1
|
Wu L, Vllasaliu D, Cui Q, Raimi-Abraham BT. In Situ Self-Assembling Liver Spheroids with Synthetic Nanoscaffolds for Preclinical Drug Screening Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25610-25621. [PMID: 38741479 PMCID: PMC11129140 DOI: 10.1021/acsami.3c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most common reasons for acute liver failure and a major reason for the withdrawal of medications from the market. There is a growing need for advanced in vitro liver models that can effectively recapitulate hepatic function, offering a robust platform for preclinical drug screening applications. Here, we explore the potential of self-assembling liver spheroids in the presence of electrospun and cryomilled poly(caprolactone) (PCL) nanoscaffolds for use as a new preclinical drug screening tool. This study investigated the extent to which nanoscaffold concentration may have on spheroid size and viability and liver-specific biofunctionality. The efficacy of our model was further validated using a comprehensive dose-dependent acetaminophen toxicity protocol. Our findings show the strong potential of PCL-based nanoscaffolds to facilitate in situ self-assembly of liver spheroids with sizes under 350 μm. The presence of the PCL-based nanoscaffolds (0.005 and 0.01% w/v) improved spheroid viability and the secretion of critical liver-specific biomarkers, namely, albumin and urea. Liver spheroids with nanoscaffolds showed improved drug-metabolizing enzyme activity and greater sensitivity to acetaminophen compared to two-dimensional monolayer cultures and scaffold-free liver spheroids. These promising findings highlight the potential of our nanoscaffold-based liver spheroids as an in vitro liver model for drug-induced hepatotoxicity and drug screening.
Collapse
Affiliation(s)
- Lina Wu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Driton Vllasaliu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Qi Cui
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Bahijja Tolulope Raimi-Abraham
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| |
Collapse
|
2
|
Ravi K, Manoharan TJM, Wang KC, Pockaj B, Nikkhah M. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment. Biomaterials 2024; 305:122428. [PMID: 38147743 PMCID: PMC11098715 DOI: 10.1016/j.biomaterials.2023.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Cancer thrives in a complex environment where interactions between cellular and acellular components, surrounding the tumor, play a crucial role in disease development and progression. Despite significant progress in cancer research, the mechanism driving tumor growth and therapeutic outcomes remains elusive. Two-dimensional (2D) cell culture assays and in vivo animal models are commonly used in cancer research and therapeutic testing. However, these models suffer from numerous shortcomings including lack of key features of the tumor microenvironment (TME) & cellular composition, cost, and ethical clearance. To that end, there is an increased interest in incorporating and elucidating the influence of TME on cancer progression. Advancements in 3D-engineered ex vivo models, leveraging biomaterials and microengineering technologies, have provided an unprecedented ability to reconstruct native-like bioengineered cancer models to study the heterotypic interactions of TME with a spatiotemporal organization. These bioengineered cancer models have shown excellent capabilities to bridge the gap between oversimplified 2D systems and animal models. In this review article, we primarily provide an overview of the immune and stromal cellular components of the TME and then discuss the latest state-of-the-art 3D-engineered ex vivo platforms aiming to recapitulate the complex TME features. The engineered TME model, discussed herein, are categorized into three main sections according to the cellular interactions within TME: (i) Tumor-Stromal interactions, (ii) Tumor-Immune interactions, and (iii) Complex TME interactions. Finally, we will conclude the article with a perspective on how these models can be instrumental for cancer translational studies and therapeutic testing.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
3
|
Sanchez‐Rubio A, Jayawarna V, Maxwell E, Dalby MJ, Salmeron‐Sanchez M. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Adv Healthc Mater 2023; 12:e2202110. [PMID: 36938891 PMCID: PMC11469230 DOI: 10.1002/adhm.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.
Collapse
Affiliation(s)
| | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Emily Maxwell
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | | |
Collapse
|
4
|
Gao Y, Callanan A. Influence of surface topography on PCL electrospun scaffolds for liver tissue engineering. J Mater Chem B 2021; 9:8081-8093. [PMID: 34491259 PMCID: PMC8493469 DOI: 10.1039/d1tb00789k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 01/16/2023]
Abstract
Severe liver disease is one of the most common causes of death globally. Currently, whole organ transplantation is the only therapeutic method for end-stage liver disease treatment, however, the need for donor organs far outweighs demand. Recently liver tissue engineering is starting to show promise for alleviating part of this problem. Electrospinning is a well-known method to fabricate a nanofibre scaffold which mimics the natural extracellular matrix that can support cell growth. This study aims to investigate liver cell responses to topographical features on electrospun fibres. Scaffolds with large surface depression (2 μm) (LSD), small surface depression (0.37 μm) (SSD), and no surface depression (NSD) were fabricated by using a solvent-nonsolvent system. A liver cell line (HepG2) was seeded onto the scaffolds for up to 14 days. The SSD group exhibited higher levels of cell viability and DNA content compared to the other groups. Additionally, the scaffolds promoted gene expression of albumin, with all cases having similar levels, while the cell growth rate was altered. Furthermore, the scaffold with depressions showed 0.8 MPa higher ultimate tensile strength compared to the other groups. These results suggest that small depressions might be preferred by HepG2 cells over smooth and large depression fibres and highlight the potential for tailoring liver cell responses.
Collapse
Affiliation(s)
- Yunxi Gao
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.
| | - Anthony Callanan
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Valle F, Tortorella S, Scala A, Cordaro A, Barbalinardo M, Biscarini F, Mazzaglia A. Amphiphilic cationic cyclodextrin nanovesicles: a versatile cue for guiding cell adhesion. NANOSCALE ADVANCES 2020; 2:5897-5904. [PMID: 36133883 PMCID: PMC9417668 DOI: 10.1039/d0na00623h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 06/16/2023]
Abstract
It is well known that amphiphilic cationic β-cyclodextrins (amβCDs) form nanovesicles able to release their cargo in aqueous solution upon applying different stimuli. In addition they can be selectively positioned onto substrates by unconventional soft lithography. This makes them a powerful tool for designing environments where different cues can be externally supplied to the cells helping to achieve good control of their fate. Lithographically controlled wetting (LCW) of amβCD nanovesicles loaded with fluorescein isothiocyanate (FITC), amβCD/FITC, has been used here to fabricate geometrically functionalized surfaces, thus achieving multiscale control of the cell environment. The amβCD functionalization was strongly influenced by the surface energy of the underlying substrates that, according to their hydrophobicity, orient the amβCD in a different way, thus "offering" different portions to the cells. The structure of the pattern was characterized both over large scales exploiting the FITC fluorescence and at the nanoscale by atomic force microscopy. Cell guidance and aCD/FITC cell internalization were demonstrated in human neuroblastoma SHSY5Y cells.
Collapse
Affiliation(s)
- Francesco Valle
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) Via P. Gobetti 101 40129 Bologna Italy
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI) Firenze Italy
| | - Silvia Tortorella
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna "Alma Mater Studiorum" Via Zamboni 33 40126 Bologna Italy
| | - Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale F. Stagno D'Alcontres, 31 98166 Messina Italy
| | - Annalaura Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale F. Stagno D'Alcontres, 31 98166 Messina Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale F. Stagno D'Alcontres, 31 98166 Messina Italy
| | - Marianna Barbalinardo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) Via P. Gobetti 101 40129 Bologna Italy
| | - Fabio Biscarini
- Università di Modena e Reggio Emilia, Dipartimento di Scienze della Vita Via Campi 103 41125 Modena Italy
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology Via Fossato di Mortara 17-19 4412 Ferrara Italy
| | - Antonino Mazzaglia
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale F. Stagno D'Alcontres, 31 98166 Messina Italy
| |
Collapse
|
7
|
Abstract
Engineering approaches were adopted for liver microsystems to recapitulate cell arrangements and culture microenvironments in vivo for sensitive, high-throughput and biomimetic drug screening. This review introduces liver microsystems in vitro for drug hepatotoxicity, drug-drug interactions, metabolic function and enzyme induction, based on cell micropatterning, hydrogel biofabrication and microfluidic perfusion. The engineered microsystems provide varied microenvironments for cell culture that feature cell coculture with non-parenchymal cells, in a heterogeneous extracellular matrix and under controllable perfusion. The engineering methods described include cell micropatterning with soft lithography and dielectrophoresis, hydrogel biofabrication with photolithography, micromolding and 3D bioprinting, and microfluidic perfusion with endothelial-like structures and gradient generators. We discuss the major challenges and trends of liver microsystems to study drug response in vitro.
Collapse
Affiliation(s)
- Jyong-Huei Lee
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Kuan-Lun Ho
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
8
|
Lee JM, Park DY, Yang L, Kim EJ, Ahrberg CD, Lee KB, Chung BG. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep 2018; 8:17145. [PMID: 30464248 PMCID: PMC6249215 DOI: 10.1038/s41598-018-35216-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
Even though in vitro co-culture tumor spheroid model plays an important role in screening drug candidates, its wide applications are currently limited due to the lack of reliable and high throughput methods for generating well-defined and 3D complex co-culture structures. Herein, we report the development of a hydrogel microwell array to generate uniform-sized multicellular tumor spheroids. Our developed multicellular tumor spheroids are structurally well-defined, robust and can be easily transferred into the widely used 2D culture substrates while maintaining our designed multicellular 3D-sphere structures. Moreover, to develop effective anti-cancer therapeutics we integrated our recently developed gold-graphene hybrid nanomaterial (Au@GO)-based photothermal cancer therapy into a series of multicellular tumor spheroid co-culture system. The multicellular tumor spheroids were harvested onto a two-dimensional (2D) substrate, under preservation of their three-dimensional (3D) structure, to evaluate the photothermal therapy effectiveness of graphene oxide (GO)-wrapped gold nanoparticles (Au@GO). From the model of co-culture spheroids of HeLa/Ovarian cancer and HeLa/human umbilical vein endothelial cell (HUVEC), we observed that Au@GO nanoparticles displayed selectivity towards the fast-dividing HeLa cells, which could not be observed to this extent in 2D cultures. Overall, our developed uniform-sized 3D multicellular tumor spheroid could be a powerful tool for anticancer drug screening applications.
Collapse
Affiliation(s)
- Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Da Yeon Park
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Jersey, USA
| | | | | | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Jersey, USA.
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea.
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
9
|
Liu Y, Hu K, Wang Y. Primary Hepatocytes Cultured on a Fiber-Embedded PDMS Chip to Study Drug Metabolism. Polymers (Basel) 2017; 9:E215. [PMID: 30970894 PMCID: PMC6431835 DOI: 10.3390/polym9060215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 11/26/2022] Open
Abstract
In vitro drug screening using reliable and predictable liver models remains a challenge. The identification of an ideal biological substrate is essential to maintain hepatocyte functions during in vitro culture. Here, we developed a fiber-embedded polydimethylsiloxane (PDMS) chip to culture hepatocytes. Hepatocyte spheroids formed in this device were subjected to different flow rates, of which a flow rate of 50 μL/min provided the optimal microenvironment for spheroid formation, maintained significantly higher rates of albumin and urea synthesis, yielded higher CYP3A1 (cytochrome P450 3A1) and CYP2C11 (cytochrome P450 2C11) enzyme activities for metabolism, and demonstrated higher expression levels of liver-specific genes. In vitro metabolism tests on tolbutamide and testosterone by hepatocytes indicated predicted clearance rates of 1.98 ± 0.43 and 40.80 ± 10.13 mL/min/kg, respectively, which showed a good in vitro⁻in vivo correspondence. These results indicate that this system provides a strategy for the construction of functional engineered liver tissue that can be used to study drug metabolism.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ke Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
10
|
Liu Y, Wang S, Wang Y. Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing. Polymers (Basel) 2016; 8:E402. [PMID: 30974676 PMCID: PMC6431932 DOI: 10.3390/polym8110402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/26/2023] Open
Abstract
A new method to integrate poly-dl-lactide (PLA) patterned electrospun fibers with a polydimethylsiloxane (PDMS) microfluidic chip was successfully developed via lithography. Hepatocyte behavior under static and dynamic conditions was investigated. Immunohistochemical analyses indicated good hepatocyte survival under the dynamic culture system with effective hepatocyte spheroid formation in the patterned microfluidic chip vs. static culture conditions and tissue culture plate (TCP). In particular, hepatocytes seeded in this microfluidic chip under a flow rate of 10 μL/min could re-establish hepatocyte polarity to support biliary excretion and were able to maintain high levels of albumin and urea secretion over 15 days. Furthermore, the optimized system could produce sensitive and consistent responses to nano-Ag-induced hepatotoxicity during culture. Thus, this microfluidic chip device provides a new means of fabricating complex liver tissue-engineered scaffolds, and may be of considerable utility in the toxicity screening of nanoparticles.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shuyao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
11
|
Liu Y, Wei J, Lu J, Lei D, Yan S, Li X. Micropatterned coculture of hepatocytes on electrospun fibers as a potential in vitro model for predictive drug metabolism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:475-84. [PMID: 27040241 DOI: 10.1016/j.msec.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/14/2016] [Accepted: 03/07/2016] [Indexed: 12/26/2022]
Abstract
The liver is the major organ of importance to determine drug dispositions in the body, thus the development of hepatocyte culture systems is of great scientific and practical interests to provide reliable and predictable models for in vitro drug screening. In the current study, to address the challenges of a rapid function loss of primary hepatocytes, the coculture of hepatocytes with fibroblasts and endothelial cells (Hep-Fib-EC) was established on micropatterned fibrous scaffolds. Liver-specific functions, such as the albumin secretion and urea synthesis, were well maintained in the coculture system, accompanied by a rapid formation of multicellular hepatocyte spheroids. The activities of phase I (CYP3A11 and CYP2C9) and phase II enzymes indicated a gradual increase for cocultured hepatocytes, and a maximum level was achieved after 5 days and maintained throughout 15 days of culture. The metabolism testing on model drugs indicated that the scaled clearance rates for hepatocytes in the Hep-Fib-EC coculture system were significantly higher than those of other culture methods, and a linear regression analysis indicated good correlations between the observed data of rats and in vitro predicted values during 15 days of culture. In addition, the enzyme activities and drug clearance rates of hepatocytes in the Hep-Fib-EC coculture model experienced sensitive responsiveness to the inducers and inhibitors of metabolizing enzymes. These results demonstrated the feasibility of micropatterned coculture of hepatocytes as a potential in vitro testing model for the prediction of in vivo drug metabolism.
Collapse
Affiliation(s)
- Yaowen Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China; College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jinfu Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Dongmei Lei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shili Yan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
12
|
Chen J, Ge J, Guo B, Gao K, Ma PX. Nanofibrous polylactide composite scaffolds with electroactivity and sustained release capacity for tissue engineering. J Mater Chem B 2016; 4:2477-2485. [DOI: 10.1039/c5tb02703a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A conveniently fabricated electroactive nanofibrous composite scaffold serves as a sustained drug release system and promotes myoblast differentiation.
Collapse
Affiliation(s)
- Jing Chen
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
- Xi'an Modern Chemistry Research Institute
| | - Juan Ge
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
| | - Kun Gao
- State Key Laboratory for Manufacturing Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Peter X. Ma
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
- Department of Biomedical Engineering
| |
Collapse
|
13
|
Guo Z, Zhang T, Fang K, Dou J, Zhou N, Ma X, Gu N. The effects of macroporosity and stiffness of poly[(methyl vinyl ether)-alt-(maleic acid)] cross-linked egg white simulations of an aged extracellular matrix on the proliferation of ovarian cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra05134k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of macroporosity and stiffness of P(MVE-alt-MA) cross-linked EW simulations of an aged ECM on the proliferation of cancer cells.
Collapse
Affiliation(s)
- Zhenchao Guo
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Kun Fang
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Jun Dou
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Naizhen Zhou
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Xiaoe Ma
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Ning Gu
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| |
Collapse
|
14
|
Kim MH, Kumar SK, Shirahama H, Seo J, Lee JH, Zhdanov VP, Cho NJ. Biofunctionalized Hydrogel Microscaffolds Promote 3D Hepatic Sheet Morphology. Macromol Biosci 2015; 16:314-21. [PMID: 26612190 DOI: 10.1002/mabi.201500338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/07/2015] [Indexed: 12/18/2022]
Abstract
Development of artificial tissues providing the proper geometrical, mechanical, and environmental cues for cells is highly coveted in the field of tissue engineering. Recently, microfabrication strategies in combination with other chemistries have been utilized to capture the architectural complexity of intricate organs, such as the liver, in in vitro platforms. Here it is shown that a biofunctionalized poly (ethylene glycol) (PEG) hydrogel scaffold, fabricated using a sphere-template, facilitates hepatic sheet formation that follows the microscale patterns of the scaffold surface. The design takes advantage of the excellent diffusion properties of porous, uniform 3D hydrogel platforms, and the enhanced-cell-extracellular matrix interaction with the display of conjugated collagen type I, which in turn elicits favorable Huh-7.5 response. Collectively, the experimental findings and corresponding simulations demonstrate the importance of biofunctionalized porous scaffolds and indicate that the microscaffold shows promise in liver tissue engineering applications and provides distinct advantages over current cell sheet and hepatocyte spheroid technologies.
Collapse
Affiliation(s)
- Myung Hee Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Supriya K Kumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hitomi Shirahama
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jeongeun Seo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jae-Ho Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| |
Collapse
|
15
|
Wade RJ, Bassin EJ, Gramlich WM, Burdick JA. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1356-62. [PMID: 25640972 PMCID: PMC4412590 DOI: 10.1002/adma.201404993] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/01/2014] [Indexed: 05/18/2023]
Abstract
The ability to spatially pattern biochemical signals into nanofibrous materials using thiol-ene reactions of thiolated molecules to presented norbornene groups is demonstrated. This approach is used to pattern three molecules independently within one scaffold, to pattern molecules through the depth of a scaffold, and to spatially control cell adhesion and morphology.
Collapse
Affiliation(s)
- Ryan J Wade
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | | |
Collapse
|
16
|
Lee HW, Kook YM, Lee HJ, Park H, Koh WG. A three-dimensional co-culture of HepG2 spheroids and fibroblasts using double-layered fibrous scaffolds incorporated with hydrogel micropatterns. RSC Adv 2014. [DOI: 10.1039/c4ra12269k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|