic AlgMA was introduced into a bioactive GelMA hydrogel to enhance stiffness and hydrophilicity, thus improving surface tension driven assembly of modular constructs with spatial organized cell distribution and biofunctions.
Collapse
Affiliation(s)
- Dan Wei
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Wenqian Xiao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jing Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Meiling Zhong
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Likun Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
12
|
Wu S, Zhu X, Yang J, Nie J. A facile photopolymerization method for fabrication of pH and light dual reversible stimuli-responsive surfaces. Chem Commun (Camb) 2015; 51:5649-51. [DOI: 10.1039/c4cc10441b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study proposes a simple and facile two-stage photopolymerization method for fabrication of pH and light dual reversible stimuli-responsive surfaces.
Collapse
Affiliation(s)
- Shaopeng Wu
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoqun Zhu
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Jinliang Yang
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Changzhou Institute of Advanced Materials
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
13
|
Li Z, Cao B, Wang X, Ye K, Li S, Ding J. Effects of RGD nanospacing on chondrogenic differentiation of mesenchymal stem cells. J Mater Chem B 2015; 3:5197-5209. [DOI: 10.1039/c5tb00455a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RGD nanopatterns were generated on nonfouling PEG hydrogels to explore the effects of RGD nanospacing on adhesion and chondrogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Zhenhua Li
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Advanced Materials Laboratory
- Fudan University
| | - Bin Cao
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Advanced Materials Laboratory
- Fudan University
| | - Xuan Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Advanced Materials Laboratory
- Fudan University
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Advanced Materials Laboratory
- Fudan University
| | - Shiyu Li
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Advanced Materials Laboratory
- Fudan University
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Advanced Materials Laboratory
- Fudan University
| |
Collapse
|
14
|
Higuchi A, Ling QD, Kumar SS, Chang Y, Kao TC, Munusamy MA, Alarfaj AA, Hsu ST, Umezawa A. External stimulus-responsive biomaterials designed for the culture and differentiation of ES, iPS, and adult stem cells. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Li J, Zhou Z, Ma L, Chen G, Li Q. Hierarchical Assembly of Amphiphilic POSS-Cyclodextrin Molecules and Azobenzene End-Capped Polymers. Macromolecules 2014. [DOI: 10.1021/ma501100r] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jinze Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College
of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng Zhou
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College
of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Ma
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College
of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangxin Chen
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key
Laboratory on Preparation and Processing of Novel Polymer Materials
of Beijing, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qifang Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key
Laboratory on Preparation and Processing of Novel Polymer Materials
of Beijing, Beijing University of Chemical Technology, Beijing 100029, China
- College
of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|