1
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
2
|
da Silva de Barros AO, Ricci-Junior E, Alencar LMR, Fechine PBA, Andrade Neto DM, Bouskela E, Santos-Oliveira R. High doses of hydroxyapatite nanoparticle (nHAP) impairs microcirculation in vivo. Colloids Surf B Biointerfaces 2024; 233:113601. [PMID: 37939551 DOI: 10.1016/j.colsurfb.2023.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Nanoparticles has surrounded the population by their use in electronics, medicine and cosmetics. The exposure to nanoparticles coming from different sources is uncountable as the amount of nanoparticles in which a person is exposed daily. In this direction and considering that microcirculation is the main and most affected system by nanoparticles in the first moment, responsible to transport and deal with nanoparticles internally, we evaluated a massive exposure (1 g/Kg) of a well-known nanoparticle (hydroxyapatite) and the impact on the microvessels. The results showed a massive destruction of venules, arterioles, and capillaries when nHAPs were administered topically. However, systemic administration of high doses of nHAP did not affect microcirculation but altered biochemical parameters of blood samples from treated animals. The data demonstrated that even well documented nanoparticles at high doses might affect the whole-body homeostasis. Finally, the results raise the necessity for further investigation of the effect of nanoparticles in microcirculation and the impact in the whole-body homeostasis.
Collapse
Affiliation(s)
- Aline Oliveira da Silva de Barros
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (FF/UFRJ), Brazil
| | - Luciana Magalhães Rebelo Alencar
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, Maranhão 65080-805, Brazil
| | - Pierre Basilio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará-UFC, Campus do Pici, CP 12100, Fortaleza, Ceará, CEP 60451-970, Brazil
| | - Davino Machado Andrade Neto
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará-UFC, Campus do Pici, CP 12100, Fortaleza, Ceará, CEP 60451-970, Brazil; Federal Institute of Education, Science, and Technology of Ceará, Campus Camocim, 62400-000 Camocim, CE, Brazil
| | - Eliete Bouskela
- Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular (BioVasc), Rio de Janeiro, 20550-013, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil; State University of Rio de Janeiro, Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro, RJ 23070200, Brazil.
| |
Collapse
|
3
|
Diez-Escudero A, Espanol M, Ginebra MP. High-aspect-ratio nanostructured hydroxyapatite: towards new functionalities for a classical material. Chem Sci 2023; 15:55-76. [PMID: 38131070 PMCID: PMC10732134 DOI: 10.1039/d3sc05344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hydroxyapatite-based materials have been widely used in countless applications, such as bone regeneration, catalysis, air and water purification or protein separation. Recently, much interest has been given to controlling the aspect ratio of hydroxyapatite crystals from bulk samples. The ability to exert control over the aspect ratio may revolutionize the applications of these materials towards new functional materials. Controlling the shape, size and orientation of HA crystals allows obtaining high aspect ratio structures, improving several key properties of HA materials such as molecule adsorption, ion exchange, catalytic reactions, and even overcoming the well-known brittleness of ceramic materials. Regulating the morphogenesis of HA crystals to form elongated oriented fibres has led to flexible inorganic synthetic sponges, aerogels, membranes, papers, among others, with applications in sustainability, energy and catalysis, and especially in the biomedical field.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
4
|
Sivakumar PM, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Enhanced properties of nickel-silver codoped hydroxyapatite for bone tissue engineering: Synthesis, characterization, and biocompatibility evaluation. ENVIRONMENTAL RESEARCH 2023; 238:117131. [PMID: 37709242 DOI: 10.1016/j.envres.2023.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Hydroxyapatite (HAp) is the most well-known bioceramic and widely utilized in bone tissue regeneration. Hydroxyapatite is biocompatible and bioactive however, it lacks osteogenesis, angiogenesis, and antibacterial properties. In the current study, we synthesized and evaluated a novel nickel (Ni) and silver (Ag) codoped hydroxyapatite (HAp) in comparison to undoped HAp and individually doped HAp samples. Extensive physicochemical characterizations like XRD, TEM, FE-SEM/EDS, FTIR, Raman spectroscopy, and TGA were performed, confirming the crystal structure and morphology of the synthesized HAp samples. All HAp samples exhibited elongated spherical-like nanoparticle morphologies with lengths between 34 and 44 nm and widths between 21 and 26 nm. The presence of dopant atoms, Ag and Ni, were observed in the doped/codoped HAp samples by EDS elemental mapping. Biocompatibility assessments using pre-osteoblast cells indicated high cell viability for all the doped and undoped HAp samples. Osteoinduction potential through alkaline phosphatase (ALP) activity measurements and alizarin red S (ARS) staining revealed enhanced calcium deposition in the presence of Ni-Ag codoped HAp compared to other HAp samples and control groups. This highlights the importance of Ni-Ag co-doping in promoting osteogenesis, surpassing the effects of silver doped HAp and nickel doped HAp. The potential of this novel Ni-Ag codoped HAp to induce osteogenesis in pre-osteoblast cells makes it a promising material for various applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul, 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul, 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul, 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul, 34956, Turkey.
| |
Collapse
|
5
|
Carbajal-De la Torre G, Zurita-Méndez NN, Ballesteros-Almanza MDL, Ortiz-Ortiz J, Estévez M, Espinosa-Medina MA. Characterization and Evaluation of Composite Biomaterial Bioactive Glass-Polylactic Acid for Bone Tissue Engineering Applications. Polymers (Basel) 2022; 14:polym14153034. [PMID: 35893998 PMCID: PMC9332817 DOI: 10.3390/polym14153034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
The limitations associated with the clinical use of autographs and allografts are driving efforts to develop relevant and applicable biomaterial substitutes. In this research, 3D porous scaffolds composed of bioactive glass (BG) obtained through the sol-gel technique and polylactic acid (PLA) synthesized via lactic acid (LA) ring-opening polymerization were prepared by the gel-pressing technique. Two different weight compositions were evaluated, namely, BG70-PLA30 and BG30-PLA70. The structure and morphology of the resulting scaffolds were analysed by FTIR, XRD, SEM, and under ASTM F1635 standard characterizations. The results confirmed that BG promotes the formation of a hydroxy-carbonated apatite (HAp) layer on composites when immersed in simulated body fluid (SBF). Biodegradability evaluations were carried out according to the ISO 10993-13:2010 standard. In addition, electrochemical evaluations were performed in both Hank's and SBF solutions at 37 °C in order to analyse the degradation of the material. This evaluation allowed us to observe that both samples showed an activation mechanism in the early stages followed by pseudo-passivation due to physical bioactive glass characteristics, suggesting an improvement in the formation of the HAp nucleation. The described composites showed excellent resistance to degradation and outstanding suitability for bone tissue engineering applications.
Collapse
Affiliation(s)
- Georgina Carbajal-De la Torre
- Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Morelia C.P. 58000, Mexico; (N.N.Z.-M.); (J.O.-O.)
- Correspondence: (G.C.-D.); (M.A.E.-M.)
| | - Nancy N. Zurita-Méndez
- Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Morelia C.P. 58000, Mexico; (N.N.Z.-M.); (J.O.-O.)
| | | | - Javier Ortiz-Ortiz
- Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Morelia C.P. 58000, Mexico; (N.N.Z.-M.); (J.O.-O.)
| | - Miriam Estévez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro C.P. 76230, Mexico;
| | - Marco A. Espinosa-Medina
- Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Morelia C.P. 58000, Mexico; (N.N.Z.-M.); (J.O.-O.)
- Correspondence: (G.C.-D.); (M.A.E.-M.)
| |
Collapse
|
6
|
Fernandes Patrício TM, Mumcuoglu D, Montesi M, Panseri S, Witte-Bouma J, Garcia SF, Sandri M, Tampieri A, Farrell E, Sprio S. Bio-inspired polymeric iron-doped hydroxyapatite microspheres as a tunable carrier of rhBMP-2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111410. [PMID: 33321577 DOI: 10.1016/j.msec.2020.111410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022]
Abstract
Hybrid superparamagnetic microspheres with bone-like composition, previously developed by a bio-inspired assembling/mineralization process, are evaluated for their ability to uptake and deliver recombinant human bone morphogenetic protein-2 (rhBMP-2) in therapeutically-relevant doses along with prolonged release profiles. The comparison with hybrid non-magnetic and with non-mineralized microspheres highlights the role of nanocrystalline, nanosize mineral phases when they exhibit surface charged groups enabling the chemical linking with the growth factor and thus moderating the release kinetics. All the microspheres show excellent osteogenic ability with human mesenchymal stem cells whereas the hybrid mineralized ones show a slow and sustained release of rhBMP-2 along 14 days of soaking into cell culture medium with substantially bioactive effect, as reported by assay with C2C12 BRE-Luc cell line. It is also shown that the release extent can be modulated by the application of pulsed electromagnetic field, thus showing the potential of remote controlling the bioactivity of the new micro-devices which is promising for future application of hybrid biomimetic microspheres in precisely designed and personalized therapies.
Collapse
Affiliation(s)
| | - Didem Mumcuoglu
- Fujifilm Manufacturing Europe B.V., Tilburg, the Netherlands; Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Shorouk Fahmy Garcia
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy.
| |
Collapse
|
7
|
Wang Q, Tang Y, Ke Q, Yin W, Zhang C, Guo Y, Guan J. Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. J Mater Chem B 2020; 8:5280-5292. [PMID: 32441294 DOI: 10.1039/d0tb00342e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic lanthanum hydroxyapatite/chitosan scaffolds can better repair bone defects through stem cell recruitment and immunomodulation.
Collapse
Affiliation(s)
- Qiyang Wang
- Department of Orthopedic Surgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai Jiao Tong University
- Shanghai 200233
- China
| | - Yaqi Tang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
- School of Materials Science and Engineering
| | - Wenjing Yin
- Department of Orthopedic Surgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai Jiao Tong University
- Shanghai 200233
- China
| | - Changqing Zhang
- Department of Orthopedic Surgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai Jiao Tong University
- Shanghai 200233
- China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Junjie Guan
- Department of Orthopedic Surgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai Jiao Tong University
- Shanghai 200233
- China
| |
Collapse
|
8
|
Ge YW, Lu JW, Sun ZY, Liu ZQ, Zhou J, Ke QF, Mao YQ, Guo YP, Zhu ZA. Ursolic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 18:336-346. [PMID: 30419364 DOI: 10.1016/j.nano.2018.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
Bioglass scaffolds have great application potentials in orthopedics, and Ursolic acid (UA) can effectively promote in vivo new bone formation. Herein, we for the first time developed the mesoporous bioglass/chitosan porous scaffolds loaded with UA (MBG/CS/UA) for enhanced bone regeneration. The MBG microspheres with particle sizes of ~300 nm and pore sizes of ~3.9 nm were uniformly dispersed on the CS films. The mesoporous structure within the MBG microspheres and the hydrogen bonding between the scaffolds and UA drugs made the MBG/CS/UA scaffolds have controlled drug release performances. The as-released UA drugs from the scaffolds increased remarkably the alkaline phosphatase activity, osteogenic differentiation related gene type I collagen, runt-related transcription factor 2 expression, and osteoblast-associated protein expression. Moreover, the results of micro-CT images, histomorphological observations demonstrated that the MBG/CS/UA scaffolds improved new bone formation ability. Therefore, the MBG/CS/UA porous scaffolds can be used as novel bone tissue engineering materials.
Collapse
Affiliation(s)
- Yu-Wei Ge
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia-Wei Lu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Zhen-Yu Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhi-Qing Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jun Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Yuan-Qing Mao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China.
| | - Zhen-An Zhu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Li K, Dai F, Yan T, Xue Y, Zhang L, Han Y. Magnetic Silicium Hydroxyapatite Nanorods for Enhancing Osteoblast Response in Vitro and Biointegration in Vivo. ACS Biomater Sci Eng 2019; 5:2208-2221. [PMID: 33405773 DOI: 10.1021/acsbiomaterials.9b00073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoblast behavior playing an important role in the biointegration of the Ti implant with host bone in vivo can be regulated by surface properties and magnetic field. In order to endow the Ti surface with good osteogenesis activity, Si monosubstituted and Fe and Si cosubstituted hydroxyapatite (HAp) nanorods were fabricated on microporous TiO2 by microarc oxidation (MAO) followed with hydrothermal treatment (HT). The surface properties including microstructure, microroughness, hydrophilicity, ion release, magnetic property, cytocompatibility, and biointegration of substituted HAp nanorods were observed and evaluated, together with pure HAp nanorods and microarc oxidated (MAOed) TiO2 as controls. After being doped with Fe, MAOed TiO2 has no changes in phase composition and microroughness, whereas it displays weakly ferromagnetic behavior and can enhance osteoblast differentiation in vitro and formation of new bone in vivo, compared with the undoped one. The substituted HAp nanorods adhere firmly to TiO2 and have almost the same wettability and microroughness but additional Si, Fe, and/or Ca released into the medium, compared with pure HAp nanorods. Moreover, the cosubstituted HAp has a small ferromagnetic signal, while its saturation magnetization value is less than that of the MAOed doped with Fe. Compared to pure HA nanorods, the substituted HAp nanorods not only improve cell proliferation and differentiation in vitro, but also enhance the ability of bone integration in vivo, especially for the cosubstituted one, which should be ascribed to the combined effect of microstructure, magnetic property, and released ions.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Fang Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Ting Yan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yang Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Lan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
10
|
Zhou M, Xie F, Li G, Wang Q, Tang L, Yan M, Bi H. Biocompatible HA@Fe 3 O 4 @N-CDs hybrids for detecting and absorbing lead ion. J Biomed Mater Res A 2019; 107:1532-1540. [PMID: 30821077 DOI: 10.1002/jbm.a.36666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 02/01/2023]
Abstract
The trinary hydroxyapatite@Fe3 O4 @N-doped carbon dots (HA@Fe3 O4 @N-CDs) hybrids were prepared by one-pot hydrothermal approach and utilized to detect and remove lead ion from aqueous solution. The structures and morphologies of as-obtained nanorod-like HA@Fe3 O4 @N-CDs hybrids were characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy measurements. These HA@Fe3 O4 @N-CDs hybrids possess good magnetism by magnetic hysteresis test and multi-colored fluorescence by the CLSM measurement. Furthermore, the as-obtained hybrids display excellent biocompatibility by MTT assay. Importantly, the trinary magnetic HA@Fe3 O4 @N-CDs hybrids as a green detector and adsorbent of Pb2+ were investigated. The influence of the different pH, the concentration of heavy metal, and the maximum adsorption capacity on removal efficiency was measured in detail. The maximum Pb2+ adsorption capacity on HA@Fe3 O4 @N-CDs hybrids is 450 mg/g. The kinetic mechanism was a pseudo-second order model, and the isotherm data was fitted well by the Langmuir isotherm and Freundlich model. Hence, the nanorod-like HA@Fe3 O4 @N-CDs hybrids could be a multifunctional material with significant potential applications in heavy metal detection and adsorption, bone tissue regeneration, magnetic therapy, and biomedicine. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Mingchen Zhou
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Fei Xie
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Guocang Li
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Longxiang Tang
- College of Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Manqing Yan
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Hong Bi
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
11
|
Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf B Biointerfaces 2018; 174:70-79. [PMID: 30439640 DOI: 10.1016/j.colsurfb.2018.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Magnetic-responsive materials are promising for applications in various biomedical fields. Especially, superparamagnetic nanoparticles are widely used in magnetic system for bone tissue engineering owing to superior biocompatibility and long term stability. Based on the idea of in situ bionics, we successfully incorporate the nano-hydroxyapatite (nHAP) and Fe3O4 nanoparticles which were prepared by in situ crystallization and freeze-drying technique into the chitosan/collagen (CS/Col) organic matrix to achieve the uniform dispersion of inorganic substrate with nanometer-scale. The in vitro results of the physicochemical and biocompatibility tests showed that CS/Col/Fe3O4/nHAP magnetic scaffold possessed superior structural and mechanical performance for cell adhesion and proliferation, as well as the osteogenic differentiation. Mineralization experiments showed better bioactive and good ability of in situ biomimetic mineralization. Moreover, from the in vivo model of SD rats' skull defects proved that the CS/Col/Fe3O4/nHAP hybrid scaffold had a better tissue compatibility and higher bone regeneration ability when implanted into the skull defects comparing to control group. Herein, the magnetic hybrid micro/nanostructured scaffold showed a potential application for bone defect repair.
Collapse
|
12
|
Li K, Yan T, Xue Y, Guo L, Zhang L, Han Y. Intrinsically ferromagnetic Fe-doped TiO 2 coatings on titanium for accelerating osteoblast response in vitro. J Mater Chem B 2018; 6:5756-5767. [PMID: 32254982 DOI: 10.1039/c8tb01414k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The microenvironment can regulate osteoblast behavior during integration of implants with host bones. An intrinsically magnetic field induced by an Fe3+ doped TiO2 coating was applied herein to enhance the cytocompatibility of Ti. Porous TiO2 incorporated with different amounts of Fe (2.27-11.07 wt%) was directly prepared on Ti by micro-arc oxidation. The microstructure, roughness, wettability, ion releasing and magnetic property of TiO2 coatings were investigated. Cell behavior, including adhesion, proliferation, differentiation, collagen secretion and extracellular matrix mineralization on coating surfaces was evaluated. The results show that incorporation of Fe3+ did not significantly alter the phase component, topography, roughness and wettability of coatings, and with increased doses of Fe3+, trace amounts of Fe3+ were released into the media, whereas the Ca2+ accumulation concentration slightly decreased. Fe-Doped TiO2 displayed a weak ferromagnetic property, and its saturation magnetization value increased initially and then decreased with the increased dose of Fe. Compared with the undoped, proliferation, expression of osteogenesis-related genes, collagen secretion and extracellular matrix mineralization of osteoblasts were enhanced with Fe doped ones, especially for those with 4.25 wt% Fe. By analyzing the structures and properties of different surfaces and their osteoblast responses, it is deduced that the ferromagnetism of Fe doped TiO2 plays a key role in enhancing osteoblast behavior. Such a result provides a new perspective for the potential application of ferromagnetic coatings in bone repair.
Collapse
Affiliation(s)
- Kai Li
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | |
Collapse
|
13
|
Lu JW, Yang F, Ke QF, Xie XT, Guo YP. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:811-822. [PMID: 29339189 DOI: 10.1016/j.nano.2017.12.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/23/2017] [Accepted: 12/30/2017] [Indexed: 11/18/2022]
Abstract
For effectively treating tumor related-bone defects, design and fabrication of multifunctional biomaterials still remain a great challenge. Herein, we firstly fabricated magnetic SrFe12O19 nanoparticles modified-mesoporous bioglass (BG)/chitosan (CS) porous scaffold (MBCS) with excellent bone regeneration and antitumor function. The as-produced magnetic field from MBCS promoted the expression levels of osteogenic-related genes (OCN, COL1, Runx2 and ALP) and the new bone regeneration by activated BMP-2/Smad/Runx2 pathway. Moreover, the SrFe12O19 nanoparticles in MBCS improved the photothermal conversion property. Under the irradiation of near-infrared (NIR) laser, the elevated temperatures of tumors co-cultured with MBCS triggered tumor apoptosis and ablation. As compared with the pure scaffold group, MBCS/NIR group possessed the excellent antitumor efficacy against osteosarcoma via the hyperthermia ablation. Therefore, the multifunctional MBCS with excellent bone regeneration and photothermal therapy functions has a great application for treating the tumor-related bone defects.
Collapse
Affiliation(s)
- Jia-Wei Lu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Fan Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Xue-Tao Xie
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
14
|
Abstract
As one of the biominerals, hydroxyapatite (HAP) plays important roles in biology, and inspires researchers to investigate HAP-based materials for the applications in various biomedical fields. Among them, one-dimensional (1-D) micro-/nanostructured HAP materials have attracted great interest in the last decades. This review summarizes the preparation and applications of 1-D HAP materials, and discusses different aspects of 1-D HAP materials. Various synthetic methods have been developed to prepare 1-D HAP materials with different morphologies, sizes, surface properties and crystallinities. In addition, elements-substituted 1-D HAP materials and composites have also been prepared. Surfactants and additives are usually adopted to control the nucleation and growth of 1-D HAP materials, but the related mechanisms are not very clear yet. The applications of 1-D HAP materials have been widely investigated, and the biomedical applications show great prospect but still need further improvements. A new kind of highly flexible fire-resistant inorganic paper made of ultralong HAP nanowires has been developed and is a promising alternative of the traditional cellulose paper for valuable archives and important documents. Regardless of the advances, further studies should be made for preparing 1-D HAP materials with controlled structures, sizes and morphologies and for boosting their various applications.
Collapse
Affiliation(s)
- Bing-Qiang Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
15
|
Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 2017; 249:321-330. [PMID: 28457501 DOI: 10.1016/j.cis.2017.04.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
The current need for long lasting implants and bone substitutes characterized by biocompatibility, bioactivity and mechanical properties, without the immune rejection is a great challenge for scientists. These bone substitute structures should be prepared for individual patients with all details controlled on the micrometer level. Similarly, nontoxic, biocompatible targeted drug delivery systems which allow controlling the rate and time period of the drug delivery and simultaneously eliminating toxic and side effects on the healthy tissues, are of great interest. Extensive attempts have been made to develop a simple, efficient, and green method to form biofunctional scaffolds and implant coatings possessing the above mentioned significant biocompatibility, bioactivity and mechanical strength. Moreover, that could also serve as drug delivery systems. Hydroxyapatite (HA) which is a major mineral component of vertebrate bones and teeth is an excellent material for these purposes. In this literature review the biologically inspired scaffolds, bone substitutes, implants characterized by mechanical strength and biocompatibility, as well the drug delivery systems, based on hydroxyapatite are discussed.
Collapse
|
16
|
Shi F, Liu Y, Zhi W, Xiao D, Li H, Duan K, Qu S, Weng J. The synergistic effect of micro/nano-structured and Cu
2+
-doped hydroxyapatite particles to promote osteoblast viability and antibacterial activity. Biomed Mater 2017; 12:035006. [DOI: 10.1088/1748-605x/aa6c8d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Zhu Y, Yang Q, Yang M, Zhan X, Lan F, He J, Gu Z, Wu Y. Protein Corona of Magnetic Hydroxyapatite Scaffold Improves Cell Proliferation via Activation of Mitogen-Activated Protein Kinase Signaling Pathway. ACS NANO 2017; 11:3690-3704. [PMID: 28314099 DOI: 10.1021/acsnano.6b08193] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The beneficial effect of magnetic scaffolds on the improvement of cell proliferation has been well documented. Nevertheless, the underlying mechanisms about the magnetic scaffolds stimulating cell proliferation remain largely unknown. Once the scaffold enters into the biological fluids, a protein corona forms and directly influences the biological function of scaffold. This study aimed at investigating the formation of protein coronas on hydroxyapatite (HA) and magnetic hydroxyapatite (MHA) scaffolds in vitro and in vivo, and consequently its effect on regulating cell proliferation. The results demonstrated that magnetic nanoparticles (MNP)-infiltrated HA scaffolds altered the composition of protein coronas and ultimately contributed to increased concentration of proteins related to calcium ions, G-protein coupled receptors (GPCRs), and MAPK/ERK cascades as compared with pristine HA scaffolds. Noticeably, the enriched functional proteins on MHA samples could efficiently activate of the MAPK/ERK signaling pathway, resulting in promoting MC3T3-E1 cell proliferation, as evidenced by the higher expression levels of the key proteins in the MAPK/ERK signaling pathway, including mitogen-activated protein kinase kinases1/2 (MEK1/2) and extracellular signal regulated kinase 1/2 (ERK1/2). Artificial down-regulation of MEK expression can significantly down-regulate the MAPK/ERK signaling and consequently suppress the cell proliferation on MHA samples. These findings not only provide a critical insight into the molecular mechanism underlying cellular proliferation on magnetic scaffolds, but also have important implications in the design of magnetic scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Yue Zhu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Minggang Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| |
Collapse
|
18
|
Scialla S, Palazzo B, Barca A, Carbone L, Fiore A, Monteduro AG, Maruccio G, Sannino A, Gervaso F. Simplified preparation and characterization of magnetic hydroxyapatite-based nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1166-1174. [PMID: 28482482 DOI: 10.1016/j.msec.2017.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 02/03/2023]
Abstract
Authors aimed to provide a magnetic responsiveness to bone-mimicking nano-hydroxyapatite (n-HA). For this purpose, dextran-grafted iron oxide nanoarchitectures (DM) were synthesized by a green-friendly and scalable alkaline co-precipitation method at room temperature and used to functionalize n-HA crystals. Different amounts of DM hybrid structures were added into the nanocomposites (DM/n-HA 1:1, 2:1 and 3:1weight ratio) which were investigated through extensive physicochemical (XRD, ICP, TGA and Zeta-potential), microstructural (TEM and DLS), magnetic (VSM) and biological analyses (MTT proliferation assay). X-ray diffraction patterns have confirmed the n-HA formation in the presence of DM as a co-reagent. Furthermore, the addition of DM during the synthesis does not affect the primary crystallite domains of DM/n-HA nanocomposites. DM/n-HAs have shown a rising of the magnetic moment values by increasing DM content up to 2:1 ratio. However, the magnetic moment value recorded in the DM/n-HA 3:1 do not further increase showing a saturation behaviour. The cytocompatibility of the DM/n-HA was evaluated with respect to the MG63 osteoblast-like cell line. Proliferation assays revealed that viability, carried out in the absence of external magnetic field, was not affected by the amount of DM employed. Interestingly, assays also suggested that the DM/n-HA nanocomposites exhibit a possible shielding effect with respect to the anti-proliferative activity induced by the DM particles alone.
Collapse
Affiliation(s)
- Stefania Scialla
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy; Ghimas S.p.A., c/o Dhitech S.c.a.r.l., Campus Ecotekne, Lecce, Italy
| | - Amilcare Barca
- General Physiology Laboratory, DiSTeBA Department, University of Salento, Lecce, Italy
| | - Luigi Carbone
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Lecce, Italy
| | - Angela Fiore
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Lecce, Italy; Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Anna Grazia Monteduro
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, via Turi 27, 70013 Castellana Grotte Bari, Italy
| | - Giuseppe Maruccio
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Lecce, Italy; Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
19
|
Chen W, Tian B, Lei Y, Ke QF, Zhu ZA, Guo YP. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:395-408. [DOI: 10.1016/j.msec.2016.04.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 03/28/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022]
|
20
|
Tian B, Chen W, Yu D, Lei Y, Ke Q, Guo Y, Zhu Z. Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J Mech Behav Biomed Mater 2016; 61:345-359. [DOI: 10.1016/j.jmbbm.2016.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/24/2022]
|
21
|
Thorat ND, Bohara RA, Malgras V, Tofail SAM, Ahamad T, Alshehri SM, Wu KCW, Yamauchi Y. Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14656-64. [PMID: 27197993 DOI: 10.1021/acsami.6b02616] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Superparamagnetic nanoparticles (SPMNPs) used for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) cancer therapy frequently face trade off between a high magnetization saturation and their good colloidal stability, high specific absorption rate (SAR), and most importantly biological compatibility. This necessitates the development of new nanomaterials, as MFH and MRI are considered to be one of the most promising combined noninvasive treatments. In the present study, we investigated polyethylene glycol (PEG) functionalized La1-xSrxMnO3 (LSMO) SPMNPs for efficient cancer hyperthermia therapy and MRI application. The superparamagnetic nanomaterial revealed excellent colloidal stability and biocompatibility. A high SAR of 390 W/g was observed due to higher colloidal stability leading to an increased Brownian and Neel's spin relaxation. Cell viability of PEG capped nanoparticles is up to 80% on different cell lines tested rigorously using different methods. PEG coating provided excellent hemocompatibility to human red blood cells as PEG functionalized SPMNPs reduced hemolysis efficiently compared to its uncoated counterpart. Magnetic fluid hyperthermia of SPMNPs resulted in cancer cell death up to 80%. Additionally, improved MRI characteristics were also observed for the PEG capped La1-xSrxMnO3 formulation in aqueous medium compared to the bare LSMO. Taken together, PEG capped SPMNPs can be useful for diagnosis, efficient magnetic fluid hyperthermia, and multimodal cancer treatment as the amphiphilicity of PEG can easily be utilized to encapsulate hydrophobic drugs.
Collapse
Affiliation(s)
- Nanasaheb D Thorat
- Centre for Interdisciplinary Research, D.Y. Patil University , Kolhapur-416006, India
- Department of Physics & Energy, University of Limerick , Limerick V94 T9PX, Ireland
- Materials & Surface Science Institute, University of Limerick , Limerick V94 T9PX, Ireland
| | - Raghvendra A Bohara
- Centre for Interdisciplinary Research, D.Y. Patil University , Kolhapur-416006, India
| | - Victor Malgras
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Syed A M Tofail
- Department of Physics & Energy, University of Limerick , Limerick V94 T9PX, Ireland
- Materials & Surface Science Institute, University of Limerick , Limerick V94 T9PX, Ireland
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Saudi Arabia
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Division of Medical Engineering Research, National Health Research Institutes , 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan
| | - Yusuke Yamauchi
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
22
|
In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:702-709. [DOI: 10.1016/j.msec.2015.10.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/27/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
|
23
|
Wen X, Shao CT, Chen W, Lei Y, Ke QF, Guo YP. Mesoporous carbonated hydroxyapatite/chitosan porous materials for removal of Pb(ii) ions under flow conditions. RSC Adv 2016. [DOI: 10.1039/c6ra20448a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mesoporous carbonated hydroxyapatite/chitosan porous materials are fabricated for the first time, which show good adsorption properties for Pb(ii) ions even under flow conditions.
Collapse
Affiliation(s)
- Xi Wen
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- PR China
| | - Chun-Tao Shao
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- PR China
| | - Wei Chen
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- PR China
| | - Yong Lei
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- PR China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- PR China
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- PR China
| |
Collapse
|
24
|
Tian B, Chen W, Dong Y, Marymont JV, Lei Y, Ke Q, Guo Y, Zhu Z. Silver nanoparticle-loaded hydroxyapatite coating: structure, antibacterial properties, and capacity for osteogenic induction in vitro. RSC Adv 2016. [DOI: 10.1039/c5ra25391h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AgNP-HAC has the potential to be used on the surfaces of orthopedic and dental implants for infection prophylaxis.
Collapse
Affiliation(s)
- Bo Tian
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Wei Chen
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yufeng Dong
- Department of Orthopaedic Surgery
- Louisiana State University Health Sciences Center
- Shreveport
- USA
| | - John V. Marymont
- Department of Orthopaedic Surgery
- Louisiana State University Health Sciences Center
- Shreveport
- USA
| | - Yong Lei
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Zhenan Zhu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|
25
|
Huang Y, Zhang X, Mao H, Li T, Zhao R, Yan Y, Pang X. Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv 2015. [DOI: 10.1039/c4ra12118j] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Effective physiological bone integration and absence of bacterial infection are essential for a successful orthopaedic or dental implant.
Collapse
Affiliation(s)
- Yong Huang
- College of Lab Medicine
- Hebei North University
- Zhangjiakou 075000
- China
- Institute of Life Science and Technology
| | - Xuejiao Zhang
- College of Lab Medicine
- Hebei North University
- Zhangjiakou 075000
- China
| | - Huanhuan Mao
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Tingting Li
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Ranlin Zhao
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yajing Yan
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Xiaofeng Pang
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
- International Centre for Materials Physics
| |
Collapse
|
26
|
Liu J, Liu XL, Xi TF, Chu CC. A novel pseudo-protein-based biodegradable coating for magnesium substrates: in vitro corrosion phenomena and cytocompatibility. J Mater Chem B 2015; 3:878-893. [DOI: 10.1039/c4tb01527d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of this study is to examine whether a member of the newly developed biodegradable pseudo-protein biomaterial family could provide a far better protection and performance than the popular hydrolytically degradable poly(glycolide-co-lactide) (PLGA) biomaterial on an experimental magnesium substrate as a model.
Collapse
Affiliation(s)
- J. Liu
- Center for Biomedical Materials and Tissue Engineering
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - X. L. Liu
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - T. F. Xi
- Center for Biomedical Materials and Tissue Engineering
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - C. C. Chu
- Biomedical Engineering Program
- Cornell University
- Ithaca
- USA
| |
Collapse
|
27
|
Guan JJ, Tian B, Tang S, Ke QF, Zhang CQ, Zhu ZA, Guo YP. Hydroxyapatite coatings with oriented nanoplate arrays: synthesis, formation mechanism and cytocompatibility. J Mater Chem B 2015; 3:1655-1666. [DOI: 10.1039/c4tb02085e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy has been developed to fabricate hydroxyapatite coatings with oriented nanoplate arrays for implants of human hard tissues.
Collapse
Affiliation(s)
- Jun-Jie Guan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
- Department of Orthopedics Surgery
| | - Bo Tian
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Sha Tang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Chang-Qing Zhang
- Department of Orthopedics Surgery
- Shanghai Sixth People's Hospital
- Shanghai Jiaotong University
- Shanghai 20200233
- China
| | - Zhen-An Zhu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| |
Collapse
|
28
|
Sheng W, Liu J, Liu S, Lu Q, Kaplan DL, Zhu H. One-step synthesis of biocompatible magnetite/silk fibroin core-shell nanoparticles. J Mater Chem B 2014; 2:7394-7402. [PMID: 32261964 DOI: 10.1039/c4tb01125b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A one-step hydrothermal process with silk fibroin (SF) nanofibers as the template and coating was developed to synthesize core-shell magnetite/SF nanoparticles with limited controllable sizes. The Fe3O4 nanoparticles gradually aggregated into nanospheres with sizes increased from 120 to 500 nm by increasing the SF content in the reaction system. The magnetic properties and biocompatibility of Fe3O4/SF nanoparticles, as well as their functional ability with antibodies are also discussed to assess their possible applications in MRI and bio-separation. Compared to previous two-step processes, our one-step method provides a simpler and more cost-effective approach to prepare biocompatible core-shell magnetite nanoparticles.
Collapse
Affiliation(s)
- Weiqin Sheng
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
29
|
Tang S, Tian B, Ke QF, Zhu ZA, Guo YP. Gentamicin-loaded carbonated hydroxyapatite coatings with hierarchically porous structures: drug delivery properties, bactericidal properties and biocompatibility. RSC Adv 2014. [DOI: 10.1039/c4ra05493h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gentamicin-loaded carbonated hydroxyapatite coatings as bone substitute materials can effectively treat implant-associated infection.
Collapse
Affiliation(s)
- Sha Tang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234, P. R. China
| | - Bo Tian
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234, P. R. China
| | - Zhen-An Zhu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011, China
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234, P. R. China
| |
Collapse
|
30
|
Bharath G, Prabhu D, Mangalaraj D, Viswanathan C, Ponpandian N. Facile in situ growth of Fe3O4 nanoparticles on hydroxyapatite nanorods for pH dependent adsorption and controlled release of proteins. RSC Adv 2014. [DOI: 10.1039/c4ra07318e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The magnetic hydroxyapatite nanostructures were prepared by hydrothermal technique and studied their protein adsorption and in vitro cytotoxicity in humen MGC-803 cell.
Collapse
Affiliation(s)
- G. Bharath
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore 641 046, India
| | - D. Prabhu
- International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)
- Hyderabad 500005, India
| | - D. Mangalaraj
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore 641 046, India
| | - C. Viswanathan
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore 641 046, India
| | - N. Ponpandian
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore 641 046, India
| |
Collapse
|