1
|
Lin AYW, Wu ZY, Pattison AJ, Müller IE, Yoshikuni Y, Theis W, Ercius P. Statistical 3D morphology characterization of vaterite microspheres produced by engineered Escherichia coli. BIOMATERIALS ADVANCES 2024; 156:213711. [PMID: 38061158 DOI: 10.1016/j.bioadv.2023.213711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023]
Abstract
Hollow vaterite microspheres are important materials for biomedical applications such as drug delivery and regenerative medicine owing to their biocompatibility, high specific surface area, and ability to encapsulate a large number of bioactive molecules and compounds. We demonstrated that hollow vaterite microspheres are produced by an Escherichia coli strain engineered with a urease gene cluster from the ureolytic bacteria Sporosarcina pasteurii in the presence of bovine serum albumin. We characterized the 3D nanoscale morphology of five biogenic hollow vaterite microspheres using 3D high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) tomography. Using automated high-throughput HAADF-STEM imaging across several sample tilt orientations, we show that the microspheres evolved from a smaller more ellipsoidal shape to a larger more spherical shape while the internal hollow core increased in size and remained relatively spherical, indicating that the microspheres produced by this engineered strain likely do not contain the bacteria. The statistical 3D morphology information demonstrates the potential for using biogenic calcium carbonate mineralization to produce hollow vaterite microspheres with controlled morphologies. STATEMENT OF SIGNIFICANCE: The nanoscale 3D structures of biomaterials determine their physical, chemical, and biological properties, however significant efforts are required to obtain a statistical understanding of the internal 3D morphology of materials without damaging the structures. In this study, we developed a non-destructive, automated technique that allows us to understand the nanoscale 3D morphology of many unique hollow vaterite microspheres beyond the spectroscopy methods that lack local information and microscopy methods that cannot interrogate the full 3D structure. The method allowed us to quantitatively correlate the external diameters and aspect ratios of vaterite microspheres with their hollow internal structures at the nanoscale. This work demonstrates the opportunity to use automated transmission electron microscopy to characterize nanoscale 3D morphologies of many biomaterials and validate the chemical and biological functionality of these materials.
Collapse
Affiliation(s)
- Alex Y W Lin
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zong-Yen Wu
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander J Pattison
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Isaak E Müller
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Wolfgang Theis
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Macor LP, Colombi S, Tamarit JL, Engel E, Pérez-Madrigal MM, García-Torres J, Alemán C. Immediate-sustained lactate release using alginate hydrogel assembled to proteinase K/polymer electrospun fibers. Int J Biol Macromol 2023; 238:124117. [PMID: 36948340 DOI: 10.1016/j.ijbiomac.2023.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
This work proposes a microfibers-hydrogel assembled composite as delivery vehicle able to combine into a single system both burst and prolonged release of lactate. The prolonged release of lactate has been achieved by electrospinning a mixture of polylactic acid and proteinase K (26.0 mg of proteinase K and 0.99 g of PLA dissolved in 6 mL of 2:1 chloroform:acetone in the optimal case), which is a protease that catalyzes the degradation of polylactic acid into lactate. The degradation of microfibers into lactate reflects that proteinase K preserves its enzymatic activity even after the electrospinning process because of the mild operational conditions used. Besides, burst release is obtained from the lactate-loaded alginate hydrogel. The successful assembly between the lactate-loaded hydrogel and the polylactic acid/proteinase K fibers has been favored by applying a low-pressure (0.3 mbar at 300 W) oxygen plasma treatment, which transforms hydrophobic fibers into hydrophilic while the enzymatic activity is still maintained. The composite displays both fast (< 24 h) and sustained (> 10 days) lactate release, and allows the modulation of the release by adjusting either the amount of loaded lactate or the amount of active enzyme.
Collapse
Affiliation(s)
- Lorena P Macor
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina.
| | - Samuele Colombi
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Josep-Lluis Tamarit
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Departament de Ciència i Enginyeria de Materials, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain
| | - Maria M Pérez-Madrigal
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain.
| | - Jose García-Torres
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain.
| | - Carlos Alemán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; IMEM-BRT Group, Departament de Ciència i Enginyeria de Materials, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
3
|
Yi L, Zou B, Xie L, Zhang R. A novel bifunctional protein PNU7 in CaCO3 polymorph formation: Vaterite stabilization and surface energy minimization. Int J Biol Macromol 2022; 222:2796-2807. [DOI: 10.1016/j.ijbiomac.2022.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
4
|
Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Gao S, Sun L, Xu K, Gui X, Liu L. Silsesquioxane-cored miktoarm copolymer amphiphiles for fabrication of oxidation-responsive silica-encapsulated polysulfide microspheres. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Chen S, John JV, McCarthy A, Xie J. New forms of electrospun nanofiber materials for biomedical applications. J Mater Chem B 2020; 8:3733-3746. [PMID: 32211735 PMCID: PMC7205582 DOI: 10.1039/d0tb00271b] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, electrospinning has emerged as an enabling nanotechnology to produce nanofiber materials for various biomedical applications. In particular, therapeutic/cellloaded nanofiber scaffolds have been widely examined in drug delivery, wound healing, and tissue repair and regeneration. However, due to the insufficient porosity, small pore size, noninjectability, and inaccurate spatial control in nanofibers of scaffolds, many efforts have been devoted to exploring new forms of nanofiber materials including expanded nanofiber scaffolds, nanofiber aerogels, short nanofibers, and nanofiber microspheres. This short review discusses the preparation and potential biomedical applications of new forms of nanofiber materials.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Johnson V John
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Obata A, Ogasawara T, Kasuga T. Combinatorial effects of inorganic ions on adhesion and proliferation of osteoblast‐like cells. J Biomed Mater Res A 2019; 107:1042-1051. [DOI: 10.1002/jbm.a.36623] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/24/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Akiko Obata
- Division of Advanced Ceramics, Graduate School of EngineeringNagoya Institute of Technology Nagoya Japan
| | - Toru Ogasawara
- Division of Advanced Ceramics, Graduate School of EngineeringNagoya Institute of Technology Nagoya Japan
| | - Toshihiro Kasuga
- Division of Advanced Ceramics, Graduate School of EngineeringNagoya Institute of Technology Nagoya Japan
| |
Collapse
|
8
|
Seknazi E, Mijowska S, Polishchuk I, Pokroy B. Incorporation of organic and inorganic impurities into the lattice of metastable vaterite. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00849g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Highly substituted Mg-vaterite and Ba-vaterite were synthesized in the presence of aspartic acid and characterized by means of synchrotron XRD.
Collapse
Affiliation(s)
- Eva Seknazi
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa 32000
- Israel
| | - Sylwia Mijowska
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa 32000
- Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa 32000
- Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa 32000
- Israel
| |
Collapse
|
9
|
Jiang J, Wu Y, Chen C, Wang X, Zhao H, Xu S, Yang C, Xiao B. A novel route to prepare the metastable vaterite phase of CaCO 3 from CaCl 2 ethanol solution and Na 2 CO 3 aqueous solution. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Kunthom R, Piyanuch P, Wanichacheva N, Ervithayasuporn V. Cage-like silsesequioxanes bearing rhodamines as fluorescence Hg2+ sensors. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Nakamura J, Ota Y, Sakka Y, Kasuga T. Interphase coordination design in carbamate-siloxane/vaterite composite microparticles towards tuning ion-releasing properties. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Yamada S, Ota Y, Obata A, Kasuga T. Osteoblast-like cell responses to ion products released from magnesium- and silicate-containing calcium carbonates. Biomed Mater Eng 2017; 28:47-56. [PMID: 28269744 DOI: 10.3233/bme-171655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Inorganic ions released from bioceramics and bioactive glasses have been reported to influence osteogenic cell functions. Cell responses depend on types of the ions provided, for example, silicate ion has been found to up-regulate their proliferation, differentiation and mineralization. OBJECTIVE Mouse osteoblast-like cells (MC3T3-E1) were cultured in media containing silicate and calcium ions with/without magnesium ion to evaluate their combined effects on the cell's functions. METHODS The cells were cultured in the media containing the extract of silicate-containing vaterite (SiV) and magnesium- and siloxane-containing one (MgSiV) and normal medium and then their adhesion, proliferation, differentiation and mineralization were evaluated. RESULTS The adhesion of the cells was enhanced when they were cultured in the medium containing MgSiV-extract. Their proliferation and differentiation were up-regulated in both media containing MgSiV-extract and SiV-extract. In particular, the MgSiV-extract significantly enhanced their differentiation than the SiV-extract. This was supported by the mineralization test's results, which showed a large amount of mineral deposit was observed in the cells cultured in the MgSiV-extract medium. CONCLUSIONS Providing the three kinds of ions was effective for up-regulating the cell's mineralization compared to providing silicate and calcium ions without magnesium ion.
Collapse
Affiliation(s)
- Shinya Yamada
- Division of Advanced Ceramics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yoshio Ota
- Yabashi Industries Co., Ltd., 226 Akasaka-cho, Ogaki 503-2213, Japan
| | - Akiko Obata
- Division of Advanced Ceramics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Toshihiro Kasuga
- Division of Advanced Ceramics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
13
|
Dashnyam K, El-Fiqi A, Buitrago JO, Perez RA, Knowles JC, Kim HW. A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. J Tissue Eng 2017; 8:2041731417707339. [PMID: 28560015 PMCID: PMC5435366 DOI: 10.1177/2041731417707339] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis is considered an important issue in the development of biomaterials for the successful regeneration of tissues including bone. While growth factors are commonly used with biomaterials to promote angiogenesis, some ions released from biomaterials can also contribute to angiogenic events. Many silica-based biomaterials have been widely used for the repair and regeneration of tissues, mainly hard tissues such as bone and tooth structure. They have shown excellent performance in bone formation by stimulating angiogenesis. The release of silicate and others (Co and Cu ions) has therefore been implicated to play critical roles in the angiogenesis process. In this short review, we highlight the in vitro and in vivo findings of angiogenesis (and the related bone formation) stimulated by the various types of silicon-containing biomaterials where silicate ions released might play essential roles. We discuss further the possible molecular mechanisms underlying in the ion-induced angiogenic events.
Collapse
Affiliation(s)
- Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jennifer O Buitrago
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Roman A Perez
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- UIC Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jonathan C Knowles
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
14
|
Zhou P, Wang J, Maçon AB, Obata A, Jones JR, Kasuga T. Tailoring the delivery of therapeutic ions from bioactive scaffolds while inhibiting their apatite nucleation: a coaxial electrospinning strategy for soft tissue regeneration. RSC Adv 2017. [DOI: 10.1039/c6ra25645g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Control the release of ions as a function of the shell thickness. Inhibit hydroxyapatite nucleation. Improve mechanical properties.
Collapse
Affiliation(s)
- Pin Zhou
- Department of Frontier Materials
- Nagoya Institute of Technology
- Nagoya 4668555
- Japan
| | - Jian Wang
- Department of Frontier Materials
- Nagoya Institute of Technology
- Nagoya 4668555
- Japan
| | - Anthony L. B. Maçon
- Frontier Research Institute for Materials Science
- Nagoya Institute of Technology
- Nagoya 4668555
- Japan
| | - Akiko Obata
- Division of Advanced Ceramics
- Nagoya Institute of Technology
- Nagoya 4668555
- Japan
| | - Julian R. Jones
- Department of Materials
- Imperial College London
- London SW7 2AZ
- UK
| | - Toshihiro Kasuga
- Department of Frontier Materials
- Nagoya Institute of Technology
- Nagoya 4668555
- Japan
- Frontier Research Institute for Materials Science
| |
Collapse
|
15
|
Svenskaya Y, Fattah H, Zakharevich A, Gorin D, Sukhorukov G, Parakhonskiy B. Ultrasonically assisted fabrication of vaterite submicron-sized carriers. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Yamada S, Obata A, Maeda H, Ota Y, Kasuga T. Development of Magnesium and Siloxane-Containing Vaterite and Its Composite Materials for Bone Regeneration. Front Bioeng Biotechnol 2015; 3:195. [PMID: 26697421 PMCID: PMC4667009 DOI: 10.3389/fbioe.2015.00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/17/2015] [Indexed: 11/26/2022] Open
Abstract
Development of novel biomaterials with Mg(2+), Ca(2+), and silicate ions releasability for bone regeneration is now in progress. Several inorganic ions have been reported to stimulate bone-forming cells. We featured Ca(2+), silicate, and especially, Mg(2+) ions as growth factors for osteoblasts. Various biomaterials, such as ceramic powders and organic-inorganic composites, that release the ions, have been developed and investigated for their cytocompatibilities in our previous work. Through the investigation, providing the three ions was found to be effective to activate osteogenic cells. Magnesium and siloxane--containing vaterite was prepared by a carbonation process as an inorganic particle that can has the ability to simultaneously release Ca(2+), silicate, and Mg(2+) ions to biodegradable polymers. Poly (l-lactic acid) (PLLA)- and bioactive PLLA-based composites containing vaterite coatings were discussed regarding their degradability and cytocompatibility using a metallic Mg substrate as Mg(2+) ion source. PLLA/SiV composite film, which has a releasability of silicate ions besides Ca(2+) ion, was coated on a pure Mg substrate to be compared with the PLLA/V coating. The degradability and releasability of inorganic ions were morphologically and quantitatively monitored in a cell culture medium. The bonding strength between the coatings and Mg substrates was one of the key factors to control Mg(2+) ion release from the substrates. The cell culture tests were conducted using mouse osteoblast-like cells (MC3T3-E1 cells); cellular morphology, proliferation, and differentiation on the materials were evaluated. The PLLA/V and PLLA/SiV coatings on Mg substrates were found to enhance the proliferation, especially the PLLA/SiV coating possessed a higher ability to induce the osteogenic differentiation of the cells.
Collapse
Affiliation(s)
- Shinya Yamada
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Akiko Obata
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Hirotaka Maeda
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshio Ota
- Yabashi Industries Co., Ltd., Ogaki, Japan
| | - Toshihiro Kasuga
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
17
|
Wang J, Zhou P, Obata A, Jones JR, Kasuga T. Preparation of Cotton-Wool-Like Poly(lactic acid)-Based Composites Consisting of Core-Shell-Type Fibers. MATERIALS (BASEL, SWITZERLAND) 2015; 8:7979-7987. [PMID: 28793691 PMCID: PMC5458879 DOI: 10.3390/ma8115434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022]
Abstract
In previous works, we reported the fabrication of cotton-wool-like composites consisting of siloxane-doped vaterite and poly(l-lactic acid) (SiVPCs). Various irregularly shaped bone voids can be filled with the composite, which effectively supplies calcium and silicate ions, enhancing the bone formation by stimulating the cells. The composites, however, were brittle and showed an initial burst release of ions. In the present work, to improve the mechanical flexibility and ion release, the composite fiber was coated with a soft, thin layer consisting of poly(d,l-lactic-co-glycolic acid) (PLGA). A coaxial electrospinning technique was used to prepare a cotton-wool-like material comprising "core-shell"-type fibers with a diameter of ~12 µm. The fibers, which consisted of SiVPC coated with a ~2-µm-thick PLGA layer, were mechanically flexible; even under a uniaxial compressive load of 1.5 kPa, the cotton-wool-like material did not exhibit fracture of the fibers and, after removing the load, showed a ~60% recovery. In Tris buffer solution, the initial burst release of calcium and silicate ions from the "core-shell"-type fibers was effectively controlled, and the ions were slowly released after one day. Thus, the mechanical flexibility and ion-release behavior of the composites were drastically improved by the thin PLGA coating.
Collapse
Affiliation(s)
- Jian Wang
- Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| | - Pin Zhou
- Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| | - Akiko Obata
- Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2BP, UK.
| | - Toshihiro Kasuga
- Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
18
|
Trushina DB, Sulyanov SN, Bukreeva TV, Kovalchuk MV. Size control and structure features of spherical calcium carbonate particles. CRYSTALLOGR REP+ 2015. [DOI: 10.1134/s1063774515040227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Trushina DB, Bukreeva TV, Kovalchuk MV, Antipina MN. CaCO₃ vaterite microparticles for biomedical and personal care applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:644-58. [PMID: 25491874 DOI: 10.1016/j.msec.2014.04.050] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/21/2014] [Indexed: 11/18/2022]
Abstract
Among the polymorph modifications of calcium carbonate, the metastable vaterite is the most practically important. Vaterite particles are applied in regenerative medicine, drug delivery and a broad range of personal care products. This manuscript scopes to review the mechanism of the calcium carbonate crystal growth highlighting the factors stabilizing the vaterite polymorph in the most cost efficient synthesis routine. The size of vaterite particles is a crucial parameter for practical applications. The options for tuning the particle size are also discussed.
Collapse
Affiliation(s)
- Daria B Trushina
- Institute of Materials Research and Engineering, A*STAR, Singapore 117602, Singapore; Lomonosov Moscow State University, Faculty of Physics, Moscow 119991, Russia
| | - Tatiana V Bukreeva
- National Research Centre "Kurchatov Institute", Moscow 123098, Russia; A.V. Shubnikov Institute of Crystallography, Moscow 119333, Russia
| | - Mikhail V Kovalchuk
- National Research Centre "Kurchatov Institute", Moscow 123098, Russia; A.V. Shubnikov Institute of Crystallography, Moscow 119333, Russia
| | - Maria N Antipina
- Institute of Materials Research and Engineering, A*STAR, Singapore 117602, Singapore.
| |
Collapse
|
20
|
Nakamura J, Kasuga T. Enhancement of crystalline plane orientation in silsesquioxane-containing vaterite particles towards tuning of calcium ion release. J Mater Chem B 2014; 2:1250-1254. [DOI: 10.1039/c3tb21571g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|