1
|
Rani S, Sahoo RK, Mahale A, Panchal K, Chaurasiya A, Kulkarni O, Kuche K, Jain S, Nakhate KT, Ajazuddin, Gupta U. Sialic Acid Engineered Prodrug Nanoparticles for Codelivery of Bortezomib and Selenium in Tumor Bearing Mice. Bioconjug Chem 2023; 34:1528-1552. [PMID: 37603704 DOI: 10.1021/acs.bioconjchem.3c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Most cancer patients rarely benefit from monodrug therapy because of both cancer complexity and tumor environment. One of the main reasons for this failure is insufficient accumulation of the optimal dose at the tumorous site. Our investigation implies a promising strategy to engineer prodrug nanoparticles (NPs) of bortezomib (BTZ) and selenium (Se) using sialic acid (SAL) as a ligand to improve breast cancer therapy. BTZ was conjugated with SAL and HPMA (N-2-hydroxypropyl methacrylamide) to prepare a prodrug conjugate; BTZ-SAL-HPMA (BSAL-HP) and then fabricated into prodrug NPs with Se (Se_BSAL-HP prodrug NPs). The self-assembly of prodrug NPs functionalized with Se showed size (204.13 ± 0.02 nm) and zeta potential (-31.0 ± 0.11 mV) in dynamic light scattering (DLS) experiments and spherical shape in TEM and SEM analysis. Good stability and low pH drug release profile were characterized by Se_BSAL-HP prodrug NPs. The tumor-selective boronate-ester-based prodrug NPs of BTZ in combination with Se endowed a synergistic effect against cancer cells. Compared to prodrug conjugate, Se_BSAL-HP prodrug NPs exhibited higher cell cytotoxicity and enhanced cellular internalization with significant changes in mitochondria membrane potential (MMP). Elevated apoptosis was observed in the (G2/M) phase of the cell cycle for Se_BSAL-HP prodrug NPs (2.7-fold) higher than BTZ. In vivo studies were performed on Sprague-Dawley rats and resulted in positive trends. The increased therapeutic activity of Se_BSAL-HP prodrug NPs inhibited primary tumor growth and showed 43.05 fold decrease in tumor volume than the control in 4T1 tumor bearing mice. The surprising and remarkable outcomes for Se_BSAL-HP prodrug NPs were probably due to the ROS triggering effect of boronate ester and selenium given together.
Collapse
Affiliation(s)
- Sarita Rani
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Rakesh K Sahoo
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Telangana 500078, India
| | - Kanan Panchal
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Telangana 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Telangana 500078, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Telangana 500078, India
| | - Kaushik Kuche
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar Campus, Sector-67, Punjab 160062, India
| | - Sanyog Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar Campus, Sector-67, Punjab 160062, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
2
|
Bulanadi JC, Xue A, Gong X, Bean PA, Julovi SM, de Campo L, Smith RC, Moghaddam MJ. Biomimetic Gemcitabine-Lipid Prodrug Nanoparticles for Pancreatic Cancer. Chempluschem 2021; 85:1283-1291. [PMID: 32543086 DOI: 10.1002/cplu.202000253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Gemcitabine (Gem) is a key drug for pancreatic cancer, yet limited by high systemic toxicity, low bioavailability and poor pharmacokinetic profiles. To overcome these limitations, Gem prodrug amphiphiles were synthesised with oleyl, linoleyl and phytanyl chains. Self-assembly and lyotropic mesophase behaviour of these amphiphiles were examined using polarised optical microscopy and Synchrotron SAXS (SSAXS). Gem-phytanyl was found to form liquid crystalline inverse cubic mesophase. This prodrug was combined with phospholipids and cholesterol to create biomimetic Gem-lipid prodrug nanoparticles (Gem-LPNP), verified by SSAXS and cryo-TEM to form liposomes. In vitro testing of the Gem-LPNP in several pancreatic cancer cell lines showed lower toxicity than Gem. However, in a cell line-derived pancreatic cancer mouse model Gem-LPNP displayed greater tumour growth inhibition than Gem using a fraction (<6 %) of the clinical dose and without any systemic toxicity. The easy production, improved efficacy and low toxicity of Gem-LPNP represents a promising new nanomedicine for pancreatic cancer.
Collapse
Affiliation(s)
- Jerikho C Bulanadi
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Aiqun Xue
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Xiaojuan Gong
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Penelope A Bean
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Sohel M Julovi
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | | | - Ross C Smith
- Cancer Surgery and Metabolism Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| | - Minoo J Moghaddam
- CSIRO Manufacturing, P.O. BOX 52, North Ryde, NSW, 1670, Australia.,NanoMed Pty Ltd., 2/11-13 Orion Road, Lane Cove West, NSW, 2066, Australia
| |
Collapse
|
3
|
Wang J, Zhang H, Xu J, Qian H, Liu R, Xu Z, Zhu H. Sustained‐release ibuprofen prodrug particle: Emulsifier and initiator regulate the diameter and distribution. J Appl Polym Sci 2021. [DOI: 10.1002/app.49779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Wang
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Haixin Zhang
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Jie Xu
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Hao Qian
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Rui Liu
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Zengchang Xu
- Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai China
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
4
|
Dutta D, Nath LK, Chakraborty P, Dutta D. Targeting Gemcitabine hydrochloride to tumor microenvironment through stimuli-responsive Nano-conjugate: Synthesis, characterization, and in vitro assessment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Improving Plasma Stability and Bioavailability In Vivo of Gemcitabine Via Nanoparticles of mPEG-PLG-GEM Complexed with Calcium Phosphate. Pharm Res 2018; 35:230. [DOI: 10.1007/s11095-018-2506-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/18/2018] [Indexed: 02/05/2023]
|
6
|
Abstract
Incorporating labile bonds inside polymer backbone and side chains yields interesting polymer materials that are responsive to change of environmental stimuli. Drugs can be conjugated to various polymers through different conjugation linkages and spacers. One of the key factors influencing the release profile of conjugated drugs is the hydrolytic stability of the conjugated linkage. Generally, the hydrolysis of acid-labile linkages, including acetal, imine, hydrazone, and to some extent β-thiopropionate, are relatively fast and the conjugated drug can be completely released in the range of several hours to a few days. The cleavage of ester linkages are usually slow, which is beneficial for continuous and prolonged release. Another key structural factor is the water solubility of polymer-drug conjugates. Generally, the release rate from highly water-soluble prodrugs is fast. In prodrugs with large hydrophobic segments, the hydrophobic drugs are usually located in the hydrophobic core of micelles and nanoparticles, which limits the access to the water, hence lowering significantly the hydrolysis rate. Finally, self-immolative polymers are also an intriguing new class of materials. New synthetic pathways are needed to overcome the fact that much of the small molecules produced upon degradation are not active molecules useful for biomedical applications.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| |
Collapse
|
7
|
Joubert F, Pasparakis G. Hierarchically designed hybrid nanoparticles for combinational photochemotherapy against a pancreatic cancer cell line. J Mater Chem B 2018; 6:1095-1104. [PMID: 32254297 DOI: 10.1039/c7tb03261g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we report the formulation of hybrid nanoparticles consisting of aggregated gold nanoparticles (GNPs) impregnated into a gemcitabine-polymer conjugate matrix that exhibit synergistic photo-chemo-therapeutic activity against pancreatic cancer. Well-defined, sub-100 nm hybrid NPs were successfully formulated and their photothermal conversion efficiency was evaluated, which was found to be as high as 63% in the red-visible spectrum. By varying the GNP and GEM-polymer feed, it was possible to control the red-shifting of the surface plasmon resonance at therapeutically relevant wavelengths. The hybrid NPs exhibited significant cytotoxicity against MiaPaCa-2 cells with a half-maximal inhibitory concentration (IC50) of 0.0012 mg mL-1; however the IC50 decreased by a factor of 2 after the cells were irradiated with a continuous wave red laser for 1 min (1.4 W cm-2). Although the irradiation of the aggregated GNPs loaded in the hybrid NPs produced a higher thermal effect for the same amount of non-loaded GNPs, the IC50 of the hybrid NPs was significantly lower than that of the free GNPs, hence indicating a synergistic effect of the polymer bound GEM and the GNPs.
Collapse
Affiliation(s)
- F Joubert
- UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX London, UK.
| | | |
Collapse
|
8
|
Abstract
Covalent modification of therapeutic compounds is a clinically proven strategy to devise prodrugs with enhanced treatment efficacies. This prodrug strategy relies on the modified drugs that possess advantageous pharmacokinetic properties and administration routes over their parent drug. Self-assembling prodrugs represent an emerging class of therapeutic agents capable of spontaneously associating into well-defined supramolecular nanostructures in aqueous solutions. The self-assembly of prodrugs expands the functional space of conventional prodrug design, affording a possible pathway to more effective therapies as the assembled nanostructure possesses distinct physicochemical properties and interaction potentials that can be tailored to specific administration routes and disease treatment. In this review, we will discuss the various types of self-assembling prodrugs in development, providing an overview of the methods used to control their structure and function and, ultimately, our perspective on their current and future potential.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | | | | | | |
Collapse
|
9
|
Joubert F, Martin L, Perrier S, Pasparakis G. Development of a Gemcitabine-Polymer Conjugate with Prolonged Cytotoxicity against a Pancreatic Cancer Cell Line. ACS Macro Lett 2017; 6:535-540. [PMID: 35610886 DOI: 10.1021/acsmacrolett.7b00160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gemcitabine (GEM) is a nucleoside analogue of deoxycytidine with limited therapeutic efficacy due to enzymatic hydrolysis by cytidine deaminase (CDA) resulting in compromised half-life in the bloodstream and poor pharmacokinetics. To overcome these limitations, we have developed a methacrylate-based GEM-monomer conjugate, which was polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization with high monomer conversion (∼90%) and low dispersity (<1.4). The resulting GEM-polymer conjugates were found to form well-defined sub-90 nm nanoparticles (NPs) in aqueous suspension. Subsequently, the GEM release was studied at different pH (∼7 and ∼5) with and without the presence of an enzyme, Cathepsin B. The GEM release profiles followed a pseudo zero-order rate and the GEM-polymer conjugate NPs were prone to acidic and enzymatic degradation, following a two-step hydrolysis mechanism. Furthermore, the NPs exhibited significant cytotoxicity in vitro against a model pancreatic cell line. Although, the half-maximal inhibitory concentration (IC50) of the GEM-monomer and -polymer conjugate NPs was higher than free GEM, the conjugates showed superiorly prolonged activity compared to the parent drug.
Collapse
Affiliation(s)
- Fanny Joubert
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom
| | - Liam Martin
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, Australia
| | - George Pasparakis
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom
| |
Collapse
|
10
|
Hamsici S, Sardan Ekiz M, Cinar Ciftci G, Tekinay AB, Guler MO. Gemcitabine Integrated Nano-Prodrug Carrier System. Bioconjug Chem 2017; 28:1491-1498. [PMID: 28441471 DOI: 10.1021/acs.bioconjchem.7b00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation. Its hydrophilic nature poses a challenge for both its efficient encapsulation into nanocarrier systems and its sustained release property. Here, we designed a new peptide prodrug molecule for the anticancer drug gemcitabine, which was covalently conjugated to the C-terminal of 9-fluorenylmethoxy carbonyl (Fmoc)-protected glycine. The prodrug was further integrated into peptide nanocarrier system through noncovalent interactions. A pair of oppositely charged amyloid-inspired peptides (Fmoc-AIPs) were exploited as components of the drug-carrier system and self-assembled into one-dimensional nanofibers at physiological conditions. The gemcitabine integrated nanoprodrug carrier system exhibited slow release and reduced the cellular viability of 4T1 breast cancer cell line in a time- and concentration-dependent manner.
Collapse
Affiliation(s)
- Seren Hamsici
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Goksu Cinar Ciftci
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800.,Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Surwase SS, Munot NM, Idage BB, Idage SB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv Transl Res 2017; 7:416-427. [DOI: 10.1007/s13346-017-0372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Kapishon V, Allison S, Whitney RA, Cunningham MF, Szewczuk MR, Neufeld RJ. Oseltamivir-conjugated polymeric micelles prepared by RAFT living radical polymerization as a new active tumor targeting drug delivery platform. Biomater Sci 2017; 4:511-21. [PMID: 26788555 DOI: 10.1039/c5bm00519a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted drug delivery using polymeric nanostructures has been at the forefront of cancer research, engineered for safer, more efficient and effective use of chemotherapy. Here, we designed a new polymeric micelle delivery system for active tumor targeting followed by micelle-drug internalization via receptor-induced endocytosis. We recently reported that oseltamivir phosphate targets and inhibits Neu1 sialidase activity associated with receptor tyrosine kinases such as epidermal growth factor receptors (EGFRs) which are overexpressed in cancer cells. By decorating micelles with oseltamivir, we investigated whether they actively targeted human pancreatic PANC1 cancer cells. Amphiphilic block copolymers with oseltamivir conjugated at the hydrophilic end, oseltamivir-pPEGMEMA-b-pMMA (oseltamivir-poly(polyethylene glycol methyl ether methacrylate)-block-poly(methyl methacrylate), were synthesized using reversible addition-fragmentation chain transfer (RAFT) living radical polymerization. Oseltamivir-conjugated micelles have self-assembling properties to give worm-like micellar structures with molecular weight of 80 000 g mol(-1). Oseltamivir-conjugated water soluble pPEGMEMA, dose dependently, both inhibited sialidase activity associated with Neu1, and reduced viability of PANC1 cells. In addition, oseltamivir-conjugated micelles, labelled with a hydrophobic fluorescent dye within the micelle core, were subsequently internalized by PANC1 cells. Blocking cell surface Neu1 with anti-Neu1 antibody, reduced internalization of oseltamivir-conjugated micelles, demonstrating that Neu1 binding linked to sialidase inhibition were prerequisite steps for subsequent internalization of the micelles. The mechanism of internalization is likely that of receptor-induced endocytosis demonstrating potential as a new nanocarrier system for not only targeting a tumor cell, but also for directly reducing viability through Neu1 inhibition, followed by intracellular delivery of hydrophobic cytotoxic chemotherapeutics.
Collapse
Affiliation(s)
- Vitaliy Kapishon
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Stephanie Allison
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Ralph A Whitney
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Michael F Cunningham
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6. and Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
13
|
Duan Z, Zhang Y, Zhu H, Sun L, Cai H, Li B, Gong Q, Gu Z, Luo K. Stimuli-Sensitive Biodegradable and Amphiphilic Block Copolymer-Gemcitabine Conjugates Self-Assemble into a Nanoscale Vehicle for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3474-3486. [PMID: 28029039 DOI: 10.1021/acsami.6b15232] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The availability and the stability of current anticancer agents, particularly water-insoluble drugs, are still far from satisfactory. A widely used anticancer drug, gemcitabine (GEM), is so poorly stable in circulation that some polymeric drug-delivery systems have been under development for some time to improve its therapeutic index. Herein, we designed, prepared, and characterized a biodegradable amphiphilic block N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-GEM conjugate-based nanoscale and stimuli-sensitive drug-delivery vehicle. An enzyme-sensitive oligopeptide sequence glycylphenylalanylleucylglycine (GFLG) was introduced to the main chain with hydrophilic and hydrophobic blocks via the reversible addition-fragmentation chain transfer (RAFT) polymerization. Likewise, GEM was conjugated to the copolymer via the enzyme-sensitive peptide GFLG, producing a high molecular weight (MW) product (90 kDa) that can be degraded into smaller MW segments (<50 kDa), and ensuring potential rapid site-specific release and stability in vivo. The amphiphilic copolymer-GEM conjugate can self-assemble into compact nanoparticles. NIR fluorescent images demonstrated that the conjugate-based nanoparticles could accumulate and be retained within tumors, resulting in significant increased antitumor efficacy compared to free GEM. The conjugate was not toxic to organs of the mice as measured by body weight reductions and histological analysis. In summary, this biodegradable amphiphilic block HPMA copolymer-gemcitabine conjugate has the potential to be a stimuli-sensitive and nanoscale drug-delivery vehicle.
Collapse
Affiliation(s)
- Zhenyu Duan
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Yanhong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | | | | | - Hao Cai
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | | | | | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | | |
Collapse
|
14
|
Li P, Zhou J, Huang P, Zhang C, Wang W, Li C, Kong D. Self-assembled PEG- b-PDPA- b-PGEM copolymer nanoparticles as protein antigen delivery vehicles to dendritic cells: preparation, characterization and cellular uptake. Regen Biomater 2017; 4:11-20. [PMID: 28149525 PMCID: PMC5274708 DOI: 10.1093/rb/rbw044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/22/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
Antigen uptake by dendritic cells (DCs) is a key step for initiating antigen-specific T cell immunity. In the present study, novel synthetic polymeric nanoparticles were prepared as antigen delivery vehicles to improve the antigen uptake by DCs. Well-defined cationic and acid-responsive copolymers, monomethoxy poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate)-block-poly(2-(guanidyl) ethyl methacrylate) (mPEG-b-PDPA-b-PGEM, PEDG) were synthesized by reversible addition-fragmentation chain transfer polymerization of 2-(diisopropylamino)ethyl methacrylate) and N-(tert-butoxycarbonyl) amino ethyl methacrylate monomers, followed by deprotection of tert-butyl protective groups and guanidinylation of obtained primary amines. 1H NMR, 13C NMR and GPC results indicated the successful synthesis of well-defined PEDG copolymers. PEDG copolymers could self-assemble into nanoparticles in aqueous solution, which were of cationic surface charges and showed acid-triggered disassembly contributed by PGEM and PDPA moieties, respectively. Significantly, PEDG nanoparticles could effectively condense with negatively charged model antigen ovalbumin (OVA) to form OVA/PEDG nanoparticle formulations with no influence on its secondary and tertiary structures demonstrating by far-UV circular dichroism and UV-vis spectra. In vitro antigen cellular uptake by bone marrow DCs (BMDCs) indicated using PEDG nanoparticles as antigen delivery vehicles could significantly improve the antigen uptake efficiency of OVA compared with free OVA or the commercialized Alum adjuvant. Moreover, as the surface cationic charges of OVA/PEDG nanoparticle formulations reduced, the uptake efficiency decreased correspondingly. Collectively, our work suggests that guanidinylated, cationic and acid-responsive PEDG nanoparticles represent a new kind of promising antigen delivery vehicle to DCs and hold great potential to serve as immunoadjuvants in the development of vaccines.
Collapse
Affiliation(s)
- Pan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Junhui Zhou
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
15
|
Huang P, Song H, Zhang Y, Liu J, Zhang J, Wang W, Liu J, Li C, Kong D. Bridging the Gap between Macroscale Drug Delivery Systems and Nanomedicines: A Nanoparticle-Assembled Thermosensitive Hydrogel for Peritumoral Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29323-29333. [PMID: 27731617 DOI: 10.1021/acsami.6b10416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The objective of this study was to investigate the spatiotemporal delivery of nanomedicines by an injectable, thermosensitive, and nanoparticle-self-aggregated hydrogel for peritumoral chemotherapy. Doxorubicin (Dox) was taken as the model medicine, which was encapsulated into poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) nanoparticles (PECT/Dox NPs). Macroscale hydrogel was formed by thermosensitive self-aggregation of PECT/Dox NPs in aqueous solution. Drug release from the hydrogel formulation was dominated by sustained shedding of PECT/Dox NPs and the following drug diffusion from these NPs. The hydrogel retention and release pattern of NPs in vivo was further confirmed by fluorescence resonance energy transfer (FRET) imaging. A single treatment with the hydrogel formulation possessed similar cytotoxicity against HepG2 cells compared to triple administrations of free Dox or PECT/Dox NPs in vitro due to enhanced uptake of PECT/Dox NPs and sustained intracellular drug release. Importantly, single peritumoral injection of drug-encapsulated hydrogel in vivo showed advantages over multiple intravenous administrations of PECT/Dox NPs and free Dox, including preferential and prolonged local drug accumulation and retention in tumors, resulting in superior cancer chemotherapy efficiency. Collectively, such a unique thermosensitive and nanoparticle-shedding hydrogel could effectively combine the advantages of nanomedicines and macroscale drug delivery systems, demonstrating great potential in the local nanodrugs' delivery. It will open a new promising path for cancer chemotherapy with enhanced treatment efficacy and minimized side effects.
Collapse
Affiliation(s)
- Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| |
Collapse
|
16
|
Sgarlata C, D’Urso L, Consiglio G, Grasso G, Satriano C, Forte G. pH sensitive functionalized graphene oxide as a carrier for delivering gemcitabine: A computational approach. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Dubey RD, Saneja A, Gupta PK, Gupta PN. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur J Pharm Sci 2016; 93:147-62. [PMID: 27531553 DOI: 10.1016/j.ejps.2016.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is an efficacious anticancer agent acting against a wide range of solid tumors, including pancreatic, non-small cell lung, bladder, breast, ovarian, thyroid and multiple myelomas. However, short plasma half-life due to metabolism by cytidine deaminase necessitates administration of high dose, which limits its medical applicability. Further, due to its hydrophilic nature, it cannot traverse cell membranes by passive diffusion and, therefore, enters via nucleoside transporters that may lead to drug resistance. To circumvent these limitations, macromolecular prodrugs and nanocarrier-based formulations of Gemcitabine are gaining wide recognition. The nanoformulations based approaches by virtue of their controlled release and targeted delivery have proved to improve bioavailability, increase therapeutic efficacy and reduce adverse effects of the drug. Furthermore, the combination of Gemcitabine with other anticancer agents as well as siRNAs using nanocarriers has also been investigated in order to enhance its therapeutic potential. This review deals with challenges and recent advances in the delivery of Gemcitabine with particular emphasis on macromolecular prodrugs and nanomedicines.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Ankit Saneja
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Prasoon K Gupta
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| |
Collapse
|
18
|
Crespy D, Lv LP, Landfester K. Redefining the functions of nanocapsule materials. NANOSCALE HORIZONS 2016; 1:268-271. [PMID: 32260646 DOI: 10.1039/c5nh00112a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanocapsules are key components in new technologies related to biomedicine and materials science. However, their long-term fate after use is still largely ignored. We discuss here a sustainable approach where the products of degradation of the nanoparticles play a significant role in their application because they are also functional molecules. The polymer shell of the nanocapsules is chemically engineered so that the degradation products formed upon chemical damage are useful after their normal use.
Collapse
Affiliation(s)
- D Crespy
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| | | | | |
Collapse
|
19
|
Zhang Y, Hu D, Han S, Yan G, Ma C, Wei C, Yu M, Li D, Sun Y. Preparation and evaluation of reduction-responsive nano-micelles for miriplatin delivery. Exp Biol Med (Maywood) 2016; 241:1169-76. [PMID: 26743756 PMCID: PMC4950310 DOI: 10.1177/1535370215625473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/30/2015] [Indexed: 01/24/2023] Open
Abstract
A reduction-responsive amphiphilic core-shell micelle for miriplatin delivery was prepared and evaluated. A pyrene-terminated poly(2-(dimethylamino) ethyl acrylate) was synthesized through reversible addition-fragmentation chain transfer polymerization with 4-cyano-4-(ethylthiocarbonothioylthio) pentanoic acid as reversible addition-fragmentation chain transfer reagent and further modified by 2,2'-dithiodiethanol and 1-pyrenebutyric acid. Self-assembled blank micelles and drug-loaded micelles were obtained by dialysis method, and the particle size was proved to be about 40 nm with narrow dispersity by dynamic laser light scattering. Morphology results showed that blank micelles and drug-loaded micelles were spherical nanoparticles confirmed by transmission electron microscope, and the critical micelle concentration was as low as 6.09 µg/mL via pyrene fluorescence probe method. The reductive sensitivity of disulfide bond in BMs was further verified by changes in particle size, pyrene fluorescence intensity ratio (I338/I333), and morphology after treatment by dithiothreitol. Moreover, drug release rate in vitro of drug-loaded micelles was evaluated and the results suggested that this amphiphilic pyrene-modified poly(2-(dimethylamino) ethyl acrylate) can be used as reduction-triggered controlled release drug delivery carrier for hydrophobic drug.
Collapse
Affiliation(s)
- Ying Zhang
- Department of pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Dejian Hu
- Weifang People’s Hospital, Weifang 261041, China
| | - Shangcong Han
- Department of pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Guowen Yan
- Department of pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Chao Ma
- Department of pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Chen Wei
- Department of pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Miao Yu
- Department of pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Dongmei Li
- Affiliated Hospital of Qingdao University, Qingdao 266071, China The first two authors contributed equally to this work
| | - Yong Sun
- Department of pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| |
Collapse
|
20
|
Polymeric prodrug of bufalin for increasing solubility and stability: Synthesis and anticancer study in vitro and in vivo. Int J Pharm 2016; 506:382-93. [DOI: 10.1016/j.ijpharm.2016.04.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/01/2016] [Accepted: 04/15/2016] [Indexed: 11/21/2022]
|
21
|
Feuser PE, Gaspar PC, Jacques AV, Tedesco AC, Santos Silva MCD, Ricci-Júnior E, Sayer C, de Araújo PHH. Synthesis of ZnPc loaded poly(methyl methacrylate) nanoparticles via miniemulsion polymerization for photodynamic therapy in leukemic cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:458-466. [DOI: 10.1016/j.msec.2015.11.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
|
22
|
Han H, Wang H, Chen Y, Li Z, Wang Y, Jin Q, Ji J. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy. NANOSCALE 2016; 8:283-291. [PMID: 26608864 DOI: 10.1039/c5nr06734k] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and "click" reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Haibo Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yangjun Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zuhong Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yin Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
23
|
Phan VHG, Lee E, Maeng JH, Thambi T, Kim BS, Lee D, Lee DS. Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Adv 2016. [DOI: 10.1039/c6ra07934b] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nanobiohybrid hydrogels, composed of biocompatible inorganic nanoparticles and biodegradable polymeric hydrogels, have been developed as the sustained delivery carrier of gemcitabine for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- V. H. Giang Phan
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Eunhye Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Jin Hee Maeng
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Thavasyappan Thambi
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Bong Sup Kim
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Donheang Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| |
Collapse
|
24
|
Li P, Shi G, Zhang X, Song H, Zhang C, Wang W, Li C, Song B, Wang C, Kong D. Guanidinylated cationic nanoparticles as robust protein antigen delivery systems and adjuvants for promoting antigen-specific immune responses in vivo. J Mater Chem B 2016; 4:5608-5620. [DOI: 10.1039/c6tb01556e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Guanidinylated nanoparticles could act as effective immune adjuvants to elicit both potent antigen-specific cellular and humoral immune responses.
Collapse
|
25
|
Pan G, Bao YJ, Xu J, Liu T, Liu C, Qiu YY, Shi XJ, Yu H, Jia TT, Yuan X, Yuan ZT, Yin PH, Cao YJ. Esterase-responsive polymeric prodrug-based tumor targeting nanoparticles for improved anti-tumor performance against colon cancer. RSC Adv 2016. [DOI: 10.1039/c6ra05236c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report on the fabrication of a multifunctional polymeric prodrug covalently linked with an anticancer drug (bufalin, BUF) and tumor-targeting peptide (RGD) and investigate its anticancer performance against colon cancer in mice.
Collapse
|
26
|
Song H, Zhang J, Wang W, Huang P, Zhang Y, Liu J, Li C, Kong D. Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery. Colloids Surf B Biointerfaces 2015; 136:365-74. [PMID: 26433349 DOI: 10.1016/j.colsurfb.2015.09.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/01/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
Self-assembled prodrug nanoparticles have demonstrated great promise in cancer chemotherapy. In the present study, we developed a new kind of prodrug nanoparticles for targeted drug delivery. PEGylated doxorubicin conjugate with an acid-cleavable cis-aconityl spacer was prepared. Then it was functionalized with a tumor-penetrating peptide, Cys-Arg-Gly-Asp-Lys (CRGDK), providing the prodrug nanoparticles with the specific binding ability to neurophilin-1 receptor. In acid mediums, doxorubicin could be released from the prodrug nanoparticles with an accumulative release around 60% through the acid-triggered hydrolysis of cis-aconityl bond and nanoparticle disassembly. Whereas, drug release was slow under a neutral pH and the accumulative drug release was less than 16%. In the cell culture tests, our prodrug nanoparticles showed enhanced endocytosis and cytotoxicity in cancer cells including HepG2, MCF-7 and MDA-MB-231 cells, but lower cytotoxicity in human cardiomyocyte H2C9. In the animal experiments, the prodrug nanoparticles were intravenously injected into Balb/c nude mice bearing MDA-MB-231 tumors. Enhanced drug penetration and accumulation in tumors, accompanying with a rapid early tumor-binding behavior, was observed after intravenous injection of the peptide modified prodrug nanoparticles. These data suggests that the acid-sensitive and tumor-targeting PEGylated doxorubicin prodrug nanoparticle may be an efficient drug delivery system for cancer chemotherapy.
Collapse
Affiliation(s)
- Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ju Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Utama RH, Jiang Y, Zetterlund PB, Stenzel MH. Biocompatible Glycopolymer Nanocapsules via Inverse Miniemulsion Periphery RAFT Polymerization for the Delivery of Gemcitabine. Biomacromolecules 2015; 16:2144-56. [PMID: 26027950 DOI: 10.1021/acs.biomac.5b00545] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Encapsulation of hydrophilic cancer drugs in polymeric nanocapsules was achieved in a one-pot process via the inverse miniemulsion periphery RAFT polymerization (IMEPP) approach. The chosen guest molecule was gemcitabine hydrochloride, which is used as the first-line treatment of pancreatic cancer. The resulting nanocapsules were confirmed to be ∼200 nm, with excellent encapsulation (∼96%) and loading (∼12%) efficiency. Postpolymerization reaction was successfully conducted to create glyocopolymer nanocapsules without any impact on the loads as well as the nanocapsules size or morphology. The loaded nanocapsules were specifically designed to be responsive in a reductive environment. This was confirmed by the successful disintegration of the nanocapsules in the presence of glutathione. The gemcitabine-loaded nanocapsules were tested in vitro against pancreatic cancer cells (AsPC-1), with the results showing an enhancement in the cytotoxicity by two fold due to selective accumulation and release of the nanocapsules within the cells. The results demonstrated the versatility of IMEPP as a tool to synthesize functionalized, loaded-polymeric nanocapsules suitable for drug-delivery application.
Collapse
Affiliation(s)
- Robert H Utama
- ‡Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Yanyan Jiang
- †Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia.,‡Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Per B Zetterlund
- †Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Martina H Stenzel
- †Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia.,‡Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
28
|
Wang W, Song H, Zhang J, Li P, Li C, Wang C, Kong D, Zhao Q. An injectable, thermosensitive and multicompartment hydrogel for simultaneous encapsulation and independent release of a drug cocktail as an effective combination therapy platform. J Control Release 2015; 203:57-66. [DOI: 10.1016/j.jconrel.2015.02.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/28/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
|
29
|
Gao S, Jiang J, Li P, Song H, Wang W, Li C, Kong D. Attenuating tumour angiogenesis: a preventive role of metformin against breast cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:592523. [PMID: 25883966 PMCID: PMC4389975 DOI: 10.1155/2015/592523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/09/2014] [Indexed: 01/01/2023]
Abstract
Metformin is one of the most widely prescribed antidiabetics for type 2 diabetes. A critical role of metformin against tumorigenesis has recently been implicated, although several studies also reported the lack of anticancer property of the antidiabetics. Given the controversies regarding the potential role of metformin against tumour progression, the effect of metformin against breast, cervical, and ovarian tumour cell lines was examined followed by in vivo assessment of metformin on tumour growth using xenograft breast cancer models. Significant inhibitory impact of metformin was observed in MCF-7, HeLa, and SKOV-3 cells, suggesting an antiproliferative property of metformin against breast, cervical, and ovarian tumour cells, respectively, with the breast tumour cells, MCF-7, being the most responsive. In vivo assessment was subsequently carried out, where mice with breast tumours were treated with metformin (20 mg/kg body weight) or sterile PBS solution for 15 consecutive days. No inhibition of breast tumour progression was detected. However, tumour necrosis was significantly increased in the metformin-treated group, accompanied by decreased capillary formation within the tumours. Thus, despite the lack of short-term benefit of metformin against tumour progression, a preventive role of metformin against breast cancer was implicated, which is at partially attributable to the attenuation of tumour angiogenesis.
Collapse
Affiliation(s)
- Shan Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jingcheng Jiang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Pan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
30
|
Lou S, Gao S, Wang W, Zhang M, Zhang J, Wang C, Li C, Kong D, Zhao Q. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery. NANOSCALE 2015; 7:3137-3146. [PMID: 25613320 DOI: 10.1039/c4nr06714b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-D-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.
Collapse
Affiliation(s)
- Shaofeng Lou
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science, Tianjin 300192, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Perry JL, Kai MP, Reuter KG, Bowerman C, Christopher Luft J, DeSimone JM. Calibration-quality cancer nanotherapeutics. Cancer Treat Res 2015; 166:275-291. [PMID: 25895873 DOI: 10.1007/978-3-319-16555-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoparticle properties such as size, shape, deformability, and surface chemistry all play a role in nanomedicine drug delivery in cancer. While many studies address the behavior of particle systems in a biological setting, revealing how these properties work together presents unique challenges on the nanoscale. "Calibration-quality" control over such properties is needed to draw adequate conclusions that are independent of parameter variability. Furthermore, active targeting and drug loading strategies introduce even greater complexities via their potential to alter particle pharmacokinetics. Ultimately, the investigation and optimization of particle properties should be carried out in the appropriate preclinical tumor model. In doing so, translational efficacy improves as clinical tumor properties increase. Looking forward, the field of nanomedicine will continue to have significant clinical impacts as the capabilities of nanoparticulate drug delivery are further enhanced.
Collapse
Affiliation(s)
- Jillian L Perry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA,
| | | | | | | | | | | |
Collapse
|
32
|
Han H, Jin Q, Wang Y, Chen Y, Ji J. The rational design of a gemcitabine prodrug with AIE-based intracellular light-up characteristics for selective suppression of pancreatic cancer cells. Chem Commun (Camb) 2015; 51:17435-8. [DOI: 10.1039/c5cc06654a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enzyme and reduction-activatable gemcitabine prodrug with AIE properties was designed for targeted and image-guided pancreatic cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yin Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yangjun Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
33
|
Luo C, Sun J, Sun B, He Z. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci 2014; 35:556-66. [PMID: 25441774 DOI: 10.1016/j.tips.2014.09.008] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/25/2014] [Accepted: 09/19/2014] [Indexed: 01/17/2023]
Abstract
Despite the rapid developments in nanotechnology and biomaterials, the efficient delivery of chemotherapeutic agents is still challenging. Prodrug-based nanoassemblies have many advantages as a potent platform for anticancer drug delivery, such as improved drug availability, high drug loading efficiency, resistance to recrystallization upon encapsulation, and spatially and temporally controllable drug release. In this review, we discuss prodrug-based nanocarriers for cancer therapy, including nanosystems based on polymer-drug conjugates, self-assembling small molecular weight prodrugs and prodrug-encapsulated nanoparticles (NPs). In addition, we discuss new trends in the field of prodrug-based nanoassemblies that enhance the delivery efficiency of anticancer drugs, with special emphasis on smart stimuli-triggered drug release, hybrid nanoassemblies, and combination drug therapy.
Collapse
Affiliation(s)
- Cong Luo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jin Sun
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, PR China.
| | - Bingjun Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|