1
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Functional Zwitterionic Polyurethanes: State-of-the-Art Review. Macromol Rapid Commun 2024; 45:e2300606. [PMID: 38087799 DOI: 10.1002/marc.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Recent advancements in bioengineering and medical devices have been greatly influenced and dominated by synthetic polymers, particularly polyurethanes (PUs). PUs offer customizable mechanical properties and long-term stability, but their inherent hydrophobic nature poses challenges in practically biological application processes, such as interface high friction, strong protein adsorption, and thrombosis. To address these issues, surface modifications of PUs for generating functionally hydrophilic layers have received widespread attention, but the durability of generated surface functionality is poor due to irreversible mechanical wear or biodegradation. As a result, numerous researchers have investigated bulk modification techniques to incorporate zwitterionic polymers or groups onto the main or side chains of PUs, thereby improving their hydrophilicity and biocompatibility. This comprehensive review presents an extensive overview of notable zwitterionic PUs (ZPUs), including those based on phosphorylcholine, sulfobetaine, and carboxybetaine. The review explores their wide range of biomedical applications, from blood-contacting devices to antibacterial coatings, fouling-resistant marine coatings, separation membranes, lubricated surfaces, and shape memory and self-healing materials. Lastly, the review summarizes the challenges and future prospects of ZPUs in biological applications.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
2
|
Zhou L, Zhang L, Li P, Maitz MF, Wang K, Shang T, Dai S, Fu Y, Zhao Y, Yang Z, Wang J, Li X. Adhesive and Self-Healing Polyurethanes with Tunable Multifunctionality. RESEARCH 2022; 2022:9795682. [PMID: 36349335 PMCID: PMC9639449 DOI: 10.34133/2022/9795682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Many polyurethanes (PUs) are blood-contacting materials due to their good mechanical properties, fatigue resistance, cytocompatibility, biosafety, and relatively good hemocompatibility. Further functionalization of the PUs using chemical synthetic methods is especially attractive for expanding their applications. Herein, a series of catechol functionalized PU (C-PU-PTMEG) elastomers containing variable molecular weight of polytetramethylene ether glycol (PTMEG) soft segment are reported by stepwise polymerization and further introduction of catechol. Tailoring the molecular weight of PTMEG fragment enables a regulable catechol content, mobility of the chain segment, hydrogen bond and microphase separation of the C-PU-PTMEG elastomers, thus offering tunability of mechanical strength (such as breaking strength from 1.3 MPa to 5.7 MPa), adhesion, self-healing efficiency (from 14.9% to 96.7% within 2 hours), anticoagulant, antioxidation, anti-inflammatory properties and cellular growth behavior. As cardiovascular stent coatings, the C-PU-PTMEGs demonstrate enough flexibility to withstand deformation during the balloon dilation procedure. Of special importance is that the C-PU-PTMEG-coated surfaces show the ability to rapidly scavenge free radicals to maintain normal growth of endothelial cells, inhibit smooth muscle cell proliferation, mediate inflammatory response, and reduce thrombus formation. With the universality of surface adhesion and tunable multifunctionality, these novel C-PU-PTMEG elastomers should find potential usage in artificial heart valves and surface engineering of stents.
Collapse
Affiliation(s)
- Lei Zhou
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Lu Zhang
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Peichuang Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze 274000, China
| | - Manfred F. Maitz
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Kebing Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Tengda Shang
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Sheng Dai
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Yudie Fu
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Yuancong Zhao
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong 510080, China
| | - Jin Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Xin Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| |
Collapse
|
3
|
Saganuwan SA. Biomedical Applications of Polyurethane Hydrogels, Polyurethane Aerogels and Polyurethane-Graphene Nanocomposite Materials. Cent Nerv Syst Agents Med Chem 2022; 22:79-87. [PMID: 35507789 DOI: 10.2174/1871524922666220429115124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/06/2022] [Accepted: 02/05/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Increasing new emerging ill-healths have posed therapeutic challenges in modern medicine. Hence polyurethane hydrogels that comprise polyol, copolymer and extender could be prepared from diverse chemical compounds with adjuvants such as ascorbic acid, sorbitol among others. Their mechano-physicochemical properties are functions of their biological activities. Therefore there is need to assess their therapeutic potentials. METHODS literature were searched on synthesis and medical uses of polyurethane - hydrogels, polyurethane - aerogels and polyurethane - graphene nanocomposite materials, with a view to identifying their sources, synthesis, mechanical and physiochemical properties, biomedical applications, chirality, and the relevance of Lipinski's rule of five in the synthesis of oral polyurethane nanocomposite materials. RESULTS The prepared hydrogels and aerogels could be used as polymer carriers for intradermal, cutaneous and intranasal drugs. They can be fabricated and used as prosthetics. In addition the strength modulus (tensile stress-tensile strain ratio), biodegradability, biocompatibility and non-toxic effects of the polyurethane hydrogels and aerogels are the highly desirable properties. However, body and environmental temperatures may contribute to their instability, hence there is need to improve on the synthesis of aerogels and hydrogels of polyurethane that can last for many years. Alcoholism, diabetes, pyrogenic diseases, mechanical and physical forces, and physiological variability may also reduce the life span of polyurethane aerogels and hydrogels. CONCLUSION Synthesis of polyurethane hydrogel-aerogel complex that can be used in complex, rare biomedical cases is of paramount importance. These hydrogels and aerogels may be hydrophobic, hydrophilic, aerophobic-aerophilic or amphiphilic and sometimes lipophilic depending on structural components and the intended biomedical uses. Polyurethane graphene nanocomposite materials are used in the treatment of a myriad of diseases including cancer and bacterial infection.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department Of Veterinary Pharmacology And Toxicology, College Of Veterinary Medicine, Federal University Of Agriculture P.M.B 2373, Makurdi, Benue State, Nigeria
| |
Collapse
|
4
|
Tang L, Long X, He X, Ding M, Zhao D, Luo F, Li J, Li Z, Tan H, Zhang H. Improved in vivo stability of silicon-containing polyurethane by fluorocarbon side chain modulation of the surface structure. J Mater Chem B 2021; 9:3210-3223. [PMID: 33885625 DOI: 10.1039/d1tb00140j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a class of widely used biomedical materials, polyurethanes suffer from their insufficient stability in vivo. Although the commercialized silicone-polyetherurethanes (SiPEUs) have demonstrated excellent biostability compared with polyetherurethanes (PEUs) for long-term implantation, the usage of polydimethylsiloxane (PDMS) inevitably decreased the mechanical properties and unexpected breaches were observed. In this study, we introduced a fluorinated diol (FDO) into SiPEU to modulate the molecular interactions and micro-separated morphology. The fluorinated silicon-containing polyurethane (FSiPEU) was achieved with desirable silicone- and fluorine-enriched surfaces and mechanical properties at a low silicon content. As evidenced by in vitro culture of macrophages and in vivo hematoxylin-eosin (H&E) staining, FSiPEU demonstrated a minimized inflammatory response. After implantation in mice for 6 months, the material was devoid of significant surface degradation and had the least chain cleavage of soft segments. The results indicate that FSiPEU could be promising candidates for long-term implantation considering the combination of biostability, biocompatibility and mechanical performances.
Collapse
Affiliation(s)
- Lin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Almouse R, Wen X, Na S, Anderson G, Xie D. Polyvinylchloride surface with enhanced cell/bacterial adhesion-resistant and antibacterial functions. J Biomater Appl 2019; 33:1415-1426. [DOI: 10.1177/0885328219834680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study reports synthesis and attachment of a novel antibacterial and hydrophilic polymer onto a polyvinylchloride surface via a simple and mild surface coating technique. The compound 3,4-dichloro-5-hydroxy-2(5H)-furanone was derivatized and copolymerized with N-vinylpyrrolidone. The copolymer was then covalently coated onto polyvinylchloride surface. 3T3 mouse fibroblast cells and bacterium Pseudomonas aeruginosa were used to evaluate surface adhesion and antibacterial activity. Results showed that the polymer-modified polyvinylchloride surface not only exhibited significantly decreased 3T3 fibroblast cell adhesion with a 64–84% reduction but also demonstrated significantly decreased P. aeruginosa adhesion with a 65–84% reduction, as compared to unmodified polyvinylchloride. Furthermore, the modified polyvinylchloride surfaces exhibited significant antibacterial functions by inhibiting P. aeruginosa growth with a 58–80% reduction and killing bacteria, as compared to unmodified polyvinylchloride. These results demonstrate that covalent polymer attachment conferred cell/bacterial adhesion-resistant and antibacterial properties to the polyvinylchloride surface.
Collapse
Affiliation(s)
- Rashed Almouse
- Department of Biomedical Engineering, Purdue School of Engineering and Technology Indiana University-Purdue University at Indianapolis
- Department of Medical Equipment Technology, College of Applied Medical Science Majmaah University, Almajmaah, Riyadh, Saudi Arabia
| | - Xin Wen
- Department of Biomedical Engineering, Purdue School of Engineering and Technology Indiana University-Purdue University at Indianapolis
| | - Sungsoo Na
- Department of Biomedical Engineering, Purdue School of Engineering and Technology Indiana University-Purdue University at Indianapolis
| | - Gregory Anderson
- Department of Biology, Purdue School of Science Indiana University-Purdue University at Indianapolis
| | - Dong Xie
- Department of Biomedical Engineering, Purdue School of Engineering and Technology Indiana University-Purdue University at Indianapolis
| |
Collapse
|
6
|
Wen X, Almousa R, Anderson G, Na S, Xie D. Coating polyvinylchloride surface for improved antifouling property. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:322-336. [DOI: 10.1080/09205063.2019.1570434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Wen
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indianapolis, IN, USA
| | - Rashed Almousa
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indianapolis, IN, USA
| | - Gregory Anderson
- Department of Biology, Purdue School of Science, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indianapolis, IN, USA
| | - Dong Xie
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indianapolis, IN, USA
| |
Collapse
|
7
|
Almousa R, Wen X, Na S, Anderson G, Xie D. A modified polyvinylchloride surface with antibacterial and antifouling functions. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rashed Almousa
- Department of Biomedical Engineering, Purdue School of Engineering and TechnologyIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
- Department of Medical Equipment Technology, College of Applied Medical ScienceMajmaah University Al Majma'ah Riyadh 11952 Saudi Arabia
| | - Xin Wen
- Department of Biomedical Engineering, Purdue School of Engineering and TechnologyIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Purdue School of Engineering and TechnologyIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
| | - Gregory Anderson
- Department of Biology, Purdue School of ScienceIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
| | - Dong Xie
- Department of Biomedical Engineering, Purdue School of Engineering and TechnologyIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
| |
Collapse
|
8
|
Photoreactive benzophenone as anchor of modifier to construct durable anti-platelets polymer surface. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Xie D, Howard L, Almousa R. Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function. J Biomater Appl 2018; 33:340-351. [PMID: 30089433 DOI: 10.1177/0885328218792687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antimicrobial surface is important for the inhibition of bacteria or biofilm formation on biomaterials. The objective of this study was to immobilize a novel hydrophilic polymer containing the antibacterial moiety onto polyurethane surface via a simple surface coating technology to make the surface not only antibacterial but also antifouling. The compound 3,4-dichloro-5-hydroxy-2(5H)-furanone was derivatized, characterized and incorporated onto polyvinylpyrrolidone containing succinimidyl functional groups, followed by coating onto the polyurethane surface. Contact angle, antibacterial function and protein adsorption of the modified surface were evaluated. The result shows that the modified surface exhibited significantly enhanced hydrophilicity with a 54-65% decrease in contact angle, increased antibacterial activity to Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa with a 24-57% decrease in viability, and reduced human serum albumin adsorption with a 64-70% decrease in adsorption, as compared to the original polyurethane.
Collapse
Affiliation(s)
- Dong Xie
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis 46202, IN, USA
| | - Leah Howard
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis 46202, IN, USA
| | - Rashed Almousa
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis 46202, IN, USA
| |
Collapse
|
10
|
Zhao J, Li Y, Sheng J, Wang X, Liu L, Yu J, Ding B. Environmentally Friendly and Breathable Fluorinated Polyurethane Fibrous Membranes Exhibiting Robust Waterproof Performance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29302-29310. [PMID: 28796476 DOI: 10.1021/acsami.7b08885] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Waterproof and breathable membranes that provide a high level of protection and comfort are promising core materials for meeting the pressing demand for future upscale protective clothing. However, creating such materials that exhibit environmental protection, high performance, and ease of fabrication has proven to be a great challenge. Herein, we report a novel strategy for synthesizing fluorinated polyurethane (C6FPU) containing short perfluorohexyl (-C6F13) chains and introduced it as hydrophobic agent into a polyurethane (PU) solution for one-step electrospinning. A plausible mechanism about the dynamic behavior of fluorinated chains with an increasing C6FPU concentration was proposed. Benefiting from the utilization of magnesium chloride (MgCl2), the fibrous membranes had dramatically decreased maximum pore sizes. Consequently, the prepared PU/C6FPU/MgCl2 fibrous membranes exhibited an excellent hydrostatic pressure of 104 kPa, a modest water vapor transmission rate of 11.5 kg m-2 d-1, and a desirable tensile strength of 12.4 MPa. The facile fabrication of PU/C6FPU/MgCl2 waterproof and breathable membranes not only matches well with the tendency to be environmentally protective but also fully meets the requirements for high performance in extremely harsh environments.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Yang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Junlu Sheng
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Lifang Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Jianyong Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University , Shanghai 200051, China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University , Shanghai 200051, China
| |
Collapse
|
11
|
Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin based polyurethanes: A state-of-the-art review. Int J Biol Macromol 2016; 84:101-11. [DOI: 10.1016/j.ijbiomac.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/15/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
12
|
Wang C, Zheng Y, Sun Y, Fan J, Qin Q, Zhao Z. A novel biodegradable polyurethane based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ethylene glycol) as promising biomaterials with the improvement of mechanical properties and hemocompatibility. Polym Chem 2016. [DOI: 10.1039/c6py01131d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel biodegradable PHBV-based polyurethane was designed and synthesized by using PHBV, MDI and PEG.
Collapse
Affiliation(s)
- Cai Wang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Yudong Zheng
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Yi Sun
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Jinsheng Fan
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Qiujing Qin
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Zhenjiang Zhao
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| |
Collapse
|
13
|
Tan D, Liu L, Li Z, Fu Q. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes. J Biomed Mater Res A 2015; 103:2711-9. [DOI: 10.1002/jbm.a.35403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/15/2014] [Accepted: 01/09/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Dongsheng Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 China
| | - Liuxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University; Chengdu 610065 China
| |
Collapse
|
14
|
Dang Y, Quan M, Xing CM, Wang YB, Gong YK. Biocompatible and antifouling coating of cell membrane phosphorylcholine and mussel catechol modified multi-arm PEGs. J Mater Chem B 2015; 3:2350-2361. [PMID: 32262065 DOI: 10.1039/c4tb02140a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The design and easy fabrication of biocompatible and antifouling coatings on different materials are extremely important for biotechnological and biomedical devices. Here we report a substrate-independent biomimetic modification strategy for fabricating a biocompatible and antifouling ultra-thin coating. Cell membrane antifouling phosphorylcholine (PC) and/or mussel adhesive catechol (c) groups are grafted at the amino-ends of an 8-armed poly(ethylene glycol). The PC groups are introduced by grafting a random copolymer bearing both PC and active ester groups. The modified 8-arm PEGs (PEG-2c-23PC, PEG-6c-23PC and PEG-8c) anchor themselves onto various substrates from aqueous solution and form cell outer membrane mimetic surfaces. Static contact angle, atomic force microscope (AFM) and X-ray photoelectron spectra (XPS) measurements confirm the successful fabrication of coatings on polydopamine (PDA) precoated surfaces. Real-time interaction results between proteins/bacteria and the coatings measured by surface plasmon resonance (SPR) technique suggest excellent anti-protein adsorption and short-term anti-bacteria adhesion performance. The long-term bacteria adhesion, platelet and L929 cell attachment results strongly support the SPR conclusions. Furthermore, the cell membrane mimetic and mussel adhesive protein mimetic PEG-2c-23PC shows hardly any toxicity to L929 fibroblasts, and the coating surface demonstrates the best anti-biofouling performance. This PDA-assisted immobilization of PC and/or catechol modified multi-arm PEGs provides a convenient and universal way to produce a biocompatible and fouling-resistant surface with tailor-made functions, which hopefully can be expanded to a wider range of applications based on both structure and surface superiorities.
Collapse
Affiliation(s)
- Yuan Dang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China.
| | | | | | | | | |
Collapse
|
15
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
16
|
Dang Y, Xing CM, Quan M, Wang YB, Zhang SP, Shi SQ, Gong YK. Substrate independent coating formation and anti-biofouling performance improvement of mussel inspired polydopamine. J Mater Chem B 2015; 3:4181-4190. [DOI: 10.1039/c5tb00341e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anti-biofouling performance of mussel inspired polydopamine coating can be improved significantly by simple coordination, oxidation, heating or grafting treatment.
Collapse
Affiliation(s)
- Yuan Dang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Cheng-Mei Xing
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Miao Quan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yan-Bing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Shi-Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Su-Qing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| |
Collapse
|
17
|
Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|