1
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
2
|
Moudgil A, Salve R, Gajbhiye V, Chaudhari BP. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem Phys Lipids 2023; 250:105258. [PMID: 36375540 DOI: 10.1016/j.chemphyslip.2022.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The global cancer burden is witnessing an upsurge with breast cancer surpassing other cancers worldwide. Furthermore, an escalation in the breast cancer caseload is also expected in the coming years. The conventional therapeutic regimens practiced routinely are associated with many drawbacks to which nanotechnological interventions offer a great advantage. But how eminent could liposomes and their advantages be in superseding these existing therapeutic modalities? A solution is reflected in this review that draws attention to a decade-long journey embarked upon by researchers in this wake. This text is a comprehensive discussion of liposomes, the front runners of the drug delivery systems, and their active and passive targeting approaches for breast cancer management. Active targeting has been studied over the decade by many receptors overexpressed on the breast cancer cells and passive targeting with many drug combinations. The results converge on the fact that the actively targeted formulations exhibit a superior efficacy over their non-targeted counterparts and the all liposomal formulations are efficacious over the free drugs. This undoubtedly underlines the dominion of liposomal formulations over conventional chemotherapy. These investigations have led to the development of different liposomal formulations with active and passive targeting capacities that could be explored in depth. Acknowledging and getting a deeper insight into the liposomal evolution through time also unveiled many imperfections and unchartered territories that can be explored to deliver dexterous liposomal formulations against breast cancer and more in the clinical trial pipeline.
Collapse
Affiliation(s)
- Aliesha Moudgil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India.
| |
Collapse
|
3
|
Dey NS. Mechanistic Approach of Nano Carriers for Targeted in Cancer Chemotherapy: A Newer Strategy for Novel Drug Delivery System. Polymers (Basel) 2022; 14:polym14122321. [PMID: 35745897 PMCID: PMC9231136 DOI: 10.3390/polym14122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
The application of nanomedicine represents an innovative approach for the treatment in the modern field of cancer chemotherapy. In the present research work, tamoxifen citrate loaded nanolipid vesicles were prepared conjugated with phosphoethanolamine as the linker molecule, and the specific antibody was tagged with the linker molecule on the bilayer surface of the vesicles. The main objective of this study is to determine the efficacy and biological behavior of antibody conjugated nanoliposome in breast cancer cell lines. Percentage of drug loading and loading efficiency was done and their results were compared to theoretical drug loading. The average diameter of those vesicles was within the 100 nm range, which is revealed in FESEM and TEM images and their lamellarity was observed in cryo-TEM images. The hydrodynamic diameter was done by particle size analysis and the surface charge was determined by the zeta potential parameter. Predominant cellular uptake was observed for antibody conjugated nanolipid vesicles in MCF-7 and MDA-MB-453 human breast cancer cell lines. A cellular apoptosis assay was conducted by flow cytometer (FACS). All experimental data would be more beneficial for the treatment of breast cancer chemotherapy. Further studies are warranted to investigate the efficacy and safety of antibody conjugated nanolipid vesicles in vivo for breast cancer animal model.
Collapse
|
4
|
Kulikov OA, Ageev VP, Brodovskaya EP, Shlyapkina VI, Petrov PS, Zharkov MN, Yakobson DE, Maev IV, Sukhorukov GB, Pyataev NA. Evaluation of photocytotoxicity liposomal form of furanocoumarins Sosnowsky's hogweed. Chem Biol Interact 2022; 357:109880. [PMID: 35271822 DOI: 10.1016/j.cbi.2022.109880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/10/2023]
Abstract
Sosnovsky's hogweed, Heracleum sosnowskyi has a high photosensitizing ability. Although Sosnovsky's hogweed is known as a poisonous plant, its chemical composition and phototoxicity are poorly studied. We analyzed the chemical composition of the Sosnovsky's hogweed juice that grew in natural conditions. It was found that the content of 8-methoxypsoralen in the juice is 1332.7 mg/L, and that of 5-methoxypsoralen is 34.2 mg/L. We have developed and analyzed liposomes containing furanocoumarins of Sosnovsky's hogweed juice and studied their photocytotoxicity in L929 mouse fibroblast cell culture. It was found that liposomes containing furanocoumarins of Sosnovsky's hogweed juice are more toxic for L929 cells in comparison with liposomal forms of pure substances 8-methoxypsoralen and 5-methoxypsoralen. It was found that when exposed to UV radiation at 365 nm at a dose of 22.2 J/cm2, the liposomal form of furanocoumarins Sosnovsky's hogweed is 3 times more toxic to L929 cells than in the dark. It was found that the photocytotoxic effect of liposomal furanocoumarins Sosnovsky's hogweed is a strongly stimulation of apoptosis.The data obtained suggest that the raw material of Sosnovsky's hogweed claims to be a source of furanocoumarins, and the liposomal form, given the hydrophobic properties of furanocoumarins, is very suitable for creating a phototherapeutic drug.
Collapse
Affiliation(s)
- Oleg A Kulikov
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia.
| | - Valentin P Ageev
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Ekaterina P Brodovskaya
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Vasilisa I Shlyapkina
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Pavel S Petrov
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Mikhail N Zharkov
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Denis E Yakobson
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Igor V Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str. 20, p. 1, 127473, Moscow, Russia
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road E1 4NS, London, United Kingdom
| | - Nikolay A Pyataev
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| |
Collapse
|
5
|
Tang S, Davoudi Z, Wang G, Xu Z, Rehman T, Prominski A, Tian B, Bratlie KM, Peng H, Wang Q. Soft materials as biological and artificial membranes. Chem Soc Rev 2021; 50:12679-12701. [PMID: 34636824 DOI: 10.1039/d1cs00029b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few decades have seen emerging growth in the field of soft materials for synthetic biology. This review focuses on soft materials involved in biological and artificial membranes. The biological membranes discussed here are mainly those involved in the structure and function of cells and organelles. As building blocks in medicine, non-native membranes including nanocarriers (NCs), especially liposomes and DQAsomes, and polymeric membranes for scaffolds are constructed from amphiphilic combinations of lipids, proteins, and carbohydrates. Artificial membranes can be prepared using synthetic, soft materials and molecules and then incorporated into structures through self-organization to form micelles or niosomes. The modification of artificial membranes can be realized using traditional chemical methods such as click reactions to target the delivery of NCs and control the release of therapeutics. The biomembrane, a lamellar structure inlaid with ion channels, receptors, lipid rafts, enzymes, and other functional units, separates cells and organelles from the environment. An active domain inserted into the membrane and organelles for energy conversion and cellular communication can target disease by changing the membrane's composition, structure, and fluidity and affecting the on/off status of the membrane gates. The biological membrane targets analyzing pathological mechanisms and curing complex diseases, which inspires us to create NCs with artificial membranes.
Collapse
Affiliation(s)
- Shukun Tang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Zahra Davoudi
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA.
| | - Guangtian Wang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Zihao Xu
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Tanzeel Rehman
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Aleksander Prominski
- The James Franck Institute, Department of Chemistry, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Bozhi Tian
- The James Franck Institute, Department of Chemistry, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kaitlin M Bratlie
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA. .,Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA.
| |
Collapse
|
6
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer Vaccines, Adjuvants, and Delivery Systems. Front Immunol 2021; 12:627932. [PMID: 33859638 PMCID: PMC8042385 DOI: 10.3389/fimmu.2021.627932] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination was first pioneered in the 18th century by Edward Jenner and eventually led to the development of the smallpox vaccine and subsequently the eradication of smallpox. The impact of vaccination to prevent infectious diseases has been outstanding with many infections being prevented and a significant decrease in mortality worldwide. Cancer vaccines aim to clear active disease instead of aiming to prevent disease, the only exception being the recently approved vaccine that prevents cancers caused by the Human Papillomavirus. The development of therapeutic cancer vaccines has been disappointing with many early cancer vaccines that showed promise in preclinical models often failing to translate into efficacy in the clinic. In this review we provide an overview of the current vaccine platforms, adjuvants and delivery systems that are currently being investigated or have been approved. With the advent of immune checkpoint inhibitors, we also review the potential of these to be used with cancer vaccines to improve efficacy and help to overcome the immune suppressive tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Peter Symonds
- Biodiscovery Institute, Scancell Limited, Nottingham, United Kingdom
| | - Lindy G. Durrant
- Biodiscovery Institute, University of Nottingham, Faculty of Medicine and Health Sciences, Nottingham, United Kingdom
| |
Collapse
|
8
|
Alizadeh M, Azar PA, Mozaffari SA, Karimi-Maleh H, Tamaddon AM. Evaluation of Pt,Pd-Doped, NiO-Decorated, Single-Wall Carbon Nanotube-Ionic Liquid Carbon Paste Chemically Modified Electrode: An Ultrasensitive Anticancer Drug Sensor for the Determination of Daunorubicin in the Presence of Tamoxifen. Front Chem 2020; 8:677. [PMID: 32974271 PMCID: PMC7466574 DOI: 10.3389/fchem.2020.00677] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Measuring the concentration of anticancer drugs in pharmacological and biological samples is a very useful solution to investigate the effectiveness of these drugs in the chemotherapy process. A Pt,Pd-doped, NiO-decorated SWCNTs (Pt,Pd-NiO/SWCNTs) nanocomposite was synthesized using a one-pot procedure and combining chemical precipitation and ultrasonic sonochemical methods and subsequently characterized by TEM and EDS analysis methods. The analyses results showed the high purity and good distribution of elements and the ~10-nm diameter of the Pt,Pd-NiO nanoparticle decorated on the surface of the SWCNTs with a diameter of about 20-30 nm. Using a combination of Pt,Pd-NiO/SWCNTs and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (1B23DTFB) in a carbon paste (CP) matrix, Pt,Pd-NiO/SWCNTs/1B23DTFB/CP was fabricated as a highly sensitive analytical tool for the electrochemical determination of daunorubicin in the concentration range of 0.008-350 μM with a detection limit of 3.0 nM. Compared to unmodified CP electrodes, the electro-oxidation process of daunorubicin has undergone significant improvements in current (about 9.8 times increasing in current) and potential (about 110 mV) decreasing in potential). It is noteworthy that the designed sensor can well measure daunorubicin in the presence of tamoxifen (two breast anticancer drugs with a ΔE = 315 mV. According to the real sample analysis data, the Pt,Pd-NiO/SWCNTs/1B23DTFB/CP has proved to be a promising methodology for the analysis and measuring of daunorubicin and tamoxifen in real (e.g., pharmaceutical) samples.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sayed Ahmad Mozaffari
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Hassan Karimi-Maleh
- Laboratory of Nanotechnology, Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Ali-Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Patel MR, Lamprou DA, Vavia PR. Synthesis, Characterization, and Drug Delivery Application of Self-assembling Amphiphilic Cyclodextrin. AAPS PharmSciTech 2019; 21:11. [PMID: 31808011 DOI: 10.1208/s12249-019-1572-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/10/2019] [Indexed: 01/12/2023] Open
Abstract
The main aim of the research was to synthesize amphiphilic cyclodextrin (AMCD) by substituting C12 alkyl chain to a β-cyclodextrin (βCD) in a single step and to study its self-assembly in an aqueous medium. The drug delivery application of the AMCD was also evaluated by encapsulating tamoxifen citrate as a model hydrophobic drug. AMCD was able to self-assemble in aqueous media, forming nanovesicles of size < 200 nm, capable of encapsulating tamoxifen citrate (TMX). Molecular docking and MD simulation studies revealed the interaction between TMX and AMCD which formed a stable complex. TEM and AFM studies showed that nanovesicles were perfectly spherical having a smooth surface and a theoretical AMCD bilayer thickness of ~ 7.2 nm as observed from SANS studies. XRD and DSC studies revealed that TMX was amorphized and molecularly dispersed in AMCD bilayer which was released slowly following Fickian diffusion. AMCD has excellent hemocompatibility as opposed to βCD and no genotoxicity. IC50 of TMX against MCF-7 cell lines was significantly reduced from 11.43 to 7.96 μg/ml after encapsulation in nanovesicle because of nanovesicles being endocytosed by the MCF-7 cells. AMCD was well tolerated by IV route at a dose of > 2000 mg/kg in rats. Pharmacokinetic profile of TMX after encapsulation was improved giving 3-fold higher AUC; extended mean residence time is improving chances of nanovesicle to extravasate in tumor via EPR effect.
Collapse
|
10
|
Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine. Nanomedicine (Lond) 2019; 14:627-648. [PMID: 30806568 PMCID: PMC6439506 DOI: 10.2217/nnm-2018-0147] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
As effective tools for public health, vaccines prevent disease by priming the body's adaptive and innate immune responses against an infection. Due to advances in understanding cancers and their relationship with the immune system, there is a growing interest in priming host immune defenses for a targeted and complete antitumor response. Nanoparticle systems have shown to be promising tools for effective antigen delivery as vaccines and/or for potentiating immune response as adjuvants. Here, we highlight relevant physiological processes involved in vaccine delivery, review recent advances in the use of nanoparticle systems for vaccines and discuss pertinent challenges to viably translate nanoparticle-based vaccines and adjuvants for public use.
Collapse
Affiliation(s)
- Ru Wen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Afoma C Umeano
- Department of Molecular & Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Kou
- Department of Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian Xu
- Laboratory of Cancer Biology & Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 54000, Pakistan
| |
Collapse
|
11
|
Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int J Pharm 2019; 555:49-62. [DOI: 10.1016/j.ijpharm.2018.11.032] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/28/2018] [Accepted: 11/13/2018] [Indexed: 01/15/2023]
|
12
|
Lee SY, Choi JW, Lee JY, Kim DD, Kim HC, Cho HJ. Hyaluronic acid/doxorubicin nanoassembly-releasing microspheres for the transarterial chemoembolization of a liver tumor. Drug Deliv 2018; 25:1472-1483. [PMID: 29909706 PMCID: PMC6058484 DOI: 10.1080/10717544.2018.1480673] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (DOX)-loaded, hyaluronic acid-ceramide (HACE) nanoassembly-releasing poly(lactic-co-glycolic acid) (PLGA) microspheres (MSs) were developed for transarterial chemoembolization (TACE) therapy of liver cancer. DOX/HACE MSs with a mean diameter of 27 μm and a spherical shape were prepared based on the modified emulsification method. Their in vitro biodegradability in artificial biological fluids was observed. A more sustained drug release pattern was observed from DOX/HACE MS than from DOX MS at pH 7.4. The cellular internalization efficiency of DOX of the DOX/HACE MS group was higher than that of the DOX MS group in liver cancer cells (HepG2 and McA-RH7777 cells), mainly due to CD44 receptor-mediated endocytosis of the released DOX/HACE nanoassembly. In both HepG2 and McA-RH7777 cells, the antiproliferation and apoptotic potentials of the DOX/HACE MS were significantly higher than those of the DOX MS (p < .05). Notably, in the McA-RH7777 tumor-implanted rat models, a better tumor growth suppression, a lower tumor viable portion, and a higher incidence of apoptosis were presented in the DOX/HACE MS group than in the DOX MS group after intra-arterial (IA) administration. DOX/HACE-based nanoassembly release from the DOX/HACE MS seems to elevate the cellular accumulation of DOX and its anticancer activities. The developed DOX/HACE MS can be used as a drug-loaded HA nanoassembly-releasing MS system for TACE therapy of liver cancer.
Collapse
Affiliation(s)
- Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jin Woo Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Cheol Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| |
Collapse
|
13
|
Poovaiah N, Davoudi Z, Peng H, Schlichtmann B, Mallapragada S, Narasimhan B, Wang Q. Treatment of neurodegenerative disorders through the blood-brain barrier using nanocarriers. NANOSCALE 2018; 10:16962-16983. [PMID: 30182106 DOI: 10.1039/c8nr04073g] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neurodegenerative diseases refer to disorders of the central nervous system (CNS) that are caused by neuronal degradations, dysfunctions, or death. Alzheimer's disease, Parkinson's disease, and Huntington's disease (APHD) are regarded as the three major neurodegenerative diseases. There is a vast body of literature on the causes and treatments of these neurodegenerative diseases. However, the main obstacle in developing an effective treatment strategy is the permeability of the treatment components at the blood-brain barrier (BBB). Several strategies have been developed to improve this obstruction. For example, nanomaterials facilitate drug delivery to the BBB due to their size. They have been used widely in nanomedicine and as nanoprobes for diagnosis purposes among others in neuroscience. Nanomaterials in different forms, such as nanoparticles, nanoemulsions, solid lipid nanoparticles (SLN), and liposomes, have been used to treat neurodegenerative diseases. This review will cover the basic concepts and applications of nanomaterials in the therapy of APHD.
Collapse
Affiliation(s)
- N Poovaiah
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhou X, Yuan L, Wu C, Cheng Chen, Luo G, Deng J, Mao Z. Recent review of the effect of nanomaterials on stem cells. RSC Adv 2018; 8:17656-17676. [PMID: 35542058 PMCID: PMC9080527 DOI: 10.1039/c8ra02424c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 01/18/2023] Open
Abstract
The field of stem-cell-therapy offers considerable promise as a means of delivering new treatments for a wide range of diseases. Recent progress in nanotechnology has stimulated the development of multifunctional nanomaterials (NMs) for stem-cell-therapy. Several clinical trials based on the use of NMs are currently underway for stem-cell-therapy purposes, such as drug/gene delivery and imaging. However, the interactions between NMs and stem cells are far from being completed, and the effects of the NMs on cellular behavior need critical evaluation. In this review, the interactions between several types of mostly used NMs and stem cells, and their associated possible mechanisms are systematically discussed, with specific emphasis on the possible differentiation effects induced by NMs. It is expected that the enhanced understanding of NM-stem cell interactions will facilitate biomaterial design for stem-cell-therapy and regenerative medicine applications.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Ophthalmology, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Chengzhou Wu
- Department of Respiratory, Wuxi Country People's Hospital Chongqing 405800 China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
15
|
Matyszewska D, Napora E, Żelechowska K, Biernat JF, Bilewicz R. Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir-Blodgett biomimetic membranes. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2018; 20:143. [PMID: 29780275 PMCID: PMC5949139 DOI: 10.1007/s11051-018-4239-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. Graphical abstractᅟ.
Collapse
Affiliation(s)
- Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewelina Napora
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Kamila Żelechowska
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jan F. Biernat
- Chemical Faculty, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
16
|
Zhang Q, Zhang L, Li Z, Xie X, Gao X, Xu X. Inducing Controlled Release and Increased Tumor-Targeted Delivery of Chlorambucil via Albumin/Liposome Hybrid Nanoparticles. AAPS PharmSciTech 2017; 18:2977-2986. [PMID: 28477146 DOI: 10.1208/s12249-017-0782-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Liposomes possess good biocompatibility and excellent tumor-targeting capacity. However, the rapid premature release of lipophilic drugs from the lipid bilayer of liposomes has negative effect on the tumor-targeted drug delivery of liposomes. In this study, a lipophilic antitumor drug-chlorambucil (CHL)-was encapsulated into the aqueous interior of liposomes with the aid of albumin to obtain the CHL-loaded liposomes/albumin hybrid nanoparticles (CHL-Hybrids). The in vitro accumulative release rate of CHL from CHL-Hybrids was less than 50% within 48 h, while the accumulative CHL release was more than 80% for CHL-loaded liposomes (CHL-Lip). After intravenous injection into rats, the half-life (t 1/2β = 5.68 h) and maximum blood concentration (C max = 4.58 μg/mL) of CHL-Hybrids were respectively 1.1 times and 3.5 times higher than that of CHL-Lip. In addition, CHL-Hybrids had better tumor-targeting capacity for it significantly increased the drug accumulation in B16F10 tumors, which contributed to the significantly control of tumor growth compared with CHL-Lip. Furthermore, CHL-Hybrid-treated B16F10 melanoma-bearing mice displayed the longest median survival time of 30.0 days among all the treated groups. Our results illustrated that the proposed hybrids drug delivery system would be a promising strategy to maintain the controlled release of lipophilic antitumor drugs from liposomes and simultaneously facilitate the tumor-targeted drug delivery.
Collapse
|
17
|
Zhang X, Li B, Luo X, Zhao W, Jiang J, Zhang C, Gao M, Chen X, Dong Y. Biodegradable Amino-Ester Nanomaterials for Cas9 mRNA Delivery in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25481-25487. [PMID: 28685575 PMCID: PMC5896755 DOI: 10.1021/acsami.7b08163] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Efficient and safe delivery of the CRISPR/Cas system is one of the key challenges for genome-editing applications in humans. Herein, we designed and synthesized a series of biodegradable lipidlike compounds containing ester groups for the delivery of mRNA-encoding Cas9. Two lead materials, termed N-methyl-1,3-propanediamine (MPA)-A and MPA-Ab, showed a tunable rate of biodegradation. MPA-A with linear ester chains was degraded dramatically faster than MPA-Ab with branched ester chains in the presence of esterase or in wild-type mice. Most importantly, MPA-A and MPA-Ab demonstrated efficient delivery of Cas9 mRNA both in vitro and in vivo. Consequently, these biodegradable lipidlike nanomaterials merit further development as genome-editing delivery tools for biological and therapeutic applications.
Collapse
Affiliation(s)
- Xinfu Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bin Li
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiao Luo
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin Jiang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Min Gao
- LCI Characterization Facility, Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Xiaofang Chen
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, Ohio 43210, United States
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Imani R, Dillert R, Bahnemann DW, Pazoki M, Apih T, Kononenko V, Repar N, Kralj-Iglič V, Boschloo G, Drobne D, Edvinsson T, Iglič A. Multifunctional Gadolinium-Doped Mesoporous TiO 2 Nanobeads: Photoluminescence, Enhanced Spin Relaxation, and Reactive Oxygen Species Photogeneration, Beneficial for Cancer Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700349. [PMID: 28374954 DOI: 10.1002/smll.201700349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 06/07/2023]
Abstract
Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via • OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.
Collapse
Affiliation(s)
- Roghayeh Imani
- Institut fuer Technische Chemie, Gottfried Wilhelm Leibniz Universitaet Hannover, Callinstrasse 3, D-30167, Hannover, Germany
- Department of Chemistry-Physical Chemistry Division, Ångström Laboratory, Uppsala University, Box 523, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
- Faculty of Electrical Engineering, Biophysics Laboratory, University of Ljubljana, SI-1000, Slovenia
| | - Ralf Dillert
- Institut fuer Technische Chemie, Gottfried Wilhelm Leibniz Universitaet Hannover, Callinstrasse 3, D-30167, Hannover, Germany
- Laboratory of Nano and Quantum Engineering, University of Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | - Detlef W Bahnemann
- Institut fuer Technische Chemie, Gottfried Wilhelm Leibniz Universitaet Hannover, Callinstrasse 3, D-30167, Hannover, Germany
- Laboratory "Photoactive Nanocomposite Materials", Saint-Petersburg State University, Saint-Petersburg, 198504, Russia
| | - Meysam Pazoki
- Department of Chemistry-Structural Chemistry Division, Ångström Laboratory, Uppsala University, Box 538, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Tomaž Apih
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Veno Kononenko
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Neža Repar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Faculty of Health Sciences, Biophysics Laboratory, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Gerrit Boschloo
- Department of Chemistry-Physical Chemistry Division, Ångström Laboratory, Uppsala University, Box 523, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Damjana Drobne
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Tomas Edvinsson
- Department of Engineering Sciences-Solid State Physics Division, Uppsala University, Box 534, 75121, Uppsala, Sweden
| | - Aleš Iglič
- Faculty of Electrical Engineering, Biophysics Laboratory, University of Ljubljana, SI-1000, Slovenia
| |
Collapse
|
19
|
Zhang X, Liang X, Gu J, Chang D, Zhang J, Chen Z, Ye Y, Wang C, Tao W, Zeng X, Liu G, Zhang Y, Mei L, Gu Z. Investigation and intervention of autophagy to guide cancer treatment with nanogels. NANOSCALE 2017; 9:150-163. [PMID: 27910983 DOI: 10.1039/c6nr07866d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cancer cells use autophagy to resist poor survival environmental conditions such as low PH, poor nutrients as well as chemical therapy. Nanogels have been used as efficient chemical drug carriers for cancer treatment. However, the effect of nanogels on autophagy is still unknown. Here, we used Rab proteins as the marker of multiple trafficking vesicles in endocytosis and LC3 as the marker of autophagy to investigate the intracellular trafficking network of Rhodamine B (Rho)-labeled nanogels. The nanogels were internalized by the cells through multiple protein dependent endocytosis and micropinocytosis. After inception by the cells, the nanogels were transported into multiple Rab positive vesicles including early endosomes (EEs), late endosomes (LEs), recycling endosomes (REs) and lipid droplets. Finally, these Rab positive vesicles were transported to lysosome. In addition, GLUT4 exocytosis vesicles could transport the nanogels out of the cells. Moreover, nanogels could induce autophagy and be sequestered in autophagosomes. The crosstalk between autophagosomes and Rab positive vesicles were investigated, we found that autophagosomes may receive nanogels through multiple Rab positive vesicles. Co-delivery of autophagy inhibitors such as chloroquine (CQ) and the chemotherapeutic drug doxorubicin (DOX) by nanogels blocked the autophagy induced by DOX greatly decreasing both of the volume and weight of the tumors in mice tumor models. Investigation and intervention of the autophagy pathway could provide a new method to improve the therapeutic effect of anticancer nanogels.
Collapse
Affiliation(s)
- Xudong Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang Z, Li Y, Wan J, Long P, Guo J, Chen G, Wang C. Preparation of Pt(iv)-crosslinked polymer nanoparticles with an anti-detoxifying effect for enhanced anticancer therapy. Polym Chem 2017. [DOI: 10.1039/c6py02148d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new kind of Pt(iv)-crosslinked polymer nanoparticle with small, uniform size and high loading of cisplatin has been prepared for greatly attenuating the detoxifying effect of Pt(ii) species.
Collapse
Affiliation(s)
- Zihao Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Jiaxun Wan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Peihua Long
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Guosong Chen
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| |
Collapse
|
21
|
Wang X, Li D, Ghali L, Xia R, Munoz LP, Garelick H, Bell C, Wen X. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology. NANOSCALE RESEARCH LETTERS 2016; 11:94. [PMID: 26887578 PMCID: PMC4759142 DOI: 10.1186/s11671-016-1307-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/08/2016] [Indexed: 05/23/2023]
Abstract
Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Centre for Investigative and Diagnostic Oncology, Middlesex University, London, NW4 4BT, UK
| | - Dong Li
- Centre for Investigative and Diagnostic Oncology, Middlesex University, London, NW4 4BT, UK
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Lucy Ghali
- Centre for Investigative and Diagnostic Oncology, Middlesex University, London, NW4 4BT, UK
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Ruidong Xia
- Jiangsu Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Leonardo P Munoz
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Hemda Garelick
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Celia Bell
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK
| | - Xuesong Wen
- Centre for Investigative and Diagnostic Oncology, Middlesex University, London, NW4 4BT, UK.
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, NW4 4BT, UK.
| |
Collapse
|
22
|
Suktham K, Koobkokkruad T, Saesoo S, Saengkrit N, Surassmo S. Physical and biological characterization of sericin-loaded copolymer liposomes stabilized by polyvinyl alcohol. Colloids Surf B Biointerfaces 2016; 148:487-495. [PMID: 27673445 DOI: 10.1016/j.colsurfb.2016.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/10/2016] [Accepted: 09/20/2016] [Indexed: 12/01/2022]
Abstract
Sericin protein (SP) is widely used as a nutrient biomaterial for biomedical and cosmeceutical applications although it shows low stability to heat and light. To overcome these problems and add value to wastewater from the silk industry, sericin protein was recovered as sericin-loaded copolymer-liposomes (SP-PVA-LP), prepared through thin film hydration. The size and morphology of the liposomes were investigated using dynamic light scattering (DLS), and electron microscopy (SEM and TEM). The particle size, liposome surface morphology and encapsulation efficiency of SP were dependent on PVA concentration. The hydrodynamic size of the nanoparticles was between 200 and 400nm, with the degree of negative charge contingent on sericin loading. SEM and TEM images confirmed the mono-dispersity, and spherical nature of the particles, with FTIR measurements confirming the presence of surface bound PVA. Exposure of liposomes to 500ppm sericin highlighted a dependence of encapsulation efficiency on PVA content; 2% surface PVA proved the optimal level for sericin loading. Cytotoxicity and viability assays revealed that SP-loaded surface modified liposomes promote cellular attachment and proliferation of human skin fibroblasts without adverse toxic effects. Surface modified copolymer liposomes show high performance in maintaining structural stability, and promoting enhancements in the solubility and bio-viability of sericin. Taken together, these biocompatible constructs allow for effective controlled release, augmenting sericin activity and resulting in effective drug delivery systems.
Collapse
Affiliation(s)
- Kunat Suktham
- Nano Delivery System Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Thongchai Koobkokkruad
- Nano-Cosmeceutical Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Somsak Saesoo
- Nano Delivery System Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Nattika Saengkrit
- Nano Delivery System Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Suvimol Surassmo
- Nano Delivery System Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
23
|
Abstract
Vaccination is a biological process that administrates antigenic materials to stimulate an individual's immune system to develop immunity to a specific pathogen. It is the most effective tool to prevent illness and death from infectious diseases or diseases leading to cancers. Because many recombinant and synthetic antigens are poorly immunogenic, adjuvant is essentially added to vaccine formula that can potentiate the immune responses, offer better protection against pathogens and reduce the amount of antigens needed for protective immunity. To date, there are nearly 100 different types of adjuvants associated with about 400 vaccines that are either commercially available or under development. Among these adjuvants, many of them are particulates and nano-scale in nature. Nanoparticles represent a wide range of materials with novel physicochemical properties that exhibit immunostimulatory effects. However, the mechanistic understandings on how their physicochemical properties affect immunopotentiation remain elusive. In this article, we aim to review current development status of nanomaterial-based vaccine adjuvants, and further discuss their acting mechanisms, understanding of which will benefit the rational design of effective vaccine adjuvants with improved immunogenicity for prevention of infectious disease as well as therapeutic cancer treatment.
Collapse
Affiliation(s)
- Bingbing Sun
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
| |
Collapse
|
24
|
Nguyen TX, Huang L, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond) 2016; 11:1169-85. [DOI: 10.2217/nnm.16.9] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oral delivery via the gastrointestinal (GI) tract is the dominant route for drug administration. Orally delivered liposomal carriers can enhance drug solubility and protect the encapsulated theraputic agents from the extreme conditions found in the GI tract. Liposomes, with their fluid lipid bilayer membrane and their nanoscale size, can significantly improve oral absorption. Unfortunately, the clinical applications of conventional liposomes have been hindered due to their poor stability and availability under the harsh conditions typically presented in the GI tract. To overcome this problem, the surface modification of liposomes has been investigated. Although liposome surface modification has been extensively studied for oral drug delivery, no review exists so far that adequately covers this topic. The purpose of this paper is to summarize and critically analyze emerging trends in liposome surface modification for oral drug delivery.
Collapse
Affiliation(s)
- Thanh Xuan Nguyen
- Department of Biomedical Engineering, College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nano-Medicine, Huazhong University of Science & Technology, Wuhan 430074, China
- Department of Human & Animal Physiology, Faculty of Biology-Agricultural Technology, Hanoi Pedagogical University No.2, Vietnam
| | - Lin Huang
- Department of Biomedical Engineering, College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nano-Medicine, Huazhong University of Science & Technology, Wuhan 430074, China
- Wuhan East Lake High-tech Zone Administrative Committee, Wuhan 430079, China
| | - Mario Gauthier
- Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nano-Medicine, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qun Wang
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
25
|
Li B, Luo X, Deng B, Giancola JB, McComb DW, Schmittgen TD, Dong Y. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Sci Rep 2016; 6:22137. [PMID: 26916931 PMCID: PMC4768262 DOI: 10.1038/srep22137] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/05/2016] [Indexed: 01/24/2023] Open
Abstract
Lipid-like nanoparticles (LLNs) have shown great potential for RNA delivery. Lipid-like compounds are key components in LLNs. In this study, we investigated the effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Our results showed that position change of functional groups on lipid-like compounds can dramatically improve delivery efficiency. We then optimized formulation ratios of TNT-b10 LLNs, a lead material, increasing delivery efficiency over 2-fold. More importantly, pegylated TNT-b10 LLNs is stable for over four weeks and is over 10-fold more efficient than that of its counterpart TNT-a10 LLNs. Additionally, the optimal formulation O-TNT-b10 LLNs is capable of delivering mRNA encoding luciferase in vivo. These results provide useful insights into the design of next generation LLNs for mRNA delivery.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xiao Luo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43212, USA
| | - JoLynn B. Giancola
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - David W. McComb
- Center for Electron Microscopy and Analysis, Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43212, USA
| | - Thomas D. Schmittgen
- Division of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
26
|
Hashemi-Moghaddam H, Kazemi-Bagsangani S, Jamili M, Zavareh S. Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model. Int J Pharm 2016; 497:228-38. [DOI: 10.1016/j.ijpharm.2015.11.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022]
|
27
|
Lamboni L, Gauthier M, Yang G, Wang Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol Adv 2015; 33:1855-67. [DOI: 10.1016/j.biotechadv.2015.10.014] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
|
28
|
Xu W, Thapa R, Liu D, Nissinen T, Granroth S, Närvänen A, Suvanto M, Santos HA, Lehto VP. Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy. Mol Pharm 2015; 12:4038-47. [DOI: 10.1021/acs.molpharmaceut.5b00473] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wujun Xu
- Department
of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
| | - Rinez Thapa
- School
of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Dongfei Liu
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Tuomo Nissinen
- Department
of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
| | - Sari Granroth
- Department
of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - Ale Närvänen
- School
of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Mika Suvanto
- Department
of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
| | - Hélder A. Santos
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Vesa-Pekka Lehto
- Department
of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
| |
Collapse
|
29
|
Matyszewska D, Brzezińska K, Juhaniewicz J, Bilewicz R. pH dependence of daunorubicin interactions with model DMPC:Cholesterol membranes. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Cao J, Wang R, Gao N, Li M, Tian X, Yang W, Ruan Y, Zhou C, Wang G, Liu X, Tang S, Yu Y, Liu Y, Sun G, Peng H, Wang Q. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater Sci 2015; 3:1545-54. [PMID: 26291480 DOI: 10.1039/c5bm00161g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A7R peptide (ATWLPPR), a ligand of the NRP-1 receptor, regulates the intracellular signal transduction related to tumor vascularization and tumor growth. Here, we designed A7R-cysteine peptide (A7RC) surface modified paclitaxel liposomes (A7RC-LIPs) to achieve targeting delivery and inhibition of tumor growth and angiogenesis simultaneously. The cytotoxicity, inhibiting angiogenesis, and internalization of various liposomes by cells were assessed in vitro to confirm the influence of the peptide modification. The accumulations of A7RC-LIPs in various xenografts in mice were tracked to further identify the function of the peptide on the liposomes' surface. The results confirmed that A7RC peptides could enhance the uptake of vesicles by MDA-MB-231 cells, leading to stronger cytotoxicity in vitro and higher accumulation of vesicles in MDA-MB-231 xenografts in vivo. In addition, A7RC peptides enhanced the inhibitory effects of LIPs on the HUVEC tubular formation on Matrigel. The A7RC-LIPs may be promising drug carriers for anticancer therapy.
Collapse
Affiliation(s)
- Jingyan Cao
- Department of Medical Oncology, The Tumor Hospital of Harbin Medical University, 150 Hapin Road, Harbin, 150086, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In this paper, a multifunctional peptide-fluorescent-magnetic nanocomposites (Fe₃O₄@PEI@Cy5.5@PEG@HCBP-1 NPs) was synthesized via a layer-by-layer approach for potential application to cancer diagnoses. The multifunctional nanocomposites have great dispersibility and homogeneous particle sizes in aqueous solution. Meanwhile, it has perfect hemocompatibility and satisfying cytocompatibility in a relatively high concentration. Data from in vitro cytotoxicity assay indicated that the nanocomposites could recognize the lung cancer stem cells (CSCs) specifically and enrich the HCBP-1 positive CSCs from H460 tumor xenografts effectively. Additionally, the results of in vivo live fluorescent imaging and magnetic resonance imaging (MRI) showed that the nanocomposites could identify lung CSCs in tumor xenografts. These results suggested that the nanocomposites could be used as a potential cancer diagnostic agent through modifying diverse fluorescence dyes and targeting ligands on its surface.
Collapse
|
32
|
Mérian J, De Souza R, Dou Y, Ekdawi SN, Ravenelle F, Allen C. Development of a liposome formulation for improved biodistribution and tumor accumulation of pentamidine for oncology applications. Int J Pharm 2015; 488:154-64. [PMID: 25910415 DOI: 10.1016/j.ijpharm.2015.04.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/11/2015] [Accepted: 04/19/2015] [Indexed: 11/24/2022]
Abstract
Pentamidine isethionate, widely used for the treatment of parasitic infections, has shown strong anticancer activity in cancer cells and models of melanoma and lung cancer. Systemic administration of pentamidine is associated with serious toxicities, particularly renal, affecting as many as 95% of patients (O'Brien et al., 1997). This work presents the development of a liposome pentamidine formulation for greater tumor accumulation and lower drug exposure to vulnerable tissues. Liposomes formulated with saturated/unsaturated phospholipids of different chain lengths, varying cholesterol content, and surface PEG were explored to understand the effects of such variations on drug release, encapsulation efficiency, stability and in vivo performance. Saturated phospholipids with longer chain lengths, higher cholesterol content and PEG resulted in greater stability. The optimal formulation obtained showed significantly lower clearance rate (3.6 ± 1.2 mL/h/Kg) and higher AUC0-inf (348 ± 31 μmol/L × h) in vivo when compared to free drug (414 ± 138 mL/h/Kg and 2.58 ± 0.74 μmol/L × h, respectively). In tumor-bearing mice, liposomal delivery decreased kidney drug levels by up to 5-fold at 6 and 24h post-administration. Tumor drug exposure was up to 12.7-fold greater with liposomal administration compared to free drug. Overall, the liposomal pentamidine formulation developed has significant potential for the treatment of solid tumors.
Collapse
Affiliation(s)
- Juliette Mérian
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Oncozyme Pharma Inc., Montreal, QC H2Z 1B1, Canada
| | - Raquel De Souza
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yannan Dou
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Sandra N Ekdawi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
33
|
Matyszewska D, Bilewicz R. Interactions of daunorubicin with Langmuir–Blodgett thiolipid monolayers. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q. Nanocarriers in therapy of infectious and inflammatory diseases. NANOSCALE 2015; 7:4291-305. [PMID: 25680099 DOI: 10.1039/c4nr07682f] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanotechnology is a growing science that has applications in various areas of medicine. The composition of nanocarriers for drug delivery is critical to guarantee high therapeutic performance when targeting specific host sites. Applications of nanotechnology are prevalent in the diagnosis and treatment of infectious and inflammatory diseases. This review summarizes recent advancements in the application of nanotechnology to the therapy of infectious and inflammatory diseases. The major focus is on the design and fabrication of various nanomaterials, characteristics and physicochemical properties of drug-loaded nanocarriers, and the use of these nanoscale drug delivery systems in treating infectious and inflammatory diseases, such as AIDS, hepatitis, tuberculosis, melanoma, and representative inflammatory diseases. Clinical trials and future perspective of the use of nanocarriers are also discussed in detail. We hope that such a review will be valuable to researchers who are exploring nanoscale drug delivery systems for the treatment of specific infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Ufuoma Ikoba
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Liang H, Huang Q, Zhou B, He L, Lin L, An Y, Li Y, Liu S, Chen Y, Li B. Self-assembled zein–sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter. J Mater Chem B 2015; 3:3242-3253. [DOI: 10.1039/c4tb01920b] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, biodegradable nanoparticles (NPs) were assembled with sodium carboxymethyl cellulose (CMC) and zein to produce zein–CMC NPs.
Collapse
|
36
|
Geyik C, Ciftci M, Demir B, Guler B, Ozkaya AB, Gumus ZP, Barlas FB, Odaci Demirkol D, Coskunol H, Timur S, Yagci Y. Controlled release of anticancer drug Paclitaxel using nano-structured amphiphilic star-hyperbranched block copolymers. Polym Chem 2015. [DOI: 10.1039/c5py00780a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two amphiphilic star-hyperbranched copolymers with different hydrophilic PHEMA segments were synthesized, and their drug loading/release profiles were examined by using Paclitaxel.
Collapse
Affiliation(s)
- Caner Geyik
- Ege University
- Institute on Drug Abuse
- Toxicology and Pharmaceutical Sciences
- 35100, Izmir
- Turkey
| | - Mustafa Ciftci
- Istanbul Technical University
- Department of Chemistry
- 34469, Istanbul
- Turkey
| | - Bilal Demir
- Ege University
- Faculty of Science
- Department of Biochemistry
- 35100, Izmir
- Turkey
| | - Bahar Guler
- Ege University
- Faculty of Science
- Department of Biochemistry
- 35100, Izmir
- Turkey
| | - A. Burak Ozkaya
- Ege University
- School of Medicine
- Department of Medical Biochemistry
- 35100, Izmir
- Turkey
| | - Z. Pınar Gumus
- Ege University
- Institute on Drug Abuse
- Toxicology and Pharmaceutical Sciences
- 35100, Izmir
- Turkey
| | - F. Baris Barlas
- Ege University
- Faculty of Science
- Department of Biochemistry
- 35100, Izmir
- Turkey
| | | | - Hakan Coskunol
- Ege University
- Institute on Drug Abuse
- Toxicology and Pharmaceutical Sciences
- 35100, Izmir
- Turkey
| | - Suna Timur
- Ege University
- Institute on Drug Abuse
- Toxicology and Pharmaceutical Sciences
- 35100, Izmir
- Turkey
| | - Yusuf Yagci
- Istanbul Technical University
- Department of Chemistry
- 34469, Istanbul
- Turkey
| |
Collapse
|
37
|
Peng H, Liu X, Wang G, Li M, Bratlie KM, Cochran E, Wang Q. Polymeric multifunctional nanomaterials for theranostics. J Mater Chem B 2015; 3:6856-6870. [DOI: 10.1039/c5tb00617a] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Various applications of polymeric multifunctional nanomaterials for theranostics.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
- Department of Pharmaceutics
| | - Xiaoying Liu
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- China
| | - Guangtian Wang
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- China
| | - Minghui Li
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- China
| | - Kaitlin M. Bratlie
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
- Depatrment of Materials Science and Engineering
| | - Eric Cochran
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
| | - Qun Wang
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
| |
Collapse
|
38
|
Brobeil A, Viard M, Petri MK, Steger K, Tag C, Wimmer M. Memory and PTPIP51--a new protein in hippocampus and cerebellum. Mol Cell Neurosci 2014; 64:61-73. [PMID: 25496818 DOI: 10.1016/j.mcn.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 10/25/2014] [Accepted: 12/09/2014] [Indexed: 12/28/2022] Open
Abstract
Previously the expression of Protein Tyrosine Phosphatase Interacting Protein 51 (PTPIP51) in mouse brain was reported. Here, we investigated PTPIP51 mRNA and protein in two of the brain regions namely the hippocampus and the cerebellum of mouse brains. On a cellular level both the protein and the mRNA were related to the pyramidal cells of the hippocampal formation, the granular cells of the dentate gyrus and the cells of the adjacent strata. In the cerebellum PTPIP51 was traced in Purkinje cells, the cells of the molecular layer and the granular layer. On a subcellular level only partial co-localization was seen for the endoplasmic reticulum, but not with mitochondria. In addition the interactome of PTPIP51 was analysed. In hippocampal cells a strong interaction with PTP1B and vesicle-associated membrane protein-associated protein B (VAPB) was detected. A somewhat differing interaction profile was found in the cerebellum, where high interaction levels were found for 14-3-3, diacylglycerol kinase α (DGKα), NFκB and PTP1B. These interaction partners represent specific signalling pathways linked to building memory. PTPIP51 can be associated with nerve growth factor signalling, dendritic and axonal growth, synaptogenesis, and all processes needed for memory formation. Moreover, in HT-22 mouse hippocampal cells PTPIP51 expression was induced by administrating the fibroblast growth factor 1 (FGF-1), which is known to take part in learning/memory processes. Knocking down p38-MAPK also led to an up-regulation of PTPIP51 probably resembling a compensative mechanism. Thus, a possible connection to the processing of memories can be anticipated. Differences in the interaction profile in both regions may be attributed to the actual/local differences in memory formation.
Collapse
Affiliation(s)
- A Brobeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany; Institute of Pathology, Justus-Liebig-University, 35385 Giessen, Germany.
| | - M Viard
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - M K Petri
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - K Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig-University, 35385 Giessen, Germany
| | - C Tag
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - M Wimmer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| |
Collapse
|
39
|
Abdalla AME, Xiao L, Ouyang C, Yang G. Engineered nanoparticles: thrombotic events in cancer. NANOSCALE 2014; 6:14141-14152. [PMID: 25347245 DOI: 10.1039/c4nr04825c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Engineered nanoparticles are being increasingly produced for specific applications in medicine. Broad selections of nano-sized constructs have been developed for applications in diagnosis, imaging, and drug delivery. Nanoparticles as contrast agents enable conjugation with molecular markers which are essential for designing effective diagnostic and therapeutic strategies. Such investigations can also lead to a better understanding of disease mechanisms such as cancer-associated thrombosis which remains unpredictable with serious bleeding complications and high risk of death. Here we review the recent and current applications of engineered nanoparticles in diagnosis and therapeutic strategies, noting their toxicity in relation to specific markers as a target.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
40
|
Muhammad F, Zhao J, Wang N, Guo M, Wang A, Chen L, Guo Y, Li Q, Zhu G. Lethal drug combination: Arsenic loaded multiple drug mesoporous silica for theranostic applications. Colloids Surf B Biointerfaces 2014; 123:506-14. [DOI: 10.1016/j.colsurfb.2014.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 01/03/2023]
|
41
|
Ding F, Deng H, Du Y, Shi X, Wang Q. Emerging chitin and chitosan nanofibrous materials for biomedical applications. NANOSCALE 2014; 6:9477-93. [PMID: 25000536 DOI: 10.1039/c4nr02814g] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.
Collapse
Affiliation(s)
- Fuyuan Ding
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | | | | | | | | |
Collapse
|
42
|
Peng H, Liu X, Wang R, Jia F, Dong L, Wang Q. Emerging nanostructured materials for musculoskeletal tissue engineering. J Mater Chem B 2014; 2:6435-6461. [DOI: 10.1039/c4tb00344f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the recent developments in the preparation and applications of nanostructured materials for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
- Department of Pharmaceutics
- Daqing Campus
| | - Xunpei Liu
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
| | - Ran Wang
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing, China
| | - Feng Jia
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering
- Iowa State University
- Ames, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
- Department of Civil, Construction and Environmental Engineering
- Iowa State University
| |
Collapse
|