1
|
Ran X, Yu Y, Yang H, Tan X, Ran Z, Zhang R, Du G, Yang L. Handheld UV spectrophotometer device for detection of methamphetamine hydrochloride based on supramolecular sensing platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123499. [PMID: 37832445 DOI: 10.1016/j.saa.2023.123499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The realization of drug detection in drug-using crime sites can provide law enforcement officials with direct evidence. This research has developed and demonstrated an easy-to-use handheld sensor that can quickly detect methamphetamine (MA) in the field. The core of the handheld UV spectrophotometer device (HUVSD) is the STM32F103 series of single-chip micro-controller, which has a 32-bit microcontroller and two embedded 12-bit high-precision analog-to-digital converter (ADC) modules. Through Bluetooth-wireless transmission protocol, the spectral information can be displayed in the cell phone's app, and it is possible to visually determine whether the test sample contains methamphetamine hydrochloride substances based on the characteristic peak at 410 nm. The readily available and inexpensive inducible compound 3A and the phosphate pillar[5]arene@silver nanoparticle (PP5@AgNPs) colloidal solution were used as the reactants. The PP5@AgNPs colloidal solution and 3A were mixed and reacted at room temperature, and the color changed to gray-black. The color change was caused by the aggregation of AgNPs induced by the molecular recognition between the induction compound 3A and PP5 on the AgNPs surface. After continuing to add the drug MA, the color of the colloidal solution turned yellow again. This is due to the occurrence of competitive molecular recognition, and the interaction between PP5 and 3A/MA was investigated by molecular docking simulations. The HUVSD has high sensitivity, simple equipment, time-saving, color change visualization and suitable for on-site deployment. It only needs a Pasteur pipette, which has great potential to realize rapid on-site detection.
Collapse
Affiliation(s)
- Xin Ran
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Yanbo Yu
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Hongxing Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Xiaoping Tan
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, 408100, China.
| | - Zhiyong Ran
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Ruilin Zhang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Guanben Du
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Long Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
2
|
Yan K, Wang L, Zhu Z, Duan S, Hua Z, Xu P, Xu H, Hu C, Wang Y, Di B. Cucurbituril-protected dual-readout gold nanoclusters for sensitive fentanyl detection. Analyst 2023; 148:1253-1258. [PMID: 36779286 DOI: 10.1039/d2an01748b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A large number of cases showed that fentanyl (FEN) has become the main cause of death from illegal drug overdose owing to its potent effect on respiratory depression, which has emerged as a grave threat to public health and safety. However, traditional analytical methods require cost-prohibitive equipment, complex pretreatment procedures, and technically trained experts, thus highlighting the urgent need to develop a cost-effective, straightforward, and highly sensitive method to detect FEN. This work demonstrated a dual-readout sensor FGGC-AuNCs@Q7 for FEN detection, which is based on the molecular recognition and self-assembly between the macrocycle cucurbit[7]uril (Q7) and FEN, accompanying spontaneous visual Tyndall effect and fluorescence optical responses of the gold nanoclusters within seconds. A detection limit of 1 ng mL-1 and a linear range of 9 to 148 000 ng mL-1 were achieved for fluorescence detection on FEN, with favorable selectivity in the presence of other illicit drugs or common interferents. The proposed method has been proved by its satisfactory application for the analysis of human urine.
Collapse
Affiliation(s)
- Kun Yan
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Lancheng Wang
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Zhihang Zhu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Shiqi Duan
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Zhendong Hua
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China.
| | - Peng Xu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China.
| | - Hui Xu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Chi Hu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China.
| | - Bin Di
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| |
Collapse
|
3
|
Duan Q, Chen R, Deng S, Yang C, Ji X, Qi G, Li H, Li X, Chen S, Lou M, Lu K. Cucurbit[ n]uril-based fluorescent indicator-displacement assays for sensing organic compounds. Front Chem 2023; 11:1124705. [PMID: 36711232 PMCID: PMC9880063 DOI: 10.3389/fchem.2023.1124705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
The widespread conversion of synthetic receptors into luminescent sensors has been achieved via the use of fluorescent-indicator displacement assays (F-IDAs). Due to their rigid structures and efficient binding affinities, cucurbit[n]urils, combined with a variety of fluorescent guests, have gained extensive utilization in fluorescent-indicator displacement assays for sensing non-fluorescent or weakly fluorescent organic compounds (analytes) in a selective and specific manner. This mini-review summarizes recent advances in the design of cucurbit[n]uril-based fluorescent-indicator displacement assays and discusses the current challenges and future prospects in this area.
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China,*Correspondence: Qunpeng Duan, ; Kui Lu,
| | - Ran Chen
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China
| | - Su Deng
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China
| | - Cheng Yang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China
| | - Xinxin Ji
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China
| | - Gege Qi
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hui Li
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China
| | - Xiaohan Li
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China
| | - Shihao Chen
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China
| | - Mengen Lou
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China
| | - Kui Lu
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, China,School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou, China,*Correspondence: Qunpeng Duan, ; Kui Lu,
| |
Collapse
|
4
|
Jiang C, Xiao D, Yang P, Tao W, Song Z, He H. Simple and fast detection of homocysteine by cucurbit[7]uril fluorescent probe based on competitive strategy. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Li Z, Wang T, Xu X, Wang C, Li D. An "on-off" fluorescent probe based on cucurbit[7]uril for highly sensitive determination of ammonia nitrogen in aquaculture water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4090-4098. [PMID: 34554148 DOI: 10.1039/d1ay00981h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel "on-off" fluorescent probe was synthesized for highly sensitive and ultra-trace determination of ammonia nitrogen in aquaculture water. Ammonium can react with formaldehyde and sodium hydroxide to form a ring substance (urotropine), which shows no fluorescence signal. Palmatine hydrochloride (PAL) can enter the hydrophobic cavity of cucurbit[7]uril (CB[7]), eventually forming a 1 : 1 host guest complex called PAL@CB[7] under neutral or acidic conditions, which has strong green fluorescence with the maximum excitation (λex) wavelength at 343 nm, and the maximum emission (λem) wavelength at 500 nm, while urotropine has a fluorescence quenching effect on the fluorescence enhancement system of PAL@CB[7]. Therefore, a fluorescent chemosensor based on PAL@CB[7] and the reaction of ammonia nitrogen with formaldehyde was developed. The results indicate that the linearity range and the limit of detection of the proposed method are 1-300 μg L-1 with a good correlation coefficient (r2 = 0.9966) and 1.8 × 10-2 μg L-1, respectively. Under the optimal conditions, the method was employed for the detection of ammonia nitrogen in real aquaculture water samples, revealing high selectivity and sensitivity. In the future, the combination of the "on-off" fluorescence method, a portable hardware system and intelligent algorithms will provide technology support for the design of on-line sensors for measuring ammonia nitrogen in aquaculture water.
Collapse
Affiliation(s)
- Zhen Li
- National Innovation Center for Digital Fishery, China Agricultural University, China.
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture, Beijing, 100083, PR China
| | - Tan Wang
- National Innovation Center for Digital Fishery, China Agricultural University, China.
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture, Beijing, 100083, PR China
| | - Xianbao Xu
- National Innovation Center for Digital Fishery, China Agricultural University, China.
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture, Beijing, 100083, PR China
| | - Cong Wang
- National Innovation Center for Digital Fishery, China Agricultural University, China.
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture, Beijing, 100083, PR China
| | - Daoliang Li
- National Innovation Center for Digital Fishery, China Agricultural University, China.
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture, Beijing, 100083, PR China
| |
Collapse
|
6
|
Deng XY, Lü LB, Zhu QJ, Tao Z, Chen K. Identification of Ferric Ions Using a Palmatine@Q[8] Fluorescent Probe. ChemistrySelect 2019. [DOI: 10.1002/slct.201901122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Yu Deng
- Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University, Guiyang 550025 China
| | - Li Bin Lü
- Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University, Guiyang 550025 China
| | - Qian Jiang Zhu
- Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University, Guiyang 550025 China
| | - Zhu Tao
- Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University, Guiyang 550025 China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment TechnologyJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and EngineeringNanjing University of Information Science & Technology, Nanjing 210044 China
| |
Collapse
|
7
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
8
|
|
9
|
Omar MA, Derayea SM, Abdel-Lateef MA, El Hamd MA. Derivatization of labetalol hydrochloride for its spectrofluorimetric and spectrophotometric determination inhuman plasma: Application to stability study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:457-463. [PMID: 28961530 DOI: 10.1016/j.saa.2017.09.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Two simple, selective and accurate methods were developed for the determination of Labetalol hydrochloride in pure form and pharmaceutical tablets. Both methods are based on derivatization of the studied drug with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBDCl) in alkaline medium (pH7.5).The reaction product was measured spectrofluorimetrically at 540nm after excitation at 476nm (method I) or spectrophotometrically at 480nm (method II). The calibration graphs were rectilinear over the concentration ranges of 0.10-2.0 and 1.0-11.0μgmL-1 for methods I and II, respectively. The proposed methods were successfully applied to the analysis of commercial tablets without interference from common excipients. Furthermore, the spectrofluorimetric method was utilized for the in vitro determination of labetalol in spiked human plasma, with a percent mean recovery (n=3) of 97.80±1.29%. Moreover, the spectrofluorimetric method was extended to examine the stability study of LBT under different stress conditions such as alkaline, acidic, oxidative, photolytic and a thermal degradation.
Collapse
Affiliation(s)
- Mahmoud A Omar
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Sayed M Derayea
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Mohamed A El Hamd
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
10
|
Label-Free Fluorescent Determination of Sunset Yellow in Soft Drinks Based on an Indicator-Displacement Assay. J FOOD QUALITY 2018. [DOI: 10.1155/2018/6302345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work reported a fluorescence sensing platform for Sunset Yellow (SY) determination based on competitive host-guest interaction between cucurbit[7]uril (CB7) and signal probe/target molecules. Luteolin/epigallocatechin gallate (EGCG) and SY were selected as the probe and target molecules, respectively. When luteolin or EGCG entered the CB7 host, its fluorescence significantly improved. However, upon the presence of SY in the performed luteolin·CB7 or EGCG·CB7 complex, this led to a remarkable decrease in fluorescence. This result was due to the fact that the binding constant of CB7/SY (4.9×104 M−1) was greater than that of CB7/luteolin (3.2×103 M−1) or CB7/EGCG (4.8×103 M−1). The fluorescence intensities of CB7/luteolin and CB7/EGCG complexes decreased linearly with increased SY concentration ranges of 0.5–50.0 and 2.0–50.0 μM. The proposed method had detection limits of 0.12 and 0.45 μM and was successfully used to determine SY samples with good recoveries ranging from 96.3% to 103.8%. This competitive mode provided a promising fluorescence assay strategy for potential applications in food safety.
Collapse
|
11
|
Zhao G, Yang L, Wu S, Zhao H, Tang E, Li CP. The synthesis of amphiphilic pillar[5]arene functionalized reduced graphene oxide and its application as novel fluorescence sensing platform for the determination of acetaminophen. Biosens Bioelectron 2017; 91:863-869. [DOI: 10.1016/j.bios.2017.01.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/30/2022]
|
12
|
Insights into the recognition of dimethomorph by disulfide bridged β–cyclodextrin and its high selective fluorescence sensing based on indicator displacement assay. Biosens Bioelectron 2017; 87:737-744. [DOI: 10.1016/j.bios.2016.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022]
|
13
|
Li W, Kuehne NW, Dallin E, Gordon R, Hof F. A supramolecular indicator displacement assay for acetyl amantadine, a proxy biomarker for spermidine/spermine N1-acetyltransferase (SSAT) activity. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetyl amantadine (AcAm) is produced from amantadine (Am) in vivo upon catalysis by spermidine/spermine N1-acetyl transferase (SSAT). SSAT is a biomarker for multiple aggressive cancers, and the analysis of AcAm in urine has been promoted as a proxy measure for the early detection of cancer. We report here the development and optimization of cucurbit[7]uril–dye pair based indicator displacement assay (IDA) for the detection of AcAm in solution. In deionized water, using Rhodamine B as the dye, the limit of detection of AcAm was 0.087 μM with a linear response range from 0 to 1 μM. Using berberine as the dye, the limit of detection was 0.077 μM with the same range of linear response. Our efforts and difficulties in translating this assay to function in human urine are also described. We achieve a partial response of the berberine IDA to the presence of AcAm in urine that has undergone a simple PD-10 desalting step.
Collapse
Affiliation(s)
- Wei Li
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Nathan W. Kuehne
- Glenlyon Norfolk School, 801 Bank St., Oak Bay, BC V8S 4A8, Canada
| | - Erin Dallin
- Glenlyon Norfolk School, 801 Bank St., Oak Bay, BC V8S 4A8, Canada
| | - Reuven Gordon
- Department of Computer and Electrical Engineering, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
14
|
Calix[8]arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host-guest recognition. Biosens Bioelectron 2016; 83:347-52. [DOI: 10.1016/j.bios.2016.04.079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
|
15
|
Yang L, Xie X, Cai L, Ran X, Li Y, Yin T, Zhao H, Li CP. p-sulfonated calix[8]arene functionalized graphene as a "turn on" fluorescent sensing platform for aconitine determination. Biosens Bioelectron 2016; 82:146-54. [PMID: 27085945 DOI: 10.1016/j.bios.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 11/16/2022]
Abstract
This work reports a novel method for the determination of aconitine through the competitive host-guest interaction between p-sulfonated calix[8]arene (SCX8) and signal probe/target molecules by using SCX8 functionalized reduced graphene oxide (SCX8-RGO) as a receptor. Three dyes (ST, RhB, BRB) and aconitine were selected as the probe and target molecules, respectively. The formation of SCX8-RGO·ST, SCX8-RGO·RhB, and SCX8-RGO·BRB complexes greatly decreases the fluorescence emission of ST, RhB, and BRB. The aconitine/SCX8 complex possesses a higher binding constant than ST/SCX8, RhB/SCX8, and BRB/SCX8 complexes, thus the dye in the SCX8 cavity can be replaced by aconitine to revert the fluorescence emission of SCX8-RGO·dye, leading to a "switch-on" fluorescence response. The fluorescence intensity of SCX8-RGO·ST, SCX8-RGO·RhB, and SCX8-RGO·BRB complexes increased linearly with increasing concentration of aconitine ranging from 1.0 to 14.0μM, 2.0-16.0μM, and 1.0-16.0μM, respectively. Based on the competitive host-guest interaction, the proposed detection method for aconitine showed detection limits of 0.28μM, 0.60μM, and 0.37μM, respectively, and was successfully applied for the determination of aconitine in human serum samples with good recoveries from 95.1% to 104.8%. The proposed method showed high selectivity for aconitine beyond competitive binding analytes. In addition, the inclusion complex of the SCX8/aconitine was studied by the molecular docking and molecular dynamics simulation, which indicated that the phenyl ester group of the aconitine molecule was included into the SCX8 cavity.
Collapse
Affiliation(s)
- Long Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Xiaoguang Xie
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Le Cai
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Xin Ran
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Yucong Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Tianpeng Yin
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China.
| | - Can-Peng Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
16
|
Yang L, Zhao H, Li Y, Ran X, Deng G, Zhang Y, Ye H, Zhao G, Li CP. Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode. Analyst 2016; 141:270-8. [DOI: 10.1039/c5an01843a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indicator displacement assay for cholesterol (Cho) sensing using CX6–Gra against MB.
Collapse
Affiliation(s)
- Long Yang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource
- Yunnan University
- Kunming 650091
- PR China
| | - Yucong Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xin Ran
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Guogang Deng
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Yanqiong Zhang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hanzhang Ye
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Genfu Zhao
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Can-Peng Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| |
Collapse
|
17
|
Ye H, Yang L, Zhao G, Zhang Y, Ran X, Wu S, Zou S, Xie X, Zhao H, Li CP. A FRET-based fluorescent approach for labetalol sensing using calix[6]arene functionalized MnO2@graphene as a receptor. RSC Adv 2016. [DOI: 10.1039/c6ra14835b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A turn-on fluorescent sensing platform for labetalol has been developed based on competitive host–guest interaction between p-sulfonated calix[6]arene (SCX6) and target molecule by using SCX6 functionalized MnO2@reduced graphene oxide as a receptor.
Collapse
Affiliation(s)
- Hanzhang Ye
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Long Yang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Genfu Zhao
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Yanqiong Zhang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xin Ran
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Shilian Wu
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Suo Zou
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xiaoguang Xie
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-Resource
- Yunnan University
- Kunming 650091
- PR China
| | - Can-Peng Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| |
Collapse
|
18
|
Yang L, Zhao H, Li Y, Ran X, Deng G, Xie X, Li CP. Fluorescent Detection of Tadalafil Based on Competitive Host-Guest Interaction Using p-Sulfonated Calix[6]arene Functionalized Graphene. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26557-26565. [PMID: 26571350 DOI: 10.1021/acsami.5b07833] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A competitive fluorescence method toward tadalafil detection has been developed based on host-guest recognition by selecting rhodamine B (RhB) and p-sulfonated calix[6]arene functionalized graphene (CX6-Gra) as the "reporter pair". Upon the presence of tadalafil to the performed CX6-Gra-RhB complex, the RhB molecules are displaced by tadalafil, leading to a "switch-on" fluorescence signal. The observed fluorescence signal can be used for quantitative detection of tadalafil ranging from 1.00 to 50.00 μM with a detection limit of 0.32 μM (S/N = 3). The inclusion complex of tadalafil and CX6 was studied by molecular docking and the results indicated that a 1:1 host-guest stoichiometry had the lowest ΔG value of -7.18 kcal/mol. The docking studies demonstrated that the main forces including π-π interactions, electrostatic interactions, and hydrophobic interactions should be responsible for the formation of this inclusion compound. The mechanism of the competitive host-guest interaction was clarified. The binding constant (K) of the tadalafil/CX6 complex was more than 5 times greater than that of RhB/CX6.
Collapse
Affiliation(s)
- Long Yang
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University , Kunming 650091, People's Republic of China
| | - Yucong Li
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Xin Ran
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Guogang Deng
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Xiaoguang Xie
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Can-Peng Li
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| |
Collapse
|
19
|
Yang L, Zhao H, Fan S, Zhao G, Ran X, Li CP. Electrochemical detection of cholesterol based on competitive host–guest recognition using a β-cyclodextrin/poly(N-acetylaniline)/graphene-modified electrode. RSC Adv 2015. [DOI: 10.1039/c5ra11420a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Illustration of the strategy of the proposed electrochemical sensor based on the competitive host–guest interaction between β-CD and MB (signal probe)/cholesterol (target).
Collapse
Affiliation(s)
- Long Yang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource
- Yunnan University
- Kunming 650091
- PR China
| | - Shuangmei Fan
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Genfu Zhao
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xin Ran
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Can-Peng Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| |
Collapse
|
20
|
Nie H, Wang W, Li W, Nie Z, Yao S. A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst 2015; 140:2771-7. [DOI: 10.1039/c4an02339k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A simple, colorimetric and smartphone readable method based on the target-triggered formation of G-quadruplex has been developed for uracil-DNA glycosylase detection.
Collapse
Affiliation(s)
- Huaijun Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Wei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|